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Iterated games are a fundamental component of economic and
evolutionary game theory. They describe situations where two
players interact repeatedly and have the ability to use conditional
strategies that depend on the outcome of previous interactions,
thus allowing for reciprocation. Recently, a new class of strategies
has been proposed, so-called “zero-determinant” strategies. These
strategies enforce a fixed linear relationship between one’s own
payoff and that of the other player. A subset of those strategies
allows “extortioners” to ensure that any increase in one player’s
own payoff exceeds that of the other player by a fixed percentage.
Here, we analyze the evolutionary performance of this new class of
strategies. We show that in reasonably large populations, they can
act as catalysts for the evolution of cooperation, similar to tit-for-
tat, but that they are not the stable outcome of natural selection. In
very small populations, however, extortioners hold their ground.
Extortion strategies do particularly well in coevolutionary arms
races between two distinct populations. Significantly, they benefit
the population that evolves at the slower rate, an example of the
so-called “Red King” effect. This may affect the evolution of inter-
actions between host species and their endosymbionts.

replicator dynamics | adaptive dynamics

The Iterated Prisoner’s Dilemma (IPD) has a long history as a
model for the cultural and biological evolution of coopera-

tion (1–9). A new class of so-called “zero-determinant” (ZD)
strategies has recently attracted considerable attention (10–12).
Such strategies allow players to enforce a linear relation unilat-
erally between one player’s own payoff and the coplayer’s payoff.
A subset consists of the so-called “equalizer” strategies, which
assign to the coplayer’s score a predetermined value, independent
of the coplayer’s strategy (13). Another subset consists of the
extortion strategies, which guarantee that one player’s own sur-
plus exceeds the coplayer’s surplus by a fixed percentage. Press
and Dyson (10) have explored the power of ZD strategies to
manipulate any “evolutionary” opponent (i.e., any coplayer able to
learn and to adapt).
In Stewart and Plotkin’s (11) commentary to the article by

Press and Dyson (10), they ask: “What does the existence of ZD
strategies mean for evolutionary game theory: Can such strate-
gies naturally arise by mutation, invade, and remain dominant
in evolving populations?” In evolutionary game theory, it is
the population that adapts: More and more players switch to the
more successful strategies. From the outset, it may seem that the
opportunities for extortion strategies are limited. If a strategy is
successful, it will spread, and therefore bemore likely to bematched
against its like, but any two extortioners hold each other down to
surplus zero. In a homogeneous population of extortioners, it is
thus better to deviate by cooperating. Extortion is therefore evo-
lutionarily unstable (12). However, we shall see that if the two
players engaged in an IPD game belong to distinct populations, the
evolutionary prospects of extortion improve significantly.
In the following, we investigate the impact of ZD strategies on

evolutionary game theory. We show that in large, well-mixed
populations, extortion strategies can play an important role, but
only as catalyzers for cooperation and not as a long-term outcome.
However, if the IPD game is played between members of two

separate populations evolving on different time scales, extortion
strategies can get the upper hand in whichever population evolves
more slowly and enable it to enslave the other population, an
interesting example of the so-called “Red King” effect (14).
The Prisoner’s Dilemma (PD) game is a game between two

players I and II having two strategies each, which we denote by C
(“to cooperate”) and D (“to defect”). It is assumed that the
payoff for two cooperating players, R, is larger than the payoff
for two defecting players, P. If one player cooperates and the
other defects, the defector’s payoff T is larger than R and the
cooperator’s payoff S is smaller than P. Thus, the game is defined
by T >R>P> S. An important special case is the so-called
“donation game,” where each player can “cooperate” (play C) by
providing a benefit b to the other player at his or her cost c, with
0< c< b. Then, T = b, R= b− c, P= 0, and S= − c.
In the IPD game, the two players are required to play an

infinite number of rounds, and their payoffs PI respectively (resp.)
PII are given by the limit in the mean of the payoffs per round. An
important class of strategies consists of so-called “memory-one”
strategies. They are given by the conditional probabilities pR; pS; pT ,
and pP to play C after experiencing outcome R; S;T resp. P in the
previous round. [In addition, such a strategy has to specify the
move in the first round, but this has only a transient effect and
plays no role in the long run (15)]. An important class of memory-
one strategies consists of reactive strategies, which only depend on
the coplayer’s move in the previous round (not one’s own move).
Then, pR = pT =: p and pP = pS =: q, such that a reactive strategy
corresponds to a point ðp; qÞ in the unit square (16).
We will first define and characterize ZD strategies, equalizers,

and extortioners. We then investigate, in the context of evolu-
tionary game theory, the contest between extortioners and four
of the most important memory-one strategies. We will show that
extortion cannot be an outcome of evolution but can catalyze the
emergence of cooperation. The same result will then be obtained
if we consider all memory-one strategies. Hence, extortion
strategies can only get a foothold if the population is very small.
If the IPD game is played between members of two distinct
populations, ZD strategies can emerge in the population that
evolves more slowly. In particular, extortion strategies can allow
host species to enslave their endosymbionts.

