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Many origins-of-life scenarios depict a situation in which there are
common and potentially scarce resources needed by molecules
that compete for survival and reproduction. The dynamics of RNA
assembly in a complex mixture of sequences is a frequency-
dependent process and mimics such scenarios. By synthesizing
Azoarcus ribozyme genotypes that differ in their single-nucleotide
interactions with other genotypes, we can create molecules that
interact among each other to reproduce. Pairwise interplays be-
tween RNAs involve both cooperation and selfishness, quantifi-
able in a 2 × 2 payoff matrix. We show that a simple model of
differential equations based on chemical kinetics accurately pre-
dicts the outcomes of these molecular competitions using simple
rate inputs into these matrices. In some cases, we find that mix-
tures of different RNAs reproduce much better than each RNA type
alone, reflecting a molecular form of reciprocal cooperation. We
also demonstrate that three RNA genotypes can stably coexist in a
rock–paper–scissors analog. Our experiments suggest a new type
of evolutionary game dynamics, called prelife game dynamics or
chemical game dynamics. These operate without template-
directed replication, illustrating how small networks of RNAs could
have developed and evolved in an RNA world.
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Aplausible description of a sequence of events that could have
led to the origins of life on the Earth from a purely chemical

milieu has long been desirable, yet remains elusive. The RNA
world hypothesis has helped sharpen our focus on what could
have taken place 4 Gya, in that RNA serves as a powerful model
for a self-sustaining chemical system capable of evolutionary
change (1–6). Although this hypothesis has engendered much
debate, both in its general applicability and in the details of its
implementation (7–9), there are some clear emerging trends.
Among the recent advances in prebiotic RNA studies is the
concept of an evolving “network” of RNAs being required to
kick-start life, rather than a single selfish entity. This idea dates
back to the formative studies of Eigen and Schuster in the 1970s
(10, 11). However, it can be sharply seen in the 20+-y effort
aimed at developing a generalized RNA replicase ribozyme in
the laboratory: new successes have taken advantage of a frag-
mentation of the best such artificial ribozyme and invoke a
network of reactions to provide for its assembly (12). Our own
laboratories have focused on a variety of “prelife” (13, 14) and
cooperative network (15, 16) approaches to understand how
evolving RNA systems could have arisen from abiotic sources of
nucleotides and short oligomers. Many others have also stressed
the need for distributed functionality at the onset of life, both
chemically (17) and in space and time (18, 19).
To advance a network approach to the “single biomolecule

problem” in the RNA world, what is needed now is an un-
derstanding of how prebiotic networks could have evolved.
Auspiciously, the mechanisms of network evolution are begin-
ning to be unraveled (20–23). For example, Aguirre et al. (23)
have recently provided a framework for studying how networks
can actually compete with one another. To apply this type of
thinking to prebiotic RNA networks, we first need to understand

how pairs and small numbers of RNAs could influence the ap-
pearance and reproduction of others. In short, we need to un-
derstand the frequency-dependent dynamics of small clusters of
RNAs before we can begin to decompose the mechanisms by
which complex networks of RNAs could have evolved.
In this work, we provide an empirical demonstration of frequency-

dependent dynamics that take place for small (one to three)
numbers of catalytic RNA genotypes that interact while repro-
ducing. Using the covalently self-assembling Azoarcus ribozyme
system that we had previously elucidated (15, 16, 24), and in
which a complex network ecology is possible (16), we quantify
and model the growth rates of single genotypes as they compete
with others for reproduction using RNA source fragments. We
focus on interactions among pairs and in one triplet of RNAs
to ask: which chemical behaviors engender the greatest nu-
merical payoffs to various genotypes when mixed with others?
We show that the dynamics of small networks can be studied in the
laboratory, realizing the line of investigation first imagined by
Eigen (10).
Moreover, we demonstrate that the resulting dynamics among

RNA molecules can be interpreted, and in fact predicted, using
concepts from evolutionary game theory. It has been noted
before that both prebiotic evolution and the evolution of bi-
ological systems may follow similar equations (10, 11, 25).
Using our empirical chemical system, we make this connection
explicit. The game-theoretic framework provides an additional
perspective on chemical kinetics. It allows us to summarize the
dynamics between different genotypes in a single payoff matrix,
whose values can easily be interpreted. Using only this matrix, we
can calculate the final genotypic equilibria in two- or three-
molecule interactions.

Results
The Chemical System. For a prebiotic system, we used the covalently
self-assembling Azoarcus tRNAIle intron described previously (15,
24, 26). This ∼200-nt ribozyme (Fig. 1A) can be broken into two,
three, or four pieces that can spontaneously reassemble into the
covalently contiguous ribozyme when incubated in a warm (48 °C)
MgCl2 solution (24). The assembly process is initiated through a
3-nt base-pairing interaction between two RNA fragments, and, im-
portantly, changing these nucleotide triplets can alter the specificity
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of which RNAs react with one another (26). For simplicity, we
focused on the two-piece assembly reaction, which can be sym-
bolized as WXY + Z → WXYZ, where W, X, Y, and Z represent
roughly 50-nt sections of the Azoarcus ribozyme (Fig. 1 A and B).
Various genotypes of WXY molecules can be created by altering
one of the first (5′) three nucleotides in the W region, corre-
sponding to the ribozyme’s internal guide sequence (IGS), and one
of the last (3′) three nucleotides, corresponding to its “tag” that is
recognized by a catalyst ribozyme to form a covalent bond with a Z
fragment, creating a WXYZ molecule (Fig. 1C). We allowed
fourfold variation in the middle nucleotide of both the IGS and
the tag (M and N, respectively) to allow 16 possible molecular
genotypes. For example, 1 of the 16 possible genotypes would be
GGGWXYCAU, which can be abbreviated with just the middle
nucleotides: GA in this case. These genotypes could be pitted
against and among each other to form various small networks
in which the shared resource Z molecule is required to create
full-length, covalently contiguous WXYZ molecules.

