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Abstract Classical replicator dynamics assumes that individuals play their games
and adopt new strategies on a global level: Each player interacts with a representative
sample of the population and if a strategy yields a payoff above the average, then it is
expected to spread. In this article, we connect evolutionary models for infinite and fi-
nite populations: While the population itself is infinite, interactions and reproduction
occurs in random groups of size N . Surprisingly, the resulting dynamics simplifies
to the traditional replicator system with a slightly modified payoff matrix. The qual-
itative results, however, mirror the findings for finite populations, in which strategies
are selected according to a probabilistic Moran process. In particular, we derive a
one-third law that holds for any population size. In this way, we show that the deter-
ministic replicator equation in an infinite population can be used to study the Moran
process in a finite population and vice versa. We apply the results to three examples
to shed light on the evolution of cooperation in the iterated prisoner’s dilemma, on
risk aversion in coordination games and on the maintenance of dominated strategies.

Keywords Evolutionary game theory · Replicator dynamics · Moran process ·
One-third rule · Evolution of cooperation

1 Introduction

Evolutionary game theory is the appropriate mathematical framework whenever the
fitness of an individual does not only depend on its own phenotype but also on the
composition of the whole population (Maynard Smith 1982; Nowak and Sigmund
2004). Such biological interdependencies are wide-spread. Game theoretic models
help us to understand molecular biological processes (Pfeiffer and Schuster 2005),
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animal behaviour (Dugatkin and Reeve 1998) or plant growth (Falster and Westoby
2003). Even the evolution of abstract cultural entities, such as languages (Niyogi
2006) or norms (Gintis et al. 2005) can be captured with equations. In this way,
mathematical arguments reveal the logic of indirect speech (Pinker et al. 2008) as
well as the origin of moral systems (Uchida and Sigmund 2010).

The classical approach to evolutionary games is replicator dynamics (Taylor and
Jonker 1978; Hofbauer and Sigmund 1998): When a certain strategy leads to a fit-
ness above the average, then this behaviour is expected to spread. More formally,
suppose the individuals of a population can choose among n strategies. A player with
strategy i, interacting with a j -player, obtains a payoff aij . The relative frequency of
i-individuals within the population is denoted by xi . If we collect these frequencies
to a vector x = (x1, . . . , xn)

T and the payoffs to a matrix A = (aij ), the expected
fitness of strategy i can be written as πi(x) := (Ax)i = ai1x1 + · · · + ainxn. Over the
whole population, this results in an average payoff of π̄(x) := x · Ax. According to
the replicator equation, the fraction of i-players grows whenever πi(x) exceeds π̄(x):

ẋi = xi · [(Ax)i − x · Ax
]
. (1)

The dot above xi on the left-hand side denotes the time derivative, dxi/dt .
There are several reasons for the prominent role of replicator dynamics: Firstly,

(1) is relatively simple and mathematically well understood (Hofbauer and Sigmund
2003). It is equivalent to the famous Lotka–Volterra model in population ecology
(Hofbauer 1981). Additionally, there are beautiful connections between replicator
dynamics and the concepts of classical game theory (Fudenberg and Tirole 1991;
Weibull 1995). For example, if strategy i is dominated, meaning that there is another
strategy which is always better, then replicator dynamics will lead to the extinction
of i. Furthermore, strict Nash equilibria, i.e. strategies that are optimal against them-
selves, are asymptotically stable rest points of (1).

The conceptual beauty of replicator dynamics has its price. To be valid, several
conditions have to be met:

(i) The population is well mixed, meaning that any two players interact with the
same probability.

(ii) Before reproduction, individuals play against a representative sample of the pop-
ulation.

(iii) Players may choose among a finite set of strategies, and
(iv) the population needs to be infinite.

The game-theoretical toolbox, however, is evolving, also. In the last two decades,
there have been several attempts to relax the above assumptions. Instead of con-
sidering well mixed populations, various models explore games in which players
only interact with their neighbors on a lattice (Nowak and May 1992; Durrett and
Levin 1994; Hauert and Doebeli 2004; Helbing and Yu 2009) or on a random
graph (Abramson and Kuperman 2001; Lieberman et al. 2005; Ohtsuki et al. 2006;
Lehmann et al. 2007; Szabó and Fáth 2007; Santos et al. 2008). Additionally,
some authors investigated the effect of a non-representative sample of interac-
tion partners (Sánchez and Cuesta 2005; Roca et al. 2006; Traulsen et al. 2007;
Wölfing and Traulsen 2009). The introduction of continuous strategy spaces has



2070 C. Hilbe

led to adaptive dynamics theory (Hofbauer and Sigmund 1994; Geritz et al. 1998;
Dieckmann et al. 2006).

To study the effect of finite populations, Nowak et al. (2004) consider a group
of N individuals who may choose among two strategies, R and M . Evolution takes
place according to a Moran process: In each time step, one randomly chosen indi-
vidual dies. Its place is filled with the copy of another member of the population,
whereby players with a high payoff have a better chance to be copied. The resulting
dynamics is a stochastic birth-death process. Evolutionary success is measured with
fixation probabilities. For example, in a state with R-types only, one may calculate
the likelihood that one M-mutant can invade and take over the whole population. If
this probability ρM→R exceeds 1/N , then selection favours M replacing R.