Methods and Results
Definitions. Press and Dyson (10) define the class of ZD strategies
as those memory-one strategies ðpR; pT ; pS; pPÞ satisfying, for
some real values α; β; γ, the equations

pR − 1= αR+ βR+ γ [1A]
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pS − 1= αS+ βT + γ [1B]

pT = αT + βS+ γ [1C]

pP = αP+ βP+ γ: [1D]

We note that 1− pR and 1− pS are the probabilities to switch
from C to D, whereas pT and pP are the probabilities to switch
from D to C. Press and Dyson (10) showed that if player I uses
such a ZD strategy, then

αPI + βPII + γ = 0; [2]

no matter which strategy player II is using. Equalizer strategies
are those ZD strategies for which α= 0≠ β, then

PII =−γ=β: [3]

Thus, player I can assign to the coplayer any payoff between
P and R. (Indeed, because the pi values have to be between 0 and
1, it follows that β< 0 and P≤PII ≤R). The so-called “χ-extor-
tion” strategies are those ZD strategies for which γ = − ðα+ βÞP,
with χ := − β=α> 1. Then,

PI −P= χðPII −PÞ:

In this case, player I can guarantee that his or her own
“surplus” (over the maximin value P) is the χ-fold of the co-
player’s surplus. Fig. 1 shows examples of these different ZD
strategies.
Press and Dyson (10) speak of ZD strategies because they use

for their proof of Eq. 2 an ingenious method based on deter-
minants. In Appendix A, we present a more elementary proof,
following the method of Boerlijst et al. (13). Within the 4D unit
cube of all memory-one strategies ðpR; pS; pT ; pPÞ, the ZD strat-
egies form a 3D subset ZD containing the 2D subsets EQ and EX
of equalizers resp. extortioners (Appendix B). In Fig. 2, we sketch
these sets for the reactive strategies.

Extortion Within One Population. To investigate the role of ex-
tortion in the context of evolutionary games, we concentrate
on the donation game (in SI Text, we provide further results
for the general IPD, which show that the main conclusions
are independent of special characteristics of the donation game).
We first consider how a χ-extortion strategy Eχ fares against
some of the most important memory-one strategies, namely, tit
for tat [TFT = (1,0,1,0)], always defect [All D = (0,0,0,0)], always
cooperate [All C = (1,1,1,1)] and the win-stay-lose-shift strategy

WSLS, which is encoded by ð1; 0; 0; 1Þ, and hence cooperates if
and only if the coplayer’s move in the previous round was the
same as one’s own move (7). We note that TFT is a ZD strategy
and can be viewed as a limiting case of an extortion strategy, with
χ = 1. For the donation game, the payoff for a player using
strategy i against a player using strategy j is given by the ði; jÞth
element of the following matrix:
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Fig. 1. Payoffs PI and PII of players I and II if both players use memory-one
strategies in an IPD game (with T =3, R= 2, P =0, and S= − 1). In each graph,
the strategy of player I isfixed to somep, whereas the strategyqof the coplayer
II can vary, sampling the 4D cube of memory-one strategies (the blue dots
correspond to 104 different realizations of q). (A) In general, the payoff-pairs of
the two players cover a 2D area, as here, when player I applies the strategy of
WSLS (i.e., pR =pP =1 and pS =pT =0). (B) However, if player I adopts a ZD
strategy, the possible payoff-pairs are restricted to a line. Two special classes of
ZD strategies were highlighted by Press and Dyson (10): equalizers [strategies
that set the coplayer’s score to a fixed value (the line of payoffs has slope zero)]
(C), and extortioners [strategies that guarantee the surplus of player I is the
χ-fold of the surplus of player II (i.e., PI − P = χðPII − PÞ, with χ > 1 (the line of
payoffs has a positive slope and intersects the diagonal at P)] (D).
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Let us start with the pairwise comparisons. The extortioner
strategy Eχ is neutral with respect to All D. It is weakly dominated
by TFT, in the sense that a TFT player does not fare better than an
extortioner against extortioners but that interactions with other
TFT players are giving an advantage to TFT. All C players can
invade extortioners, and vice versa: These two strategies can stably
coexist in proportions cðχ − 1Þ:ðb+ cÞ. Finally, WSLS dominates
extortioners (in the sense that WSLS provides a better response

than extortion against itself and against extortioners). We note
that the mixed equilibrium of extortioners and unconditional
cooperators can be invaded by each of the other three strategies.
The same holds for the mixed equilibria of extortioners and un-
conditional defectors if the frequency of extortioners is suffi-
ciently high. In particular, TFT can always invade such a mixed
equilibrium but can, in turn, be invaded by WSLS or All C. No
Nash equilibrium involves Eχ . If b< 2c, there are two Nash
equilibria: a mixture of TFT, All C, and All D, and a mixture of
TFT, WSLS, and All D. If b> 2c, there exist four Nash equilibria.
In particular, WSLS is then a strict Nash equilibrium.
The replicator dynamics (17) displays for the payoff matrix

continuous families of fixed points and periodic orbits, and hence
is far from being structurally stable: Small changes in the dy-
namics can lead to vastly different outcomes. The same applies
to most other deterministic game dynamics (18). It seems more
reliable to consider a stochastic process that describes a finite,
well-mixed population consisting of M players and evolving via
copying of successful strategies and exploration (i.e., by a selec-
tion-mutation process) (19–21). Selection is viewed here as an
imitation process; in each time step, two randomly chosen players
A and B compare their average payoffs PA and PB, and A switches
to B’s strategy with a probability given by ð1+exp½sðPA −PBÞ$Þ−1,
where s≥ 0 corresponds to “selection strength.” (As shown in SI
Text, the details of the imitation process matter little.) Addi-
tionally, mutations occur with a small probability μ> 0 (corre-
sponding to the adoption of another strategy, with each alternative
being equally likely). Any such stochastic process yields a steady-
state distribution of strategies.
We find that although extortioners are never the most abun-