Self-Assembly. To dissect the dynamics of intragenotype and
intergenotype interactions, we first compared the abilities of self-
assembly among the 16 genotypes in isolation. We did this by
measuring the autocatalytic rate constants (ka) (cf. ref. 15) in
WXY + Z →WXYZ reactions (SI Appendix, Fig. S1). As expected,
when M and N are Watson–Crick pairs, much higher rates of self-
assembly occur, but all possible pairings allow some degree of
assembly (SI Appendix, Fig. S1). The autocatalytic rate constant is
a measurement of the contribution of autocatalytic feedback to
the overall self-assembly reaction (26). By doping various amounts
of the fully formed autocatalyst WXYZ, we have previously mea-
sured values of ka in similar Azoarcus ribozyme reactions (15), and
here we used the same doping method (SI Appendix, Fig. S1) to
measure it in these reactions. The efficiency of growth in self-
reproducing systems (when autocatalysis is critical; e.g., prebiotic
ones) is best reflected in the ka parameter (27, 28), and thus we
used this measure for all of our analyses below (SI Appendix).

Cross-Assembly. In an uncompartmentalized milieu, akin to a
“warm little pond” scenario but extendable to other prebiotic
scenarios, continuously interacting genotypes may be receiving
assembly benefits from others as well as from like genotypes.
Thus, our next step was to measure rates of cross-assembly.
Cross-assembly has been studied in catalytic RNAs before, for
example, in the case of two possible genotypes in a self-ligating
ribozyme system (29). In our study, there are 120 possible pair-
wise interactions among dissimilar genotypes, and the reaction is
by trans-esterification (i.e., recombination) rather than by liga-
tion. We measured assembly rate constants when one genotype
interacts with a different genotype in the same tube for 0–30 min.
These rate constants are the dynamical variables in a setting
when two genotypes compete for the shared resource Z. To do
this, we tracked the amounts and proportions of each WXYZ
genotype over time using differential 32P labeling of the 5′ ends
of the W-containing fragments (Fig. 2 A and B). By combining
results from self- and cross-assemblies, we could now compile the
four types of intramolecular and intermolecular events that
could occur when two genotypes interact. These can be displayed
in a 2 × 2 matrix that identifies the components of molecular
“fitness” in a prebiotic competition. Although we did not mea-
sure all possible pairwise two-genotype interactions, we chose a
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Fig. 1. Self-reproducing ribozyme system. (A) The Azoarcus ribozyme. The
148-nt WXY portion (blue) has an internal guide sequence (IGS) (GMG; red)

on the 5′ end, and a 3-nt “tag” sequence (CNU; orange) on the 3′ end. The
55-nt Z portion is shown in green. Shaded box shows the trans-esterification
reaction that occurs at the Y–Z junction. (B) The WXY + Z → WXYZ reaction.
(C) The IGS-tag interaction determines assembly rates in the Azoarcus
ribozyme broken into two pieces. The catalytically active ribozyme (gray) can
be either a single covalently contiguous WXYZ molecule, or a noncovalent
trans complex (24). Either catalyzes the formation of a covalent bond be-
tween WXY (blue) and Z (green) RNAs, guided by H bonding between the
IGS (red) on the ribozyme and a tag (orange) on the WXY substrate.
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few that would include competitions between both rapid and
slow self-assembling RNAs. The data for seven representative
matrices are given in Fig. 2C.

Serial Dilution Experiments. Having now both self- and cross-
assembly rates for a single 30-min bout of competition for re-
production, we could compare their values and thus predict what
would transpire when two genotypes of differing prelife fitnesses
were allowed to compete iteratively over time in an evolutionary
setting (30). We also hoped to be able to devise an analogous
method with the potential to predict results from the myriad
three-genotype interactions, and so on (see below). For the two-
genotype experiments, we designed a serial-dilution technique in
which a pair of WXY genotypes are mixed at some ratio, typically
1:1, provided Z, and then reacted for a brief period (5 min). At
this time, when RNA production is still in exponential growth, we
transferred a small fraction (10%) to a new reaction vessel in
which new raw materials were present (Fig. 3A). In the receiving
tube, we provided more unreacted WXY of each genotype, plus
fresh Z and buffer. This technique was pioneered by Sol Spie-
gelman and coworkers (31) and has been used in many in vitro
molecular evolution experiments with RNA (16, 32). We tracked
the amounts and proportions of each WXYZ genotype over eight
transfers using differential 32P labeling. This allowed us to quantify
the chemical equivalent of evolutionary success across generations
(“bursts” of RNA assembly).
We pitted the seven pairs ofWXY RNAs studied above against

each other in two-genotype contests (Fig. 3B). Among these seven
cases, we observed situations where one genotype clearly domi-
nates, and cases in which coexistence of the two genotypes is
attained after three to four bursts (Fig. 3C). In at least one case of
the latter situation (AU vs. UC), we varied the genotype ratio
across a broad range of values but always observed similar final
steady-state frequencies reached by the two genotypes (SI Appen-
dix, Fig. S2). Note that “extinction” is not possible in such serial
dilution scenarios because fresh material is added each burst (31).
However, the serial dilution format is prebiotically relevant in that
it simulates a periodically replenished pool, as in wet–dry cycles.