There are interesting connections between replicator dynamics and the Moran-
process. For example, in the limit of large populations, the diffusion approximation
of the Moran-process converges to a variant of the replicator equation (Traulsen et
al. 2005). A more subtle connection is called the one-third law (Taylor et al. 2004;
Ohtsuki et al. 2007a; Bomze and Pawlowitsch 2008): Consider a game with payoff
matrix

R M

R a b

M c d

(2)

For a > c and d > b, replicator dynamics predicts that both pure strategies, R and
M , are evolutionarily stable. Additionally, there is an interior fixed point at x∗ =
(a − c)/(a − b − c + d), whereby x denotes the frequency of M-players. For large
population sizes N , it can be shown that selection favours M replacing R if this fixed
point is below one third, i.e.

ρM→R > 1/N ⇔ x∗ < 1/3. (3)

A similar result holds for risk dominance (Harsanyi and Selten 1988): Strategy M has
the bigger basin of attraction if M has a higher chance to replace R than vice versa:

ρM→R > ρR→M ⇔ x∗ < 1/2. (4)

Even if replicator dynamics and the Moran process are closely related for large
populations, they can lead to very different conclusions if the population size N is
small. Dominated strategies may spread in finite populations (Taylor et al. 2004) and
regimes that are stable according to replicator dynamics may be invaded under the
Moran process and vice versa (Nowak et al. 2004). Therefore, several recent studies
have compared the dynamics in finite respectively infinite populations separately, e.g.
Imhof et al. (2005) or Hilbe and Sigmund (2010).

In this paper, we aim to connect both approaches: While the population itself is
infinite, individuals interact in randomly formed groups of size N . In each group, one
member may adopt the strategy of a co-player. Strategies that yield a high payoff are
more likely to be adopted. After reproduction, groups are formed anew. This scenario
was used by Nakamaru et al. (1997, 1998), Nakamaru and Iwasa (2006) and Rand
et al. (2010) to approximate games on a lattice, in which each player interacts with



Local Replicator Dynamics: A Simple Link 2071

its N − 1 neighbors. Here, we show that the resulting dynamics can be described
by a modified replicator equation. Instead of payoff matrix A, the modified matrix
ÃN = A− (A+AT )/N governs the evolutionary outcome. We refer to this modified
system as the local replicator dynamics.

Despite its deterministic nature, the local replicator dynamics strongly mirrors the
findings for finite populations. We will show that there is a one-to-one map from
the fixation probabilities according to the Moran process to the fixed points of the
local replicator equation. In particular, the one-third rule holds for any population
size N . Thus, a simple transformation of the payoff matrix allows us to use classical
replicator dynamics to analyze games in finite populations.

The remainder of this article is organized as follows: In Sect. 2, we derive the lo-
cal replicator equation, and in Sect. 3 we discuss its properties. In Sect. 4, we present
three examples for the resulting dynamics: First, we show how the evolution of co-
operation in the iterated prisoner’s dilemma is influenced by the size of the group.
Then we provide a simple model for the emergence of risk aversion in a coordination
game. In the last example, we explain how dominated strategies can succeed in finite
interaction neighborhoods. In Sect. 5, we extend our model: Instead of considering
a fixed N , we assume that the size of a given group is a random variable. Still, the
dynamics can be described with the local replicator equation by simply replacing N

with a proper mean of all possible group sizes. In Sect. 6, finally, we give a summary
and discussion of our results.

2 Derivation of the Local Replicator Dynamics

We consider an infinite population whose individuals are randomly assigned to
groups of equal size. Within their groups, players engage in pairwise interactions
that determine the payoff of each individual. More specifically, let k be the number
of possible strategies and A = (aij ) the payoff matrix. For a given group of size N ,
denote by ni the number of players with strategy i and by �n = (n1, . . . , nk) the vector
of those numbers, with |�n| := n1 + · · · + nk = N . If individuals interact with every
other group member and self-interactions are excluded, an individual with strategy i

yields the average payoff

πi(�n) = 1

N − 1

[
n1ai1 + · · · + (ni − 1)aii + · · · + nkaik

]
.

After these interactions, one group member is chosen at random to compare its
payoff with another randomly chosen group member. We follow the update rule in
Traulsen et al. (2005, 2006) and assume that an i-player adopts the role model’s
strategy j with probability

pij = 1

2
+ s

2

πj (�n) − πi(�n)

�πmax
,

where �πmax is the maximum possible payoff difference and 0 < s ≤ 1 measures the
strength of selection. For weak selection (s ≈ 0), a coin toss essentially determines
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whether the role model is imitated; if the selection parameter approaches 1, this deci-
sion is increasingly biased towards the strategy with higher payoff. Since players are
selected randomly for the imitation process, this leads to an expected change in the
number of i-players of

�ni =
k∑

j=1

ni

N

nj

N
(pji − pij ) = s

�πmax

ni

N

[
πi(�n) − π̄ (�n)

]
. (5)

The term π̄ (�n) denotes the average payoff of all players in the group, π̄(�n) =∑k
j=1 njπj (�n)/N . By using nj/N instead of nj/(N − 1), we have implicitly as-

sumed that players may imitate themselves (as, for example, in Ohtsuki et al. 2006;
Ohtsuki and Nowak 2006). However, if an individual chooses itself as role model,
then nothing will change. Overall, this simplification only changes the velocity of
evolution but not its direction.