dant strategy, they can play the role of a catalyzer. Indeed, if only
All D and WSLS are available, a population may be trapped in a
noncooperative state for a considerable time, leading to a muta-
tion-selection equilibrium that clearly favors defectors (Fig. 3A).
In such a case, extortioners (Fig. 3B) and TFT (Fig. 3C) offer an
escape: These strategies can subvert an All D population through
neutral drift and selection, respectively. Once defectors are rare,
WSLS outperforms TFT, and it also prevails against extortioners
if the population is sufficiently large (in a direct competition,
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Fig. 2. Reactive strategies (pR =pT =p, pS =pP =q) for the donation game.
All reactive strategies (the square 0≤p;q≤ 1) are ZD strategies. The equal-
izer strategies are those on the segment between “generous TFT” (GTFT)
(p= 1, q= 1− c=b) (16) and “Miser” (p= c=b, q= 0) (30), the extortion strat-
egies are those between Miser and TFT (p= 1, q= 0), and the “compliant”
strategies (Discussion and ref. 11) are those between GTFT and TFT.

A B C D E

Fig. 3. Evolutionary competition between some important strategies in the IPD. For various population sizes M, the graphs show the frequency of each
strategy in the mutation-selection equilibrium. We consider two mutation regimes: the limit of rare mutations μ→0 (Upper), for which the equilibrium can be
calculated analytically using the method of Fudenberg and Imhof (23), and a regime with mutation rate μ=0:05 (Lower), which is explored by individual-
based simulations. For the copying process, we assume that individuals A and B are chosen randomly. A switches to B’s strategy with a probability given by
ð1+exp½sðPA − PBÞ$Þ−1, where PA and PB are the corresponding payoff values and s≥ 0 corresponds to “selection strength” (cf. ref. 21). (A) If All D competes
withWSLS, the population is mostly in the defector’s state, independent of population size and the mutation rate. (B and C) However, once Eχ or TFT is added,
WSLS succeeds if populations are sufficiently large. TFT works slightly better than Eχ . (D and E) Adding All C only leads to minor changes in the stationary
distribution, which now slightly favors Eχ . The parameters are b= 3, c=1, s= 1, and χ = 2.
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WSLS always gets a higher payoff than Eχ if M > 1+ χ). Thus, in
large populations, extortioners and TFT players tip the mutation-
selection balance toward WSLS, and therefore increase the level
of cooperation. Further expansion of the strategy space through
adding All C has only a small effect on the steady state (Fig. 3 D
and E), slightly favoring extortioners.
What happens when players are not restricted to the five spe-

cific strategies considered so far but can choose among all possible
memory-one strategies? We study this by using the stochastic
evolutionary dynamics of Imhof and Nowak (22), assuming that
mutants can pick up any memory-one strategy, with a uniform
probability distribution on the 4D unit cube. We further assume
that the mutant reaches fixation, or is eliminated, before the next
mutation occurs. Overall, this stochastic process leads to a se-
quence of monomorphic populations. The evolutionary impor-
tance of a given strategy can then be assessed by computing how
often the state of the population is in its neighborhood. For a
subset A of the set of memory-one strategies, we denote the
δ-neighborhood of A (with respect to Euclidean distance) by Aδ,
and let μðAδÞ denote the fraction of time that the evolving pop-
ulation visits Aδ. We say that Aδ is favored by selection if the
evolutionary process visits Aδ more often than expected under
neutral evolution, [i.e., if μðAδÞ is larger than the volume of the
intersection of Aδ with the unit cube of all memory-one strate-
gies]. We apply this concept to A=ZD; EQ; EX .
Extensive simulations indicate that neither extortioners nor

equalizers or ZD strategies are favored by selection if the pop-
ulation is reasonably large (Fig. 4A). By contrast, very small
population sizes promote the selection of these behaviors. For
extortioners, this result is intuitive: In small populations, the fact
that self-interactions are excluded yields greater weight to inter-
actions with players using the rival strategy rather than inter-
actions with players using one’s own strategy (19); this effect may
even result in the evolution of spite (24, 25). We address this point
in more detail in SI Text (section 2). Essentially, both extortioners
and equalizers suffer from not achieving maximal payoff b− c
against themselves, which causes their inherent instability, as also
stressed by Adami and Hintze (12). The same holds for most ZD
strategies. By contrast, WSLS players do well against their like,
and therefore prevail in the evolutionary dynamics for long periods
if the population size is large, at least when b> 2c or, for more
general PD games, when 2R>T +P (15) (Fig. 4B). As a (possibly
surprising) consequence, larger populations also yield higher

average payoffs (Fig. 4C). In SI Text, we show that these quali-
tative results are robust with respect to changes in parameter
values, such as benefits and costs or the strength of selection.
Hence, extortion is disfavored by evolution as soon as the pop-
ulation size exceeds a critical level.