Modeling Chemical Dynamics. In parallel with the experimental
results, we created ordinary differential equation (ODE) models
of this system to visualize more clearly the dynamics of the ge-
notypic assembly. We first developed a simple model in which
the frequencies of two competing RNA types were tracked in a
flow reactor setting that is a continuous analog of the serial di-
lution experiments. In this model, the frequency changes of the
two strategies over time ( _x and _y) are described by the following:

_x= ax+ by−ϕx  ;   _y= cx+ dy−ϕy. [1]

Here, a, b, c, and d are the rate constants of self-assembly (a and
d) and cross-assembly (b and c), as visualized in a 2 × 2 matrix of
possibilities when two genotypes interact (Fig. 2C). The death (or
dilution) term, ϕ= ða+ cÞx+ ðb+ dÞy, guarantees that _x+ _y= 0 and
x + y = 1. This parameterization is appropriate because the re-
action rate is a linear function of RNA abundances, and because

we maintained RNA assembly in its exponential growth phase
across transfers (SI Appendix, Fig. S1). The unique equilibrium
values, x̂ and ŷ, for each competition are given by the following:

x̂=
a− 2b− d+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða− dÞ2 + 4bc

q

2ða+ c− b− dÞ
, [2]

and ŷ= 1− x̂ (SI Appendix). This model closely predicted the
qualitative outcomes of the serial-dilution competitions (Fig. 3).
With the a, b, c, and d values obtained empirically from Fig. 2
entered into the model, experimental data and model outcomes
match in all cases, both qualitatively and quantitatively (compare
Fig. 3 C and D). We could also predict the cross-assembly values
from only the self-assembly values, and Fig. 3E shows that this
technique still gives agreement between data and model. We ex-
plore this more in SI Appendix, Fig. S3, and in Discussion.

Game-Theoretic Treatment. The ODE model based on chemical
kinetics suggests a new type of evolutionary game theory. Game
theory is a field that was first developed to study strategic and
economic decisions among humans (33, 34). It later found its way
into biology in the form of evolutionary game theory (35, 36).
There, fitness depends on the frequency of different strategies
(or phenotypes) in the population. The classical equation of
evolutionary game theory is the so-called replicator equation
(e.g., ref. 29): _xi = xi½fið~xÞ−ϕð~xÞ$, where xi is the frequency of
genotype i, fið~xÞ is the fitness of this genotype, and ϕð~xÞ is the
average fitness of all genotypes. This describes a frequency-
dependent replication rate. In contrast, in our system, there is no
replication but rather frequency-dependent assembly.
To extend a game-theoretic treatment to an abiotic situation,

we realized a parallel between the 2 × 2 matrix that exists to
describe components of fitness (Fig. 2A) and a game-theoretic
payoff matrix. In the latter, each matrix entry is the payoff to the
row genotype when interacting with the column genotype. Im-
portantly, the evolving entities need not be rational agents for a
game-theoretic analysis to have explanatory power (30), and thus
could be applied to a molecular system. In fact, there have been
at least two recent predictions that game theory could be useful
in the interpretation of biochemical behavior (37, 38), and the
Azoarcus system in particular was singled out as a good candidate
(37). Game theory has been proposed to be manifest at the
chemical level (39–41), but this has never been shown empiri-
cally. We thus sought a practical demonstration that this could be
the case, reasoning that game theory could augment our ODE
analysis by offering a simple fitness-based explanation of how
selection could choose, say, molecular cooperation.
Because there are four values in a 2 × 2 payoff matrix (Fig. 2),

and, with the assumption that at the chemical level no two of
these could be exactly the same, there are 24 possible strict or-
dinal rankings of these values (e.g., a > b > c > d) (30). Addi-
tionally, we can assume that a > d without loss of generality
(otherwise, one only needs to relabel the genotypes), lowering
the number of possible outcomes that could result from an iterative
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Fig. 2. Single-round competitions between two
WXY genotypes. (A) Differential 32P-labeling method
to separately obtain a, b, c, and d values (autocatalytic
rate constants: ka, in units of minutes–1) in 2 × 2 ma-
trices. The 5′-32P•WXY RNA is a small (<<0.1%) dop-
ant in 1 μM unlabeledWXY RNA plus 1 μM Z. Values a
and d were obtained as in SI Appendix, Fig. S1,
whereas b and cwere obtained by doping genotype 1
into genotype 2. Asterisks (*) denote 32P-labeled
RNAs. (B) Example gel used for raw data. (C) Empirical
matrices compiled from ka values for seven selected
competitions.
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two-genotype interaction to 12. Based on groups of payoff matrix
inequalities, we divided these outcomes into four categories (Fig.
3B) that will have evolutionary significance based on analogies with
biological systems (30, 42), and we assigned names to various
scenarios of experimental outcomes that we observed (Figs. 2 and
3). In the “Dominance” scenario, given by a > c and b > d, one ge-
notype is expected eventually to dominate in frequency, in this case
the genotype with the higher self-assembly rate (ka). In the “Co-
operation” scenario, c > a and b > d, such that cross-assembly will
always exceed self-assembly, and hence the population will adopt
a mixture of the two genotypes. In the “Selfish” scenario, a > c and
d > b, such that self-assembly will always exceed cross-assembly,
meaning that a coexistence mixture will also result, but for the op-
posite mechanism than in the Cooperation scenario. Finally, in the
“Counter-dominance” scenario, c > a > d > b, the genotype with the
lower self-assembly rate is, counterintuitively, expected to dominate
in frequency. These four outcomes have rough parallels in the bi-
ological games (Fig. 3B). For example, a game with the payoffs of
the Counter-dominance scenario can be interpreted as a prisoner’s
dilemma (PD). In evolutionary biology, the PD is often taken as
the baseline model for situations in which a group-beneficial
trait—expressed by the a > d inequality—is selected against at the
individual level because a < c and d > b. Similarly, the payoff
configuration of the Selfish scenario corresponds to the so-called
stag hunt game, in which a trait is only successful if it is common
(as for example, when members of a group need to decide whether
to join a stag hunt). Similar biological interpretations can be given
for the other two classes (Fig. 3B) (30, 35, 36).
Among our two-genotype RNA competitions, we observed ex-