According to (5), the expected change of strategies within a certain group can
be described through a replicator equation with local frequencies ni/N . In order to
calculate the aggregate outcome, we have to sum up over all possible groups with
|�n| = N . If xi denotes the global frequency of strategy i and if groups are formed
according to a multi-nomial distribution, this results in the following equation for the
expected change of global strategy abundances,

ẋi =
∑

|�n|=N

N !
n1! · · ·nk! x

n1
1 · · · · · xnk

n · ni

N

[
πi(�n) − π̄(�n)

]
, (6)

where the constant factor s/�πmax has been omitted since it only affects the timescale
of evolution. We call (6) the local replicator dynamics of the system. In general, the
expression on the right-hand side is laborious to compute: The polynomial has degree
N and the number of summands increases exponentially in the number of strategies
k. As it turns out, this expression can be simplified considerably.

Proposition 1 (A simple representation for the local replicator dynamics) The local
replicator dynamics (6) can be rewritten as

ẋi = xi · [(Ãx)i − x · Ãx
]
, (7)

with Ã := A − A+AT

N
. As usual, AT denotes the transposed payoff matrix (Proof in

Appendix).

This representation of the local replicator equation can be interpreted by slightly
rearranging the terms to

ẋi = xi ·
[
(Ax)i − (N − 2) · xT Ax + (Ax)i + (AT x)i

N

]
,

meaning that a player with strategy i still gets an expected payoff of (Ax)i . However,
being an i-player in a finite group of size N leads to a bias in the average payoff of
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the group, on the one hand due to the own payoff (Ax)i and on the other hand due to
the expected influence on the others’ payoffs (AT x)i .

Consequently, there are two alternative mechanisms that promote the evolution of
a certain strategy under the local replicator dynamics: Strategy i may spread either
because it leads to a high own payoff (Ax)i , or because it leads the co-players to have
a low payoff, i.e. it decreases (AT x)i . In particular, it may pay off to be spiteful and to
diminish the fitness of other group members (see also Nowak et al. 2004). As group
size increases, the impact of spiteful behaviour disappears, since the own influence
on the co-players’ payoffs becomes negligible. In the limit of infinite group sizes,
spite becomes completely irrelevant.

In this section, we have derived the local replicator dynamics for an imitation
process, where individuals with higher payoff are imitated more often than others.
One could also investigate a model in which successful players produce more off-
spring; such an attempt is shown in the appendix, leading to the same dynamics.
Irrespective of its derivation, the local replicator equation has interesting properties:
It connects the results of the Moran process in finite populations with the classical
replicator dynamics in infinite populations. This is shown in the next section.

3 Properties of the Local Replicator Dynamics

Representation (7) makes it straightforward to derive the properties of the local repli-
cator dynamics: We only have to plug in the values of ÃN = A − (A + AT )/N , to
transfer the well-known results of the classical replicator equation (see, for example,
in Hofbauer and Sigmund 1998). This is done in the following two propositions.

Proposition 2 (Analytical properties of the local replicator equation)

1. The simplex Sk = {(x1, . . . , xk): x1 +· · ·+xk = 1} and all its sub-faces are invari-
ant under the local replicator dynamics.

2. Quotient rule: ˙(
xi

xj
) = xi

xj
· [(N − 1)

(Ax)i−(Ax)j
N

+ (AT x)j −(AT x)i
N

]
3. In the special case of N = 2, the values of the diagonal entries of A do not influ-

ence the dynamics.
4. For zero sum games (i.e. if A = −AT ) or in the case of infinite group sizes (N →

∞), the local replicator equation coincides with the classical version.

In applications, it is often important to know which states can be stably estab-
lished. To this end, one considers a homogeneous population with strategy R, that is
invaded by a rare mutant with an alternative strategy M . If the evolutionary dynamics
leads to the extinction of any such mutant, then R is called evolutionarily stable or
an ESS.

Proposition 3 (Evolutionary stability) Consider a game with 2 strategies and payoff
matrix

R M

R a b

M c d
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Let x denote the fraction of M-players in the population. Then the local replicator
dynamics can be written as

ẋ = x(1 − x) ·
(

(N − 1)c − b − (N − 2)a

N
+ (N − 2)(a − b − c + d)

N
x

)
.

In particular, the resident strategy R is (strictly) evolutionarily stable, if (N − 2)a +
b > (N − 1)c.

Again, this proposition is simply an adapted version of the analogous result for
classical replicator dynamics. Obviously, the above ESS-condition reduces to the
usual Nash condition a > c for infinite groups. For finite populations, however, sev-
eral definitions have been suggested to capture evolutionary stability, see Wild and
Taylor (2004). The condition (N − 2)a + b > (N − 1)c is included, for example, in
the definitions of Maynard Smith (1988) and Schaffer (1988).