Extortion Between Two Populations. Let us now consider two spe-
cies (e.g., hosts and their symbionts) or two classes of a single
species (e.g., old and young, buyers and sellers, rulers and sub-
jects) engaged in an IPD game, which, of course, is now unlikely
to be symmetrical. In such situations, extortioners may evolve even
in large populations. Indeed, extortioners provide incentives to
cooperate: As shown by Press and Dyson (10), All C is always a
best response to an extortion strategy. In a single population of
homogeneous players, this is not turned to advantage, because
the extortioners’ success leads to more interactions with their own
kind. If extortioners evolve in one of two separate populations,
they will not have to interact with coplayers of their own kind.
Nevertheless, their success may be short-lived because they will be
tempted to adopt the even more profitable All D strategy as a
reaction to the All C coplayers who they have produced, which, in
turns, leads to the disappearance of the All C players.
Extortioners can only achieve a lasting (rather than short-lived)

success if the rate of adaptation for the host population is much
slower than that for the symbionts. To elucidate this point, we
extend our previous analysis by revisiting a coevolutionary model
of Damore and Gore (26). These authors consider host–symbiont
interactions where each host interacts with its own subpopulation
of endosymbionts. Let us assume that these interactions are given
by an IPD game. Members of both species reproduce with a
probability proportional to their fitness (which is an increasing
function of their payoffs) by replacing a randomly chosen organ-
ism of their species. However, the two populations of hosts and
symbionts may evolve on different time scales, as measured by
their relative evolutionary rate (RER). For an RER of 1, hosts
and symbionts evolve at a similar pace in the evolutionary arms
race and no population is able to extort the other (Fig. 5A). This
changes drastically as soon as we increase the RER, by allowing
symbionts to adapt more quickly. Fast adaptation results in a short-
term increase of the symbionts’ payoffs, because they can quickly
adjust to their respective host. In the long term, however, this in-
duces hosts to adopt extortion strategies (Fig. 5B), thereby forcing
their symbionts to cooperate. Thus, it pays off in the long run for
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the host to be slow to evolve; for the parameters in Fig. 5B, the
resulting equilibrium allocates them, on average, a surplus more
than 10-fold larger than the surplus achieved by the symbionts.

Discussion
Our main results show that within one population, extortion
strategies can act as catalyzers for cooperation but prevail only if
the population size is very small, and that in interactions between
two populations, extortion can emerge if the rates of evolution
differ. This holds not only for the donation game (and therefore
whenever R+P=T + S) but in considerably more general con-
texts. In the last part of SI Text, we emphasize this robustness.
We could also assume that the players alternate their moves in
the donation game (27, 28) or that the underlying PD game is
asymmetrical (the definitions have to be modified in a straight-
forward way). As noted by Press and Dyson (10), some results
hold also for non-PD games; this deserves further investigation.
In orthodox game theory, strategy A dominates strategy B if A

yields at least the payoff of B no matter what the coplayer does.
When Press and Dyson (10) argue that extortioners dominate
their coplayers, they mean that no matter what the coplayer does,
the extortioner gets more. This is not quite the same, and we
display in SI Text (section 2) an example that highlights the dif-
ference. Adami and Hintze (12) stress a similar point in their title:
“Winning isn’t everything.” Moreover, when Press and Dyson
(10) speak of evolutionary players, they refer to players who adapt
their strategy in the course of an IPD game, whereas in evolu-
tionary game theory, it is the population that evolves. Thus, Press
and Dyson (10) analyzed ZD strategies in the context of classical
game theory, with two players locked in contest: Extortion strategies
play an important role in this context, as do the more orthodox
trigger strategies (3, 6). In the context of evolutionary game the-
ory, whole populations are engaged in the game. For a very small
population size, extortion strategies still offer good prospects. This

is not surprising, because the limiting case, a population size
M = 2, reduces to the scenario analyzed by Press and Dyson (10).
In larger populations (with our parameter values forM > 10), the
outcome is different. However, evolutionary game theory can
reflect features of classical game theory if the two interacting
players belong to two separate evolving populations.
Extortion strategies are only a small subset of ZD strategies.

We have seen that within large populations, the class of ZD strat-
egies is not favored by selection, in the sense that its neighborhood
is not visited disproportionally often. This does not preclude, of
course, that certain elements of the class are favored by selection.
Thus, generous TFT ð1; 1− c=b; 1; 1− c=bÞ does well, as do other
less known strategies. In particular, Stewart and Plotkin (11)
highlighted a class of strategies defined, instead of Eq. 3, by PI −
R= χðPII −RÞ (with χ > 1Þ). A player using this strategy does not
claim a larger portion of the surplus but a larger share of the loss
(relative to the outcome R of full cooperation). Remarkably, these
“compliant” strategies do as well as WSLS. They are the only ZD
strategies that are best replies against themselves.
In the study by Adami and Hintze (12), the evolutionary sta-

bility of several ZD strategies was tested by replicator dynamics
and agent-based simulations, which independently confirm the
result that these strategies do not prevail in large populations. They
used a population size of M = 1,024, and payoff values of R= 3,
S= 0, T = 5, and P= 1 (i.e., a PD game that cannot be reduced to
a donation game). Adami and Hintze (12) also discuss the evolu-
tionary success of “tag-based” strategies, which use extortion only
against those opponents who do not share their tag. These strat-
egies are not memory-one strategies because they depend not only
on the previous move; rather, they use memory-one strategies in
specific contexts, which depend on the tag. Such a tag is an addi-
tional trait that has to evolve and risks being faked.
In interactions between different populations, a cheater-proof

tag is provided for free and extortion may accordingly evolve.