amples of all four of the categories described above (Figs. 2C and
3C). When CG is pitted against GA for example, CG dominates
because it can assemble itself far better than can GA (SI Appendix,
Fig. S1). The interactions between these two molecules are weak:
the middle nucleotide of the IGS of one genotype does not pair
well with the middle nucleotide of the other genotype’s tag. Self-
assembly is the major determinant in this competition, leading to a
Dominance outcome, because a >> c and b >> d. However, when
we pitted CA against GG, the latter (GG) dominates despite its
more than threefold worse self-assembly rate constant. This
matchup is thus an example of the Counter-dominance scenario,
in which a nonintuitive result emerges: in isolation, CA self-
assembles far more robustly than GG (SI Appendix, Fig. S1), but
when in competition with GG, this CA genotype is greatly out-
performed for assembly. In this case, the interaction of CA with
GG is very strong. The middle nucleotide of the IGS in CA forms
a Watson–Crick interaction with the middle nucleotide of the tag
of GG. Thus, the distinction between the “cooperator” (CA) and
the parasitic genotype, or “defector” (GG), becomes clear, as in a

classical PD. The PD has been biologically demonstrated in viruses
(43) and yeast (44, 45). However, to our knowledge, our data are
the first example of it manifesting at the pure molecular level, in
which a genotype with a lower self-assembly rate can become
predominant. Similar phenomena may explain the evolution of
other biochemical functions such as single-turnover (“suicide”)
enzymes, e.g., methyltransferases used in DNA repair.
We also observed examples of the other two categories of two-

genotype competitions, those that lead to coexistence (Fig. 3C).
When we pitted AC against UU, both genotypes persisted at
high frequency (>40%) stably over time in a Cooperation out-
come. Here, both self-assembly rates are expected to be moderate,
along with one of the cross-assembly rates (UU → AC), whereas
the other cross-assembly rate is strong (AC→UU). This leads to a
situation where cross-assembly is generally more effective than
self-assembly, with the consequence that each genotype pre-
dominantly assembles the other: a chemical analog to simulta-
neous reciprocal altruism. The result is that both genotypes are
assembled to substantial frequencies. When we pitted AU against
UC, genotypes with the same aggregate nucleotides as the AC vs.
UU competition, again coexistence of both genotypes eventually
resulted (Fig. 3C). However, the route to this result differed from
that in the Cooperation scenario. In AU vs. UC, self-assembly is
generally more effective than cross-assembly, such that the major
dynamical determinant is each genotype doing the same, selfish,
action of self-assembly. Thus, this contest is an example of a Selfish
outcome. However, unlike the biological stag hunt game, where
one expects bistability depending on starting ratios, different initial
frequencies of the two chemical genotypes led to the same general
outcome (SI Appendix, Fig. S2), highlighting a distinction between
the biological replicator dynamics (35), and the chemical dynamics
of our system. In a biological setting, a stag hunt scenario leads to
the extinction of one the two strategies depending on the initial
frequencies. However, in our chemical setting, we would expect a
mixed population to result because the continual replenishment of
genotypes in the serial dilution protocol prevents extinction, and
we observed similar final frequencies when we varied genotype
ratios in a Selfish scenario (SI Appendix, Fig. S2). Using only self-
assembly data to estimate all four values in the payoff matrix (SI
Appendix, Fig. S3), our ODE model could forecast what would
result for many possible two-genotype contests (SI Appendix, Fig.
S4). Generally, in a two-genotype contest, both genotypes will
reach similar frequencies if a + b and c + d are approximately
equal. This is less likely to happen in, for example, a Dominance
scenario than in a Selfish one.

Rock–Paper–Scissors Competition.We were also able to manifest with
RNA a well-known scenario with three genotypes (or “strategies”;

10% transfer 
after 5 min at 48 ˚C

Burst 1 2 8

WXY + Z RNA fragments 
(100 mM Mg2+ added to start reaction and with each transfer)

0%
20%
40%
60%
80%

100%

0 2 4 6 8

CG
GA

0%
20%
40%
60%
80%

100%

0 2 4 6 8

GG
CA

0%
20%
40%
60%
80%

100%

0 2 4 6 8

UU
AC

0%
20%
40%
60%
80%

100%

0 2 4 6 8

AU 20
UC 80

0%
20%
40%
60%
80%

100%

0 2 4 6 8

GU
AA

0%
20%
40%
60%
80%

100%

0 2 4 6 8

UC
GU

0%
20%
40%
60%
80%

100%

0 2 4 6 8

 AA
UC

dominance dominance cooperation cooperation selfish counter-dominance counter-dominance