Nowak et al. (2004) suggest an additional ESS-criterion for finite populations.
Beside the above condition that rare mutants have a lower fitness than the resident
type, they require the mutant strategy to have a fixation probability lower than 1/N .
When selection is weak (i.e. the impact of the payoff in the game has a small effect
on the reproductive success of a strategy), they find that this fixation probability is
approximately given by

ρM→R = 1

N
+ 1

6N
(αN − β)s, (8)

with α = d +2c−b−2a and β = 2d +b+ c−4a. Again, s measures the strength of
selection. Approximation (8) is valid if Ns 	 1 and will be called the weak selection
fixation probability. The reverse probability ρR→M that a single R-mutant reaches
fixation in an otherwise homogeneous population of M-players can be derived with
a symmetry argument. Our next aim is to show that there is a strong connection
between these fixation probabilities and the local replicator dynamics.

Proposition 4 (One-third law) Let A = (
a b

c d

)
and ÃN = A − A+AT

N
= ( ã b̃

c̃ d̃

)
be pay-

off matrices for a game with two strategies, R and M .

1. The weak selection fixation probabilities of the Moran process with payoff matrix
A can be inferred from the replicator dynamics of the game with matrix ÃN :

ρM→R = 1

N
+ D̃

2

(
x̃∗ − 1

3

)
s, ρR→M = 1

N
+ D̃

2

(
2

3
− x̃∗

)
s. (9)

Here, x̃∗ denotes the fixed point of the replicator equation, x̃∗ = (c̃ − ã)/(c̃ −
ã − d̃ + b̃), and D̃ denotes the denominator of x̃∗. In particular, for a bistable
competition (ã > c̃ and d̃ > b̃), we recover the one-third law for any group
size N :

ρM→R > 1/N ⇔ x̃∗ < 1/3,

ρM→R > ρR→M ⇔ x̃∗ < 1/2.
(10)
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2. Conversely, if the replicator equation for the game with matrix ÃN has a fixed
point x̃∗ ∈ (0,1), then it can be calculated using the weak selection fixation prob-
abilities of the Moran process for game A:

x̃∗ = 1

3

(
1 + ρM→R − 1/N

ρM→R + ρR→M − 2/N

)
. (11)

In this case, the dynamics is bistable if ρM→R +ρR→M < 2/N and it leads to co-
existence if ρM→R +ρR→M > 2/N . If there is no interior fixed point, the strategy
with larger fixation probability dominates the other.

Proof

1. The formula for ρM→R is verified by a straight calculation: Inserting

ã = N − 2

N
a, b̃ = N − 1

N
b − 1

N
c,

c̃ = N − 1

N
c − 1

N
b and d̃ = N − 2

N
d

into the right-hand side leads to the same result as (8). The expression for ρR→M

follows from a symmetry argument, as the equilibrium frequency of R is 1 − x̃∗
instead of x̃∗.

2. Adding up the two equations in (9) leads to the relation

D̃

2
s = 3(ρM→R + ρR→M − 2/N). (12)

Inserting this expression into the formula for ρM→R in (9) gives (11). Addition-
ally, it follows that D̃ = c̃− ã− d̃ + b̃ has the same sign as ρM→R +ρR→M −2/N .
Since the fixed point x̃∗ ∈ (0,1) exists if and only if (ã − c̃)(d̃ − b̃) > 0, the
inequality ρM→R + ρR→M > 2/N is equivalent to c̃ > ã and b̃ > d̃ , i.e. to co-
existence under replicator dynamics.

�

Simply speaking, and under the assumption of weak selection, this means playing
a game A in a finite population of size N is the same as playing the game ÃN in an
infinite population. As soon as one knows the evolutionary outcome in one regime,
one can deduce the results of the other. Thus one may use replicator dynamics to study
the behaviour of finite populations (by simply using the transformation A �→ ÃN , see
Fig. 1). Conversely, the replicator dynamics of game ÃN can be examined by studying
the finite population dynamics of game A.

As a consequence, we will see in examples that the local replicator dynamics,
despite having the form of the classical replicator system, mirrors the findings in
finite populations. In particular, dominated strategies can prevail.
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Fig. 1 Connection between
replicator dynamics and the
Moran process. To study the
game A in a finite population,
one may analyze the replicator
dynamics of game ÃN , which
we have called the local
replicator dynamics of A

4 Examples for the Local Replicator Dynamics

4.1 The Iterated Prisoner’s Dilemma

In this section, we apply our previous results to the iterated prisoner’s dilemma (Ax-
elrod 1984). Suppose that two players may independently decide whether to transfer
a benefit b at own costs c to the co-player or not (and b > c). Assume that this game is
repeated with a constant probability ω. We distinguish three strategies: All D always
refuses to help, whereas All C always cooperates. The strategy TFT (Tit for Tat) starts
with cooperation and imitates the co-player’s previous move in all subsequent rounds.
Thus, we get the following average payoffs per round (for a detailed derivation see
Sigmund 2010):