0 500 1000 1500
0

0.5

1

1.5

δ=0.1

Time (in host generations)

D
is

ta
nc

e 
to

 th
e 

se
t

of
 e

xt
or

tio
ne

rs

Symbionts

Hosts

0 500 1000 1500
−1

0

1

2

3

A
ve

ra
ge

 p
ay

of
f

Symbionts

Hosts

A RER=1

0 500 1000 1500
0

0.5

1

1.5

δ=0.1

Time (in host generations)

D
is

ta
nc

e 
to

 th
e 

se
t

of
 e

xt
or

tio
ne

rs

Symbionts

Hosts

0 500 1000 1500
−1

0

1

2

3

A
ve

ra
ge

 p
ay

of
f

Symbionts

Hosts

B RER=200

Fig. 5. Evolution of extortion in host–symbiont interactions. The graphs show two typical simulation runs for a population of 40 hosts, with each having a sub-
population of 20 symbionts. For each simulation run, one graph (Upper) shows the average payoff for each population, whereas the other graph (Lower) shows the
Euclidean distance of each population to the set of extortioners (which can be 1.5275 at most). In the initial population, all individuals cooperate unconditionally.
Further evolution depends on the RER. (A) If RER= 1, both species converge towardAll D and no population is able to extort the other. (B) For RER= 200, symbionts
evolvemuchmorequickly. In the short term, they can thus increase their average payoff by switching to a noncooperative strategy.However, in the long term, hosts
apply extortion strategies to force their symbionts to cooperate. Eventually, the hosts’ payoff exceeds b− c, whereas the symbionts’ payoff is close to zero. Tomodel
the evolutionary process, we followed themethod of Damore and Gore (26).Whenever a symbiont reproduces, its offspring remains associatedwith the same host.
Whenever the host reproduces, the new host offspring acquires its symbionts from other hosts (horizontal transmission). Mutations occur with probability μ= 0:05,
by addingGaussiannoise to an entry of thememory-one strategy of the parent (σ = 0:05). The process is run for 2,000 host generations (corresponding tomore than
106 reproduction events for RER = 1 and more than 3× 108 reproduction events for RER = 200). The other parameters are b= 3, c= 1, and s= 10.
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In endosymbiotic relationships, as we have seen, the species that
evolves at the slower rate gains a disproportionate share of the
benefit, an instance of the Red King effect (14, 29, 30). This re-
quires two conditions to be met: Individuals need to come from
different populations, and these populations have to evolve on
different time scales. If these conditions are fulfilled, extortioner
hosts can manipulate their symbionts’ evolutionary landscape in
such a way that the hosts’ and the symbionts’ payoffs are perfectly
correlated. This ensures that only those symbiont mutants that
are beneficial for the host can succeed. In this sense, such hosts
apply an evolutionary kind of mechanism design; they create an
environment that makes the symbionts’ cooperation profitable
for the symbionts but even more profitable for themselves.

Appendix A: Proof of Eq. 2
Let us denote by PIðnÞ and PIIðnÞ the players’ payoffs in round n;
by siðnÞ the probability that I experiences outcome i∈ fR; S;T; Pg
in that round; and by qiðnÞ the conditional probability, given
outcome i, that II playsC in round n+ 1. By conditioning on round
n, we see that sRðn+ 1Þ is given by

sRðnÞqRðnÞpR + sSðnÞqSðnÞpS + sTðnÞqTðnÞpT + sPðnÞqPðnÞpP;

and sSðn+ 1Þ is given by

sRðnÞð1− qRðnÞÞpR + sSðnÞð1− qSðnÞÞpS
+ sTðnÞð1− qTðnÞÞpT + sPðnÞð1− qPðnÞÞpP:

Hence, the probability that I plays C in round n+ 1 [i.e.,
pCðn+ 1Þ= sRðn+ 1Þ+ sSðn+ 1Þ], is given by sðnÞ ·p= sðnÞ·½αgI +
βgII + γ1+ g0$, where gI:= ðR; S;T;PÞ, gII:= ðR;T; S;PÞ, 1= ð1;
1; 1; 1Þ, and g0 = ð1; 1; 0; 0Þ. Thus, wðnÞ := pCðn+ 1Þ− pCðnÞ
is given by

αsðnÞ · gI + βsðnÞ · gII + γsðnÞ · 1;

which is just αPIðnÞ+ βPIIðnÞ+ γ. Summing wðnÞ over n= 0;
1; . . . ;N − 1 and dividing by N, we obtain

pCðNÞ− pCð0Þ
N

→ αPI + βPII + γ;

hence, Eq. 2 holds, independent of the strategy of player II. The
same proof works for any 2× 2 game (even if it is asymmetrical;

one just has to replace gII with the corresponding payoff vector).
In many cases, however, there will be no solutions to Eq. 1 that
are feasible (i.e., probabilities between 0 and 1).