Burst Burst Burst Burst Burst Burst Burst

A

C

B

D

E

%
To

ta
l P

op
ul

at
io

n

Fig. 3. Serial-dilution experiments for two-geno-
type competitions. (A) Schematic of a serial-dilution
experiment. (B) Classes of two-genotype (two-
strategy) interactions in game theory. (C) Plots of
relative frequencies of WXYZ genotypes as a func-
tion of time (bursts) in the serial-dilution format for
the same seven competitions described in Fig. 2C.
For the AU vs. UC competition, results from using
skewed (AU:UC::20:80) genotype frequencies are
shown; other ratios converge to the same qualita-
tive result with AU > UC (SI Appendix, Fig. S2).
(D) Predicted dynamics of the genotypes in these
same competitions based on a simple ODE model in a
flow reactor scenario using measured cross-assembly
rates (Fig. 2C). (E) Modeling results using estimated
cross-assembly rates in the 2 × 2 matrix (see text).
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Discussion), namely rock–paper–scissors (RPS) (Fig. 4). Inspired by
the children’s game of the same name, RPS describes scenarios
with a cyclical arrangement of dominance relationships; these have
previously been identified in nature (46, 47). A well-known ex-
ample involves the bacterium Escherichia coli, for which there is an
evolutionary sequence from the wild type, to mutants that produce
toxin together with an immunity protein, to mutants that only
produce the immunity protein, and back to the wild type again
(47). We were interested to see whether a similar scenario could
also occur among molecular genotypes. RPS is one of ∼50 quali-
tatively different three-strategy game outcomes (48). It is a contest
in which three genotypes will all attain substantial frequencies
jointly despite the fact that the equilibrium frequency of any one
would be far lower than another without the presence of the third.
Based on our expectations from the results of other two-genotype
contests, we chose threeWXY genotypes—AA, UC, and GU—that
we anticipated could generate an RPS game. In isolation, we would
predict that AA beats UC, UC beats GU, and GU beats AA.
When we pitted these genotypes against each other two-at-a-time
in a serial-dilution format, we indeed saw that one genotype rea-
ches at least 70% superiority in each game (Fig. 3C). However,
when we pitted all three against each other in the same reaction
vessel in a serial-dilution format, their joint frequencies quickly
attained values near 30–40% and remained there (Fig. 4A). No-
tably the steady-state frequencies of each genotype in the RPS
scenario were distinctly higher than their “losing” values in two-
genotype games (Fig. 3C vs. Fig. 4A), and they appeared to con-
verge on an internal point in a simplex plot. Again, using the simple
ODE model described above, we were able to predict correctly
these outcomes. To do this, we created a 3 × 3 payoff matrix (SI
Appendix, Fig. S6) derived from the results of the three two-
genotype payoff matrices (Fig. 2C). From this matrix, we cal-
culated that there should be a stable internal equilibrium point
(cf. ref. 36) consisting of 39% UC, 35% AA, and 26% GU, that
agreed qualitatively with the empirical data in the three-strategy
serial-dilution experiment (Fig. 4B).

Discussion
We have characterized the dynamics that occur when two, and in
one case three, RNA genotypes compete for reproduction using
a common resource. By representing possible interactions in a
2 × 2 matrix, it is possible to predict rather accurately, based
solely on a few lower-level data points, what would happen in
various competition scenarios. This holds up qualitatively to the
three-genotype interaction level and may extend beyond that.
Likely, the complexity of the system and unpredictable interactions
such as nonproductive binding events (16) will begin to play more
important roles in larger networks. Prior efforts have focused on
either simulation models of similar RNA network dynamics (e.g.,
refs. 11, 13, 37, and 49–51), or on broad-scale experimental data
(e.g., refs. 12, 16, 29, 52, and 53). Here, we demonstrate that ex-
periment and modeling can agree. Future work is now possible to
understand how small networks can evolve into larger ones, and to
extend these methods to other, simpler RNA systems.
This matrix approach has predictive power. To highlight this

fact, we obtained 16 pieces of empirical data, which correspond
to the diagonal values in the 2 × 2 matrix, i.e., the rate enhance-
ment an RNA gets when interacting with its own genotype: a or d.
For forecasting purposes, we can use these rate constants to es-
timate the off-diagonal terms in the matrix: b and c. Specifically,
we used the corresponding nucleotide–nucleotide pairs from self-
assembly to predict what would happen in cross-assembly (SI
Appendix, Fig. S3). Then we input these four values into the ODE
model to compare its outputs with the results from the serial di-
lution experiments. In Fig. 3E, the modeled dynamics are shown
given the estimated values of b and c using this strategy (SI Ap-
pendix, Fig. S3). The outcomes using either measured or estimated
b and c values both emulate the experimental results (Fig. 3C)
almost perfectly. Such strong agreement of model and data un-
derscores the utility of the 2 × 2 matrix approach to forecast
complex dynamics from lower-dimensional data—the four values

a, b, c, and d—and portend the ability to extend this type of
analysis to three (or even more) interacting members of a pre-
biotic RNA network, as in the RPS scenario (Fig. 4). Thus, we
demonstrate that self-assembly data alone can allow estimates of
steady-state genotype frequencies; measurements of cross-assem-
bly rates help refine these estimates but are not necessary for a
qualitative prediction of dynamics. The static game theory tables
organize the parameters that determine the dynamics into di-
agonal and off-diagonal terms that have clear meanings (auto-
catalytic and cross-catalytic).
Our experimental system is particularly amenable to a game-

theoretic interpretation. The assembly rates of WXYZ molecules
can be considered “payoffs” because WXYZs are covalently
contiguous RNAs that would represent successful genotypes in
an evolutionary contest, their rates of production being dependent
on the current environment of other WXYZ molecules. New
WXYZ molecules being produced are analogous to progeny in a
biological setting. “Strategies” in a contest at the chemical level—
molecular reproduction strategies—would be the phenotypes
displayed by the genotypes: in our case, their abilities to catalyze
the assembly ofWXYZRNAs. When provided with the Zmolecule
resource, these genotypes can assemble into WXYZ molecules,
which then can catalyze even faster production of themselves be-
cause the covalently contiguous WXYZ has a roughly twofold
higher catalytic activity than a noncovalent (trans) complexWXY-Z
(16). Such phenotypes would be a combination of self-assembly,
where a WXY drives the assembly of a WXYZ molecule of like
genotype, and cross-assembly of other genotypes. In a molecular
system, the genotype directly determines the phenotype, and hence
the strategy, whose payoff is its fitness.
Our analyses lead to some subtle but important distinctions