A All C All D TFT
All C b − c −c b − c

All D b 0 b(1 − ω)

TFT b − c −c(1 − ω) b − c

Obviously, the selfish strategy All D is always evolutionarily stable. Because 0 < b −
c, all players in a population of defectors would be better off if everybody cooperated.
All C is unstable; but if the game lasts sufficiently long (ω > c/b), then TFT can resist
the invasion of All D. However, to study the effect of playing in local groups of size
N , we have to consider the modified matrix ÃN which is up to a factor 1/N :

ÃN All C All D TFT
All C (N − 2)(b − c) −(N − 1)c − b (N − 2)(b − c)

All D (N − 2)b 0 (1 − ω)[(N − 1)b + c]
TFT (N − 2)(b − c) −(1 − ω)[(N − 1)c + b] (N − 2)(b − c)

According to the local replicator equation TFT is stable against invasion of defectors
if and only if

(1 − ω)
[
(N − 1)b + c

]
< (N − 2)(b − c).
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Fig. 2 The iterated prisoner’s dilemma for different group sizes. If N = 2, then any player will adopt the
All D strategy in the long run: As both other strategies perform worse than All D in the direct competition,
they will usually adopt the co-player’s strategy if this co-player is a defector. Increasing group size N

diminishes this dilemma. As a consequence, cooperation in the iterated prisoner’s dilemma is most likely
to evolve in large populations (Parameter values: b = 3, c = 1 and ω = 2/3)

Therefore, even if the game is frequently repeated (ω close to 1), TFT might be un-
stable if its interaction neighborhood N is small (note that TFT is never stable for
N = 2, see Fig. 2).

4.2 Risk Aversion in a Coordination Game

Experiments indicate that people tend to risk-averse decisions (Kahnemann and Tver-
sky 1979; Holt and Laury 2002; Platt and Huettel 2008): A bird in the hand is worth
two in the bush. As we will see, local replicator dynamics promotes risk-aversion in
coordination games. Consider the following stag hunt game (with r > 0):

A =
(

1 + r 0
r 1

)
.

Obviously this game has two pure Nash-equilibria. Owing to the higher variance of
the payoffs of the first strategy, we will interpret the first strategy as risk-prone and the
second as risk-averse. As the sum of each row is 1+ r , rational players are exactly in-
different if they know that their co-player chooses each strategy with probability 1/2.
Therefore, classical replicator dynamics predicts equal basins of attraction. However,
for the local replicator dynamics, we compute

ÃN = 1

N

(
(N − 2)(1 + r) −r

(N − 1)r N − 2

)
.

According to this matrix, the risk-averse strategy dominates the risk-prone strategy
if r > N − 2 and it has the bigger basin of attraction for r ≤ N − 2. Hence, the
local replicator dynamics has a clear bias toward the emergence of risk-averse strate-
gies. The intuition behind this result is as follows: Individuals can only imitate a
different strategy, if both types of players are present in the group. Therefore, a suc-
cessful strategy has to perform well in mixed groups, i.e. it has to yield a notable
payoff against any co-player. Overall, this effect may promote the emergence of risk-
aversion, although a homogeneous population of risk-prone subjects would yield the
highest possible welfare.
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However, coordination to the risk-prone equilibrium is only partly observed in
experiments (see, for example Straub 1995; Friedman 1996; Battalio et al. 2001)
and human behaviour in coordination games seems to be very sensitive on details
of the experimental setup. For example, Cooper et al. (1990) have shown that even
the presence of a third, dominated strategy can alter the decisions of the subjects
considerably.

4.3 The Dominance Paradox

Consider a cooperation game with payoffs

A =
⎛

⎝
C D

C 2 + r 1
D 1 + r 0

⎞

⎠ .

Obviously, there is no social dilemma as the cooperative strategy dominates defec-
tive motives. Replicator dynamics thus predicts a stable population with the highest
possible payoff, 2 + r . However, this result may be overturned for the local replicator
equation:

ÃN = 1

N

(
(N − 2)(2 + r) N − 2 − r

N − 2 + (N − 1)r 0

)
.

According to this matrix, the defective strategy dominates (!) cooperation for r >

N − 2. Although this result seems highly counterintuitive, it is a direct consequence
of the assumed locality of interaction and replication. To see this, consider the case
r = 8, N = 4, for which the (original) payoff matrix becomes

A =
(

10 1
9 0

)
.

If a group consists of cooperators only, everybody yields a payoff of 10; however,
there is no defector in this group who could adopt this highly profitable strategy. In a
group consisting of one defector and three cooperators, the average defector’s payoff
sums up to πD = 9, compared to a cooperator’s payoff of πC = (10 + 10 + 1)/3 = 7.
As players imitate strategies with higher payoffs, it is likely that a cooperator of this
group dies and is substituted by a defector. Similarly, groups with 2 resp. 3 defectors
lead to payoffs πD = 6 and πC = 4, resp. to πD = 3 and πC = 1. Having this in mind,
the paradoxical emergence of defection becomes unsurprising.