Appendix B: Sets ZD, EQ, and EX
Elementary algebra shows that within the 4D unit cube of all
memory-one strategies ðpR; pS; pT ; pPÞ, the ZD strategies are
characterized by

ð1− pRÞðS+T − 2PÞ+ ð1− pSÞðP−RÞ+ pTðR−PÞ
+ pPðS+T − 2RÞ= 0;

(a 3D subset of the cube). Equalizers are characterized, in addi-
tion, by

ðR−PÞðpS − pT − 1Þ= ðT − SÞðpR − pP − 1Þ;

(they form a 2D set), and χ-extortion strategies are also charac-
terized by pP = 0 and

pT ½P− S+ ðT −PÞχ$= ð1− pSÞ½T −P+ ðP− SÞχ$

(for each χ, a 1D set). In the special case of the donation game,
these equations reduce to

pR + pP = pS + pT ;

ðb− cÞðpS − pT − 1Þ= ðb+ cÞðpR − pP − 1Þ;

pTðc+ χbÞ= ð1− pSÞðb+ χcÞ;

respectively. The set EQ of equalizers is spanned by ð1; 1; 0; 0Þ,
ðc=b; 0; c=b; 0Þ,

!
2c

b+ c; 0; 1;
b− c
b+ c

"
, and ð1; 1− c=b; 1; 1−c=bÞ, and the

set EX of extortion strategies is spanned by ð1; 1; 0; 0Þ, ðc=b; 0;
c=b; 0Þ, and ð1; 0; 1; 0Þ. All reactive strategies are ZD strategies, the
reactive equalizers are those satisfying p− q= c=b, and the reactive
χ-extortioners are thosewith q= 0 and p= ðb+ χcÞ= ðc+ χbÞ (Fig. 2).
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In the following, we provide additional information on the impact
of extortioners and zero-determinant (ZD) strategies on the evo-
lution in Iterated Prisoner’s Dilemma (IPD) games. In section 1,
we demonstrate how extortion strategies can help to promote
cooperation when the population is trapped in a noncooperative
state. In section 2, we discuss why small populations favor the
evolution of extortion, whereas large populations give rise to win-
stay-lose-shift strategy (WSLS)-like behavior. In section 3, finally,
we provide further simulations to show that our qualitative results
remain unchanged if the specific payoff values are changed, if the
strength of selection is varied, or if a different evolutionary pro-
cess is considered.

1. Extortioners as Catalyzers for Cooperation
The win-stay, lose-shift strategy (WSLS) is an effective means to
establish cooperation in a population (1–3). However, when
competing with Allways Defect (All D), the resulting payoff
matrix for the donation game becomes

WSLS AllD
WSLS b− c −c=2
AllD b=2 0

; [S1]

indicating that for benefit b> 2c, where c is cost, the dynamics is
bistable. If the initial fraction of WSLS players is below x̂W = c

b− c,
their payoff is below average. In well-mixed infinite populations,
replicator dynamics thus predicts that WSLS goes extinct. In finite
populations, stochastic fluctuations may lift the fraction of WSLS
players above the critical threshold x̂W . This, however, may take a
substantial amount of time, during which the population is trap-
ped in a noncooperative state with low payoffs (Fig. S1A). More-
over, if x̂W > 1

2 (meaning that All D has the larger basin of attrac-
tion), All D has a larger share in the long-term mutation-selection
equilibrium for all population sizes and for all mutation rates (as
confirmed by Fig. 3A).
Adding extortioners to the game, the payoff matrix becomes

WSLS AllD Eχ

WSLS b− c −c=2
b2 − c2

bð1+ 2χÞ+ cð2+ χÞ
AllD b=2 0 0

Eχ

!
b2 − c2

"
χ

bð1+ 2χÞ+ cð2+ χÞ 0 0

: [S2]

This payoff matrix shows that when WSLS is rare, extortioners
and defectors are almost indistinguishable. Thus, the fraction
of extortioners may increase due to neutral drift (Fig. S1B). As
soon as extortioners are common, WSLS can take over. Indeed,
for any extortion factor χ > 1, we have

b− c >

!
b2 − c2

"
χ

bð1+ 2χÞ+ cð2+ χÞ

b2 − c2

bð1+ 2χÞ+ cð2+ χÞ > 0

; [S3]

This implies that although an extortioner outperforms aWSLS
player in a direct pairwise competition, it is theWSLS player who

obtains the higher average payoff over the whole population.
As a consequence, WSLS can invade, and once common, it is
stable against invasion of the other two strategies, provided
b> 2c. The resulting average payoff is close to the optimum b− c
(Fig. S1B). In sufficiently large populations, WSLS thus becomes
the most abundant strategy in the mutation-selection equilibrium
(as shown in Fig. 3B).

2. Effect of Population Size on the Evolution of Extortion
and WSLS
Population size can have a considerable impact on the dynamics
of evolutionary games in well-mixed populations (4–6). A major
difference between small and large populations is due to the
seemingly trivial fact that individuals cannot play against them-
selves. In large populations, this fact does not really matter; the
payoff that players would get against themselves has a negligible
influence on their average payoff. In small populations, however,
the fact that self-interactions are excluded (and thus the payoff
that one gets against players using the same strategy becomes rel-
atively less important) can lead to drastic changes in the evolu-
tionary dynamics.
To illustrate this impact of population size on the evolution of

strategies in the IPD, let us consider the competition between
WSLS and the extortioner strategy Eχ . For convenience, let us
assume that the IPD takes the form of a donation game with
parameters b= 3 and c= 1, and that the extortion factor is set to
χ = 100 (the general argument is independent of these specific
parameter values, as we will show below). In this case, the rounded
payoffs are

WSLS Eχ

WSLS 2:00 0:01
Eχ 1:13 0:00

: [S4]

In this game, extortion is a dominated strategy, in the sense that
irrespective of the coplayer’s decision,WSLS yields a higher payoff
than Eχ . One would therefore expect that WSLS spreads in the
population, independent of the population’s current composition.
Indeed, in an infinite population with 40% WSLS players, the
respective payoff (P) values are