between what we describe here and classical evolutionary game
theory (35, 36). Biological systems reproduce via template-
directed polymerization, characterized by the replicator equation.
In our chemical system, there is no replication per se. It is more de
novo synthesis (reproduction rather than replication) that could be
described as prelife (13, 14) in which the replicator equation does
not apply. Here, Eq. 1 applies instead. The Azoarcus ribozyme
system reproduces through a recombination of fragments rather
than a polymerization of nucleotides (24). Specifically, the in-
formation that differentiates “self” from “nonself” is embodied
in the thermodynamics of only a single nucleotide pair (Fig. 1C).
Thus, there are only a few chemical moieties on the base-pairing
surface of these nucleotides that influence the alternative strat-
egies in a game-theoretic sense, rather than a large continuum of
genotypes that would be available in a true biological system.
However, a key facet of the dynamics of frequency changes of
molecular genotypes is autocatalytic feedback, meaning that the
strategies—such as intergenotype cooperation (54)—used by
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Fig. 4. A RPS competition among three WXY genotypes. (A) Empirical data
from a serial-dilution experiment. The experiment was performed in the same
fashion as in Fig. 3, except here three genotypes (AA, UC, and GU) were
separately tracked. Each pair of two-genotype competitions is expected to give
a clear winner (Fig. 3C); but here coexistence results. (B) Predictions from the
ODE model. The simplex plots show (× symbols) the joint frequencies starting
from the center and approaching a stable internal equilibrium point.
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molecules in creating more molecules are optimized by kinetic
selective forces (55). Explicit differences in kinetics lead to cases
(e.g., the Selfish scenario) where chemical and biological game
theory lead to qualitatively distinct outcomes. This can also be
seen in the RPS scenario, where, although the results predicted
from the replicator equation and from our chemical dynamics
lead to qualitatively similar results (a stable interior equilibrium
point), a small deviation in the quantitative results can be de-
tected (SI Appendix, Fig. S7). Such variance reveals that, in
prelife game dynamics, the specific outcomes of intergenotypic
competitions can be predicted in a fashion parallel to, but not
identical to, those used to calculate Nash equilibria (34) in
classical games (SI Appendix). Thus, a game-theoretic approach
gives us an appreciation of the chemical ecology of how re-
production (production from the environment) could evolve
before biological replication. Knowing the mechanics behind
the interactions among two and three genotypes, it should now
be possible to predict how larger RNA networks could have
evolved.

Materials and Methods
RNA Self-Assembly. Reactions, containingWXY (1 μM), Z (1 μM),WXYZ (0–2 μM),
and/or 32P-labeled WXY (≤0.003 μM), were initiated with the addition of

buffer (100 mM MgCl2 and 30 mM EPPS, pH 7.5). Time point samples were
drawn and immediately quenched at 0.5–30 min, and the WXY and WXYZ
RNAs were separated by 8% (mass/vol) polyacrylamide/8 M urea gel electro-
phoresis. For serial-transfer experiments, after 5 min, 10% of each reaction
was transferred to a new tube with fresh reagents, over eight transfers.

Autocatalytic Rate Constants. Initial rates were calculated from slopes of the
linear portion of plots of the product ratio versus time; for fast reactions this
was ≤5 min and for slower reactions ≤10 min. The rate constant (ka) was
calculated from the slope of the initial WXYZ concentration versus the initial
rate of the reaction (SI Appendix, Fig. S1) (15). For cross-assembly reactions,
the WXY (1 μM) and WXYZ (0–2 μM) were of one genotype and 32P-labeled
WXY (≤0.003 μM) was a second. Values are averages of three separate trials.
Each rank order of a, b, c, and d values was significant (P < 0.05; SI Appendix,
Fig. S8).

Mathematical Modeling. A dynamical ODE model was constructed assuming a
flow-reactor scenario in which the frequency changes of two competing
strategies were described by Eq. 1 above. This was extended to a competition
among three or more strategies in a similar fashion (SI Appendix).
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Full Methods 
 
Experimental Studies 
RNA preparation 
The WXY and WXYZ molecules, which are portions of the self-splicing group I intron from the isoleucine 
pre-tRNA in the purple bactierium Azoarcus (1), were prepared by in-vitro transcription from DNA 
plasmid templates. The Z fragment was purchased from TriLink Biotechnologies (San Diego, CA) and was 
gel purified prior to use. All RNAs were resuspended in 1–10 µM solutions in 0.1 mM EDTA. For 
quantification, < 0.1 µM of the WXY-fragment was 5´-labeled with γ[32P]•ATP using OptiKinase (USB, 
Cleveland, OH). 
 
Self-assembly kinetics (Quadrants a and d of the payoff matrix) 
See Fig. 2 for a schematic of this process. Reaction mixtures containing WXY (1 µM), Z (1 µM), WXYZ 
(0 – 2 µM), and 32P-labeled WXY (≤ 0.003 µM), all of the same IGS and tag genotype, were heated to 80 
˚C for 2 minutes then cooled to 48 ˚C. Time “zero” aliquots were drawn and quenched with equivolume 
quench solution (125 mM EDTA and 2X loading dye containing formamide and bromophenol blue). 
Reactions were initiated with the addition of reaction buffer (100 mM MgCl2 and 30 mM EPPS, pH 7.5). 
Time point samples were drawn and immediately quenched with quench solution at 0.5, 1.0, 2.0, 5.0, 10, 
and 30 minutes. Samples were loaded on an 8% polyacrylamide/ 8M urea gel and WXY and WXYZ bands 
were separated. Visualization and quantification was possible via phosphorimaging on a Typhoon Trio+ 
variable mode phosphorimager (GE Healthcare) and accompanying ImageQuant software (GE Healthcare). 
A product ratio was calculated by comparing the RNA in the product WXYZ band to the unreacted WXY 
band (% reacted = [reacted / (reacted + unreacted)]*100%). Kinetic values were calculated as previously 
described (2). Briefly, initial rates were calculated from the slope of the linear portion of the reaction curve 
from a plot of the product ratio versus time (total of n = 3 trials for each concentration). For fast reactions 
this was ≤ 5 minutes and for slower reactions ≤ 10 minutes. The rate constant (ka) was calculated from the 
slope of the initial WXYZ concentration versus the initial rate of the reaction (Fig. S1).  
 