It is important to note that this paradox is not restricted to the local replicator dy-
namics. Instead it is a general phenomenon for payoff-dependent imitation processes
in finite populations. To see this, we calculate the weak selection fixation probabili-
ties under the Moran process according to (8) and find (for N = 4, r = 8 and selection
strength s = 0.1):

ρD→C = 0.357 > 1/4,

ρC→D = 0.192 < 1/4.
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Hence, imitation processes in finite populations might induce social dilemmas
where the payoff matrix itself does not reveal any problematic issue at first sight.
Note that this example holds for any population size N as long as r > N − 2.

5 Variable Group Sizes

So far, we have assumed that all groups are of the same size. Now we focus on
variable group sizes instead and consider N as a random variable. Hence, in any
moment of time there may be groups of different size. The population is well-mixed
in the sense, that any player has the same probability to become a member of a given
group, i.e. the average frequency of strategy i in a group does neither depend on
the group size N nor on the strategy of the co-players. Within any group, strategy
updating occurs as described in the previous sections. In particular, we assume for
the moment that in every group there is exactly one player who updates its strategy.

The group size N is distributed according to the probability mass function f (N).
We exclude atomic groups of one player only, i.e. f (1) = 0. Let ν be the harmonic
mean of the group sizes N , i.e. ν := (

∑∞
N=1 f (N)/N)−1. Then we get the following

generalization for random group sizes.

Proposition 5 (Local replicator dynamics for variable group sizes) Consider a well-
mixed population of players, engaged in pairwise interactions within groups of ran-
dom size N . If ν < ∞, then the local replicator equation is given by

ẋi = xi · [(Ãνx)i − x · Ãνx
]
. (13)

Proof Due to Proposition 1 and our assumptions, the local replicator equation of the
system is given by

ẋi =
∞∑

N=2

xi

[
(ÃNx)i − x · ÃNx

] · f (N),

which can be rewritten as

ẋi =
∞∑

N=2

xi

[((
A − A + AT

N

)
x

)

i

− x ·
(

A − A + AT

N

)
x

]
· f (N)

= xi

[
(Ax)i − x · Ax

] +
∞∑

N=2

xi

[(
−A + AT

N
x

)

i

+ x · A + AT

N
x

]
· f (N)

= xi

[
(Ax)i − x · Ax

] − xi

[((
A + AT

)
x
)
i
− x · (A + AT

)
x
] ∞∑

N=2

f (N)/N

= xi

[
(Ax)i − x · Ax

] − xi

[(
A + AT

ν
x

)

i

− x · A + AT

ν
x

]

= xi · [(Ãνx)i − x · Ãνx
]
. �
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To obtain this result, we have assumed that exactly one player per group is allowed
to imitate others. As a consequence, a given player in a large group is less likely to
update its strategy than a player in a small group. Alternatively, we could also con-
sider a scenario where each player is equally likely to compare its payoff with others,
implying that larger groups have on average more updating events. A straightforward
adaption of the proof then shows that the harmonic mean needs to be replaced by the
arithmetic mean, i.e. in this case we have ν = ∑∞

N=1 Nf (N).
Note that while N had to be an integer, ν may be any positive real number with

ν ≥ 2. As a consequence, we may use derivatives to study the effect of group size on
the dynamics of the system. For example, by calculating ∂x̃∗/∂ν, we may quantify
the influence of ν on equilibrium frequencies.

6 Discussion

Instead of the traditional assumption of a well-mixed and infinite population, we have
studied a process in which individuals interact and update their strategies in randomly
formed finite groups. On the one hand, such a setting can be interpreted as the mean-
field approximation of a game on a lattice, where each player is connected with its
N − 1 neighbors only (as, for example in Nakamaru and Iwasa 2006; Rand et al.
2010). On the other hand, similar procedures are used to test human behaviour in
laboratory experiments, e.g. the stranger protocol in Fehr and Gächter (2000) or the
control treatment in Traulsen et al. (2010). We have shown that this process can be
modelled through a replicator dynamics with a slightly modified payoff matrix.

Recent models for the evolution of cooperation in so-called public good games
rather use a different setup. Typically, individuals are assumed to interact in ran-
domly formed groups, but strategy updating occurs on a global level (e.g. in Brandt
et al. 2006; Boyd et al. 2010), leading to classical replicator dynamics. For models of
cultural learning, such a setting can be problematic: While individuals may be able
to assess the performance of their everyday interaction partners, it remains unclear
why they compare themselves with an abstract population average or with random
role models they have never encountered before. From this perspective, local updat-
ing seems to be more intuitive. Related issues for games on graphs are discussed in
Ohtsuki et al. (2007b, 2007c).