PWSLS = 2:00·0:4 + 0:01·0:6 = 0:81
PEχ = 1:13·0:4 + 0:00·0:6 = 0:45: [S5]

Thus, PWSLS >PEχ , as expected. However, considering the same
game in a population of sizeM = 5 leads to a different conclusion.
Again assuming that 40% of the players apply WSLS (i.e., two
players use WSLS and three players use Eχ), the payoffs become

PWSLS = 2:00 ·
1
4
+ 0:01·

3
4
= 0:51

PEχ = 1:13 ·
2
4
+ 0:00 ·

2
4
= 0:57:

[S6]

In small populations, extortioners can therefore succeed against
WSLS. A closer inspection of this example reveals that such a re-
versal of payoff relations occurs because extortioners beat WSLS
players in a direct pairwise competition (as in the example above,
where 1:13> 0:01). Because Eχ never loses any pairwise compe-
tition by its definition, this explains why extortioners are partic-
ularly strong in small populations [a more detailed discussion of
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the impact of population size in a similar example is provided by
Hilbe (6)].
As a consequence, extortioners can only act as catalysts for the

cooperative WSLS strategy if the population size is above a crit-
ical threshold. This threshold is quite moderate. As shown in Fig.
S2A, WSLS-like strategies are played by more than 98% of all
residents if the population size exceeds M = 20 [which is in line
with previous findings (1–3)]. Because WSLS is not close to the
set of ZD strategies (the distance between WSLS and ZD is half
the diameter of the cube of memory-one strategies), the strong
performance of WSLS can be viewed as the major cause for the
downfall of ZD strategies in large populations, whenever b> 2c
(as shown in Fig. 4). Two reasons for the strong performance of
WSLS in large populations are that (i) evolutionary trajectories
can lead to WSLS due to the catalytical effect of extortion and
tit-for-tat (TFT)-like strategies, and (ii) WSLS is stable against
invasion by other strategies.
Overall, these results indicate that the different outcomes in

small and large populations are mainly due to the fact that self-
interactions are impossible (and thus the payoff that one gets
against others becomes more important). To illustrate this point
further, we have run simulations where we allow for self-interactions
(Figs. S3 and S4). When self-interactions are allowed, we observe
that WSLS-like behaviors are also favored in small populations.
ZD strategists, extortioners, and equalizers, on the other hand,
become clearly negligible as the population size exceeds M > 5.

3. Robustness of the Results
Dependence on the Parameters. To test whether our results depend
on the choice of parameters, we have run additional simulations
for different benefit values b, and for varying selection strength s.
As shown in Fig. S5, our qualitative results are robust for all pa-
rameter values considered: ZD strategies, extortioners, and equal-
izers are favored in small populations but disfavored in large
populations. This trend is amplified when selection is strong, but
it can also be observed for intermediate selection strengths.

Dependence on the Evolutionary Process Considered. The previous
results for the evolution of extortion within one population were
derived for evolutionary dynamics describing a pairwise imitation
process. To test whether our results depend on that specific
evolutionary process, we have rerun all simulations using aWright–
Fisher process instead (7). In contrast to the pairwise imitation
model, the Wright–Fisher process assumes nonoverlapping gen-
erations. The probability that an individual in the next population
applies strategy i is proportional to the number of i players in the
previous generation and to the fitness of strategy i. For the fitness

of strategy i, we used an exponential specification, fi = expðs·PiÞ,
where, again, s denotes the strength of selection. As shown in Figs.
S6 and S7, the qualitative results remain unchanged: (i) extor-
tioners, equalizers, and ZD strategies are most abundant for small
population sizes; (ii) in large populations, extortioners can pro-
mote the evolution of WSLS; and (iii) the average payoff in-
creases with population size.

Dependence on the Payoff Structure. To explore the impact of the
payoff values, particularly our choice of the donation game, we
have repeated all computations for general IPD games. In Fig. S8,
we show the outcome for the competition between the strategies
All D, WSLS, Eχ , TFT, and Always Cooperate (All C), when the
payoff parameters are set to the frequently used values R= 3,
P= 1, and S= 0, where R is the payoff for cooperating players, P
is the payoff for defecting players, and S is the sucker’s payoff,
and letting the temptation payoff T vary between 3 and 5. For
T = 4, this yields “equal gains from switching,” as in the donation
game (i.e., S+T =R+P), whereas for T = 5, we recover the
payoff values used by Press and Dyson (8), Stewart and Plotkin
(9), and Adami and Hintze (10).
If the population only consists of WSLS and All D, defectors

are the most abundant strategy for T > 4 (when All D becomes
risk-dominant; Fig. S8A). If extortioners or TFT is added to the
population,WSLS remains the most abundant strategy for a wider
range of temptation values T (Fig. S8 B and C). This positive
effect of extortioners and TFT persists when unconditional co-
operators are added to the population, as in Fig. S8 D and E.
Note that in all scenarios, the abundance of WSLS decreases as
the temptation approaches T = 5; for T +P≥ 2R, WSLS becomes
evolutionarily unstable.
However, when we consider the stochastic dynamics of memory-