Kinetic parameter justification 
The kinetic parameters of a ribozyme form of the Azoarcus group I intron have been studied by Kuo et al., 
who demonstrated that the chemical step of trans-esterification was the rate-limiting process in this 
ribozyme (3). Previously we demonstrated that the full-length ribozyme WXYZ, can be broken into two (or 
three or four) fragments that could spontaneously self-assemble (2, 4) Self-assembly occurs when  
fragments hybridize through base-pairing (2˚) and tertiary (3˚) interactions to form non-covalent “trans” 
complexes of the ribozyme. Once formed, trans complexes can catalyze recombination reactions on other 
hybridized fragments (i.e., WXY + Z) to synthesize covalent versions of the ribozyme. Recognition 
between a catalytic complex, either a trans complex or a fully covalently-contiguous ribozyme, is driven by 
the strength of the IGS-tag base pairing, as shown in Table 1 in Fig. S1 below. For example, the wildtype 
IGS in the Azoarcus ribozyme is 5´–GUG–3´, which in vivo matches with the pseudocomplement 5´–
CAU–3´ as a consequence of a requisite G-U wobble preceding the splice site. A catalytic event creates a 
covalent closure of the stem-loop, often with the release of one or two G nucleotides from the 5´ end of the 
Z molecule GGCAU (ref. 24); thus this is a recombination reaction (5). In a population of molecules, this 
reaction is autocatalytic because the product (WXYZ) is a ribozyme that has an approximately 2-fold 
higher kcat than the trans complex (2, 6). 
 
In our system, RNA genotypes assemble one another from background material via kinetics that are driven 
by first order (or pseudo-first order) reactions; the units of the autocatalytic rate constants are per minute. In 
cases where molecules are being covalently formed from their own fragments, the initial rate has both 
autocatalytic (ka) and non-autocatalytic (kb) contributions: (d[WXYZ]/dt)i = ka[WXYZ]p + kb, where p 
represents a variable reaction order that must be experimentally determined (7)). We have previously 
shown that these self-assembly reactions display a high degree of autocatalytic rate enhancements, with 
autocatalytic efficiencies (the ratio of the slope to the y-intercept in the plots in Fig. S1 below) near the high 
end of such reported values (2). Although the exact value of the order (p) of the autocatalytic reaction is not 
straightforward, our modeling in ref. 2 suggests that a first-order (p ~ 1) fits the kinetic data very well, 
leading to units of min–1 in Table 1 below (Fig S1).  
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2-strategy kinetics (Quadrants b and c of the payoff matrix) 
See Figs. 2A, 2B, and 2C for a schematic of this process. Reactions, visualization and quantitation were 
performed same as the self-assembly kinetics with the exception of the fragment genotypes. For the b 
quadrant, the initial mixture contained 1 µM of the player 2 genotype and a trace amount of 32P-labeled 
WXY (≤ 0.003 µM) of the player 1 genotype. For the c quadrant, the initial mixture contained 1 µM of the 
player 1 genotype and a trace amount of 32P-labeled WXY (≤ 0.003 µM) of the player 2 genotype. 
 
Serial dilutions 
A master mix reaction mixture was formed containing equimolar WXY genotype 1 (0.5 µM) and WXY 
genotype 2 (0.5 µM) and Z (1.0 µM). The mixture was then divided in two equal volumes. One part was 
doped with 32P-labeled WXY genotype 1 and the other part with 32P-labeled WXY genotype 2. The two 
reaction mixtures were then aliquoted into eight tubes each (one for each burst). (In the case of AU vs. UC, 
the original master mix made for the eight bursts was made at a 20:80, 50:50, or 05:95 ratio, and then 
divided into eight portions, and then this was used as above. See Fig. S2.) All tubes were heated up to 80 ˚C 
for 2 minutes and then cooled to 48 ˚C. The reaction in the first tube was initiated with the addition of 
reaction buffer (100 mM MgCl2 and 30 mM EPPS, pH 7.5). At 5 minutes, 10% of the solution volume 
from tube #1 was transferred to tube #2, and tube #1 was placed on ice. Reaction buffer was immediately 
added to tube #2 while tube #1 was subsequently quenched with equal volume of quench solution. The 
transfer protocol was repeated through eight bursts. The two-part master mix containing 32P-labeled WXY 
was used as a negative control for the assay. Gel separation, visualization and quantitation was performed 
same as kinetic assays. Three-strategy serial dilutions (Fig. 4A) were performed using the same protocol as 
above with the addition of a third genotype.  
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Mathematical modeling 
 
Derivation of the kinetic equation 
To describe the dynamics of the serial dilution experiment, we derive a simple ODE model. We consider a 
contest with two strategies, A and B. The payoffs are given by the matrix: 
 

 A B 
A a b 
B c d 

 
In our context all entries are positive: !, !, !,! > 0.  
 
We use the following variables: x0 is the concentration of the A precursor (WXY), y0 is the concentration of 
the B precursor (WXY), z denotes the concentration of the Z molecule, x1 is the complex formed between 
the A precursor and Z, y1 is the complex formed between the B precursor and Z. The variables x and y 
denote the concentration of the A and B molecule (WXYZ), respectively.  
 
In the dilution experiment, the two precursor molecules and the Z molecule are provided at constant level, 
and the complex is formed in a reversible chemical reaction  
!! + ! ⇌ !!
!! + ! ⇌ !! 

Thus, x1 and y1 are also provided at constant level, and they give rise to the respective WXYZ molecule 
according to the catalyzed reactions 
!!