Irrespective of its derivation, we have shown that local replicator dynamics con-
nects the Moran process with the classical replicator equation. In the frequently con-
sidered case of weak selection, any 2 × 2 game A that is played in a finite population
of N players can be treated as if it was game ÃN , played in an infinite population.
In this way, local replicator dynamics provides a comfortable tool to study games
in finite populations, especially if the game under consideration allows more than
two strategies. Although there has been much effort to extend the Moran process to
general n × n games (e.g. Fudenberg and Imhof 2006; Antal et al. 2009; Tarnita et
al. 2009), these generalizations typically require the specification of mutation rates
between strategies. Local replicator dynamics, on the other hand, is immediately de-
fined for any number of strategies and does not involve mutation. It is important to
note, however, that we have focused on games that are played pairwise. Instead, one
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could also consider games where more than two players are involved. Such systems
show a fascinating behaviour; at the same time they are highly complex. A first im-
portant step to explore such multi-player games is made by Gokhale and Traulsen
(2010).

The modified matrix that we have studied, ÃN = A − (A + AT )/N , was also ob-
tained by Lessard (2005) and Lessard and Ladret (2007), who generalized the finite
population results of Nowak et al. (2004). Instead of focusing on interactions be-
tween two pure strategies, R and M , they allowed mixed strategies pR and pM (i.e.
strategies that randomize between several pure strategies). For the Moran process,
they found that selection opposes pM replacing pR for every pM 
= pR close enough
to pR if and only if pR is evolutionarily stable for the game with payoff matrix ÃN

(with respect to the replicator dynamics). This can be regarded as another clue for the
strong relationship between the game A in a finite population and the game ÃN in an
infinite population.

Interestingly, also games that are played on a graph can be represented by a modi-
fied replicator equation (Ohtsuki and Nowak 2006; Ohtsuki et al. 2007b, 2007c; Oht-
suki and Nowak 2008; Nowak et al. 2010). There it is typically assumed that players
only interact with their direct neighbors. According to birth-death updating, individ-
uals with a high payoff are likely to reproduce. The offspring replaces a randomly
chosen neighbor. If each player is surrounded by N neighbors, then Ohtsuki and
Nowak (2006) find that the dynamics follows a replicator equation with a modified
payoff matrix A + B , where B encapsulates the impact of the population structure.
The entries of B are given by the formula

bij := aii + aij − aji − ajj

N − 2
. (14)

To compare this result with our findings, we multiply the modified matrix ÃN with
the constant factor N/(N − 2) (which only affects the timescale of the dynamics).
With this trick, we can write the modified matrix for the local replicator dynamics as
the sum of the payoff matrix A and a structure matrix B with

bij := aij − aji

N − 2
. (15)

Thus, we get the same structure matrix B , up to the diagonal terms aii and ajj . As
Ohtsuki and Nowak (2006) point out, these terms characterize the effect of assorta-
tiveness. In our model, we have assumed a well-mixed population and groups that are
formed anew after each updating event; hence, the diagonal terms are missing in the
matrix transformation for the local replicator dynamics. It remains an interesting en-
deavour, however, to find a general rule under which conditions games in structured
population can be described with a modified replicator equation.

Since the correction term in the definition of ÃN is of order 1/N , local replicator
dynamics only results in a minor correction if players interact with a large sample
of the population. However, for small groups, there can be considerable differences,
compared to the classical replicator dynamics. As we have seen, imitation processes
in finite populations may lead to the evolution of dominated strategies. In particular,
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for the game with payoff matrix

A =
⎛

⎝
C D

C 10 1
D 9 0

⎞

⎠ ,

a homogeneous population of defectors is evolutionarily stable if the population size
N is small. This result may be attributed to spite: Playing D instead of C implies a
small cost for oneself, but harms a cooperative co-player considerably. Overall, this
may transform a win-win situation into a lose-lose situation. However, if this game
is played in the laboratory, I would rather predict a cooperative equilibrium, as not
only the whole population benefits from switching to cooperation but also each player
individually.

This raises the question whether the local replicator equation (and equivalently, the
Moran process) are good approximations on human strategy updating (for an inter-
esting experiment on that issue see Traulsen et al. 2010). The dominance paradox, as
described above, relies on the assumption that individuals blindly copy the strategy of
co-players with a higher payoff, irrespective of the consequences this might have on
the own future payoff. Personally, I believe that individuals have more foresight when
they opt for a new strategy. Human strategy updating involves both—imitation and
calculation. Hence, if evolutionary models should also account for cultural learning,
then the game theoretical toolbox has to evolve further.
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Appendix: An Alternative Derivation of the Local Replicator Equation

Local replicator dynamics can also be derived from a birth-death process, instead of
imitation updating. Again, we assume that players interact within groups of size N .
After those interactions, one player of each group is chosen to reproduce, proportional
to its fitness. The offspring replaces a randomly chosen member of the same group.

If di(�n) denotes the probability that a player with strategy i is chosen to die and
bj (�n) is the corresponding probability that an individual with strategy j is born, then
the expected change of players with strategy i within this group �n is given by

�ni = (
1 − di(�n)

) · bi(�n) − di(�n) · (1 − bi(�n)
) = bi(�n) − di(�n).