one strategies, we observe results that resemble the outcome of
the donation game, even if the temptation value is chosen to be
T = 5 (Fig. S9). For large population sizes, we still observe that
the evolving strategies typically only cooperate after mutual co-
operation and mutual defection (Fig. S9B). However, in contrast
to the donation game, the typical values of the conditional prob-
ability pP are lower (in Fig. 4, large populations result in pP ≈ 0:9,
whereas for Fig. S9, we obtain pP ≈ 0:67). This reduction of pP
reduces the risk of exploitation by All D and thus makes these
WSLS-like strategies more stable against invasion of defectors.
Overall, Fig. S9 therefore shares all the qualitative features of the
corresponding Fig. 4: The influence of ZD strategies decreases
with population size (although extortioners remain favored by
selection for population sizes up to M ≈ 20), and average payoffs
increase with population size.
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Fig. S1. Two typical simulation runs showing the catalyzing effect of extortion. (A) Between All D and WSLS, there is a bistable competition. This implies that
if WSLS is rare in the initial population, it cannot invade. (B) If mutations can introduce extortioners, they can subvert All D by neutral drift. Once extortioners
are common, WSLS can invade and take over the population. Parameter values are as follows: donation game with b= 3 and c= 1, extortion factor χ = 2,
population size M= 100, strength of selection s= 1, and mutation rate μ= 0:05. Eχ, χ-extortion strategy.
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Fig. S2. Abundance of WSLS-like strategies for various population sizes (compare with Fig. 4). The graph shows how often the population applies a strategy
that is δ-close to WSLS (for this graph, δ= 0:5 was used). If the population size exceeds M= 20, WSLS-like strategies are played for more than 98% of the time,
whereas the volume of the corresponding δ-neighborhood is π2=512≈ 0:019 (as indicated by the dashed black line). Note that the distance between WSLS and
the set ZD is equal to 1; the ZD strategy that is closest to WSLS is p=

!
1
2;

1
2;

1
2;

1
2

"
. Consequently, none of these WSLS-like strategies is δ-close to the set ZD. The

strong evolutionary performance of WSLS-like strategies thereby explains the downfall of ZD strategies for large population sizes.
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Fig. S3. Competition between the most important strategies when self-interactions are allowed. For these simulations, we consider the same scenario as in
Fig. 3, but we assume that players are allowed to interact with themselves (which happens with probability 1=M). Under this assumption, WSLS is the most
abundant strategy across all population sizes if extortioners or TFT is present in the population (B–E). Only in a pairwise competition against defectors may
WSLS be disfavored if All D has the larger basin of attraction; for the parameters considered here, the fixed point is at 1/2 and thus none of the strategies is risk-
dominant (A). The parameters are b = 3, c = 1, and s = 1 in the limit μ → 0. All C, Always Cooperate.
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Fig. S4. Stochastic dynamics of memory-one strategies when self-interactions are allowed. ZD strategies, equalizers and extortioners are no longer favored in
small populations (A). Instead, WSLS-like strategies are prevalent across all population sizes (B). As a consequence, already for small population sizes, the
average payoff is close to the optimum (C). The parameters are b = 3, c = 1, and s = 100. Simulations were run for a sequence of 107 successive mutant
strategies.
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Fig. S5. Abundance of extortioners, equalizers, and ZD strategies for different benefit values b (Upper) and different selection strengths s (Lower). For all
benefit values, the abundance of these strategies decreases with population size (A–C). Similarly, for all selection strengths considered, extortioners, equalizers
and ZD strategies become disfavored by selection in sufficiently large populations (D–F). For the simulations, we have considered the stochastic process of the
main text with 107 successive mutant strategies and c = 1. Selection strength was fixed to s = 10 (Upper), whereas the benefit was b = 3 (Lower).
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Fig. S6. Competition between some of the most important strategies for a Wright-Fisher process. All qualitative results agree with the pairwise imitation
process (compare with Fig. 3): If WSLS competes with All D, defectors are favored by selection (A). However, extortioners and TFT can help WSLS to succeed in
large populations (B–C). Unconditional cooperators have a negligible impact on the dynamics (D–E). Parameters: b = 3, c = 1, and s = 0.25. Simulations were run
for 107 mutant strategies (Upper) and for 106 mutant strategies (Lower).
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Fig. S7. Stochastic dynamics of memory-one strategies for a Wright-Fisher process. As in the pairwise imitation process, extortioners, equalizers and ZD
strategies are disfavored by selection for large population sizes (A), for which WSLS-like behaviors take over (B). As a result, average payoffs increase in
population size (C). Parameters are b = 3 and c = 1. Simulations were run for a sequence of 107 successive mutant strategies.
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Fig. S8. Evolutionary competition between the most important strategies for the case of general IPD games. Each graph shows the adiabatic limit of rare
mutations (μ→0), where the payoff values were set to S=0, P = 1, and R= 3, and T can vary between 3 and 5. In the absence of other strategies, WSLS is
outperformed by All D if T > 4 (A). Adding extortioners or TFT helps WSLS to remain the most abundant strategy for a wider range of parameters (B–E).
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Fig. S9. Stochastic dynamics of memory-one strategies for the payoff values chosen by Press and Dyson (8), Stewart and Plotkin (9), and Adami and Hintze
(10): R= 3, S= 0, T =5, and P = 1. Interestingly, extortioners are favored by selection for a slightly wider range of population sizes than in the case of the
donation game depicted in Fig. 4 (A). Nevertheless, as the population size increases, WSLS-like behaviors become more common (B), leading to a higher
average payoff (C). Parameters are as in Fig. 4: δ= 0:1 and s= 100. The process was run for 107 mutation events, starting from an initial population All D.
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