The birth probability of an individual depends on its fitness fi(�n), which is a
sum of baseline fitness (normalized to 1) and the payoff of this strategy, fi(�n) =
1 + sπi(�n). Hence, if f̄ (�n) denotes the average fitness in the group, i.e. f̄i (�n) =
(n1f1(�n) + · · · + nkfk(�n))/N , the birth probability is given by bi(�n) = nifi (�n)

Nf (�n)
. We

note that
∑k

i=1 bi(�n) = 1. Players die randomly, irrespective of their payoff and,
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therefore, we may write the death probability as di(�n) = ni

N
. Thus, we may conclude

that

�ni = bi(�n) − di(�n) = ni

N

fi(�n) − f̄ (�n)

f̄ (�n)
= ni

N

[
πi(�n) − π̄ (�n)

] · s + O
(
s2).

Again, we have to sum up these expected changes within one group over all possi-
ble groups of size |�n| = N . In the limit of weak selection, this reproduces the local
replicator equation in the form of (6):

ẋi =
∑

|�n|=N

N !
n1! · · ·nk! x

n1
1 · · · · · xnk

n · ni

N

[
πi(�n) − π̄(�n)

]
. (16)

Proposition 1: The local replicator dynamics (16) can be rewritten as

ẋi = xi · [(Ãx)i − x · Ãx
]
,

with ÃN = A − A+AT

N
.

Proof First we note that the local replicator equation (16) can be written as

ẋi =
∑

|�n| = N

ni ≥ 1

N !
n1! · · ·nk! x

n1
1 · · ·xnk

n · ni

N

[
πi(�n) − π̄ (�n)

]

= xi ·
∑

|�n| = N

ni ≥ 1

(N − 1)!
n1! · · · (ni − 1)! · · ·nk!x

n1
1 . . . x

ni−1
i · · ·xnk

n

[
πi(�n) − π̄(�n)

]

= xi ·
∑

|�n|=N−1

(N − 1)!
n1! · · ·ni ! · · ·nk!x

n1
1 · · ·xni

i · · ·xnk
n

[
πi(�n+i ) − π̄(�n+i )

]
.

In the last line, the symbol �n+i denotes a group with ni +1 players with strategy i and
nj players with strategy j 
= i. Accordingly, the last sum is taken over all possible co-
players of an i-player (i.e., over all possible groups with |�n| = N − 1 players), while
the first sum was taken over all possible groups with N individuals. If individuals play
against everybody else in their group, but not against themselves, the corresponding
average payoffs are given by:

πi(�n+i ) = 1

N − 1

(
ai1n1 + · · · + aiini + · · · + aiknk

) =
k∑

l=1

ail · nl

N − 1
,

πj (�n+i ) = 1

N − 1

(
aj1n1 + · · · + aji(ni + 1) + · · · + ajj (nj − 1) + · · · + aiknk

)

= aji − ajj

N − 1
+

k∑

l=1

ajl · nl

N − 1
for j 
= i, nj > 0,
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π̄ (�n+i ) = 1

N

(
n1π1(�n+i ) + · · · + (ni + 1)πi(�n+i ) + · · · + nkπk(�n+i )

)

= πi(�n+i )

N
+

k∑

j=1

πj (�n+i )
nj

N

=
k∑

l=1

ailnl

N(N − 1)
+

k∑

l,j=1

ajlnlnj

N(N − 1)
+

k∑

j=1

ajinj

N(N − 1)
−

k∑

j=1

ajjnj

N(N − 1)
.

Owing to the properties of the multi-nomial distribution, we have

∑

|�n|=N−1

(N − 1)!
n1! · · ·nk! x

n1
1 · · ·xnk

n · nj = (N − 1)xj ,

∑

|�n|=N−1

(N − 1)!
n1! · · ·nk! x

n1
1 · · ·xnk

n · n2
j = (N − 1)(N − 2)x2

j + (N − 1)xj ,

∑

|�n|=N−1

(N − 1)!
n1! · · ·nk! x

n1
1 · · ·xnk

n · njnl = (N − 1)(N − 2)xj xl for j 
= l.

Thus, we obtain, due to the linearity of the payoffs:

∑

|�n|=N−1

(N − 1)!
n1! · · ·nk! x

n1
1 · · ·xnk

n · πi(�n+i )

=
∑

|�n|=N−1

(N − 1)!
n1! · · ·nk! x

n1
1 · · ·xnk

n ·
(

k∑

j=1

aij · nj

N − 1

)

=
k∑

j=1

aij

N − 1

( ∑

|�n|=N−1

(N − 1)!
n1! · · ·nk! x

n1
1 · · ·xnk

n · nj

)

=
k∑

l=1

aij xj = (Ax)i .

Analogously, we may derive

∑

|�n|=N−1

(N − 1)!
n1! · · ·nk!x

n1
1 · · ·xnk

n · π̄(�n+i )

= N − 2

N

k∑

l,j=1

xlalj xj + 1

N

k∑

j=1

aij xj + 1

N

k∑

j=1

ajixj

= N − 2

N
· xT Ax + 1

N
(Ax)i + 1

N

(
AT x

)
i
.
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Eventually, we obtain

ẋi = xi ·
[
(Ax)i − N − 2

N
· xT Ax − 1

N
(Ax)i − 1

N

(
AT x

)
i

]

= xi · [(Ãx)i − xT Ãx
]
. �
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