!" ! 

!!
!" ! 

!!
!" ! 

!!
!" ! 

Therefore, the kinetic equation (that would occur in a flow reactor) is 

[3] 
! = !" + !" !! − !"
! = !" + !" !! − !", 

Here ! is a parameter chosen such that the concentration of A and B is constant, ! + ! = ! and ! + ! = 0.  
Without loss of generality, we can set C=1 (we only need to replace the variables x and y by the 
transformed variables x/C and y/C). In that case, ! can be calculated as 

! = !" + !" !! + !" + !" !!. 

Moreover, since x1 and y1 are provided at equal concentrations, we may set !! = !! = 1 . This may lead to 
a change of the time scale, but it leaves the trajectories of Eq. [3] unchanged. Thus, the dynamical equation 
simplifies to 

[1] 
! = !" + !" − !"
! = !" + !" − !", 

with ! = (! + !)! + (! + !)!. 
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Properties of the dynamical equation 

In the following, we list a few interesting properties of the dynamical equation. 

Property 1.  
The dynamical equation [1] has a unique and globally stable equilibrium (!, !) with 0 < !, ! < 1 and  
! + ! = 1.!In the generic case that ! + ! ≠ ! + !, the equilibrium frequency of !  is given by 

[2] ! = !!!!!!! (!!!)!!!!"
!(!!!!!!!) . 

Otherwise, if ! + ! = ! + !, the equilibrium frequency is ! = !/(! + !). 

Proof.  Since ! + ! = 1, the first equation in [1] can be written as  

! = !" + ! 1 − ! − !" = ! + ! − 2! − ! ! − ! + ! − ! − ! !! =: ! ! . 

The function!! !  has the unique zero ! in the unit interval (0,1). Since ! 0 = ! > 0, it follows that 
! ! > 0 when 0 ≤ ! < !, whereas ! ! < 0 when ! < ! ≤ 1. Therefore, for any given initial frequency 
x, orbits converge towards !. � 

Let us next explore how the position of the equilibrium is affected by the entries of the payoff matrix. The 
following results follow directly from Eq. [2].  

Property 2. 
1. The equilibrium frequency ! is strictly increasing in a and b, and strictly decreasing in c and d. 
2. All other parameters unchanged, ! → ∞ or ! → ∞ implies ! → 1, whereas ! → ∞ or ! → ∞ implies 

! → 0. 
3. The equilibrium frequency satisfies ! = 1/2 if and only if ! + ! = ! + !.  Similarly, it satisfies 

! > 1/2 if and only if ! + ! > ! + !. 

As a consequence of the previous result, we can also draw the following connection between the 
equilibrium frequency and the type of game considered.  

Property 3. 
1. In a Dominance or Counter-Dominance scenario, ! > 1/2 if and only if it is A that dominates B. 
2. In a Selfish scenario, ! > 1/2 if and only if A risk-dominates B. 
3. In a Cooperation scenario, ! > 1/2 if and only if A is also played with higher frequency in the 

symmetric Nash equilibrium.  

Dynamical equation for !×! constests 

To describe the dynamics of the rock-paper-scissors contest, we generalize the previous dynamical 
equation to arbitrary !×! contests. Let ! = (!!") be the payoff matrix of such a contest, and let 
! = (!!,⋯ , !!)! be the vector that gives the frequency of each WXYZ molecule, such that !! +⋯+ !! =
1. Then the n-strategy analogue of Eq. [1] is 

[4] ! = !" − !", 

with ! = !!"!!!,! . Equation [4] can be considered as a slightly generalized version of the quasi-species 
equation. It has a unique fixed point in the interior of the state space, which is globally stable. The fixed 
point can be found by solving the eigenvector problem !" = !", where ! is the largest eigenvalue of M. 
The theorem of Perron and Frobenius for positive matrices guarantees that the corresponding normalized 
eigenvector ! is unique, and that all entries of ! are positive.  

 
In the following, let us summarize a few simple properties of the dynamical equation [4].  
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Property 4. 

1. The unit simplex Δ = ! ∈ ℝ!!|!! ≥ 0, !! +⋯+ !! = 1  is invariant under the dynamical 
equation [4]; that is, if the initial state !(0) ∈ Δ then !(!) ∈ Δ for all times t.  

2. The edges of the unit simplex are not invariant under the dynamics in [4]; if !! = 0 then !! > 0. 
 
Proof. The sum of all entries of x does not change over time, due to our choice of !. Moreover, if !! = 0, 
then it follows from Eq. [4] that !! = (!")! − 0 > 0. 

 
The previous result points to an important difference between the dynamical equation [4] and replicator 
dynamics (see also Fig. S7). Replicator dynamics is non-innovative – if a strategy is initially absent, then 
the evolutionary dynamics does not introduce this strategy at some later time point. In contrast, the kinetic 
dynamics described in [4] predicts that absent WXYZ strategies are introduced immediately, due to the 
catalytic effect of the other WXYZ molecules (provided that the required precursor WXY for the absent 
strategy is available).  
 
Next, let us describe the relationship between the Nash equilibria of a contest with payoff matrix M, and the 
unique equilibrium of the kinetic equation [4].  
 
Property 5. 
Let ! = (!!") be the payoff matrix of an n-strategy contest, and let ! = (!!,⋯ , !!)! be the unique 
equilibrium of Eq. [4]. Then the following are equivalent: 

1. ! is a Nash equilibrium. 
2. The equilibrium is in the center of the simplex, ! = (1/!,⋯ ,1/!)!. 
3. The row sums of M coincide, !!! +⋯+!!" = !!! +⋯+!!" for all 1 ≤ !, ! ≤ !. 

Proof.  

1 ⇒ 2. As ! is a Nash equilibrium in the interior of the state space, all strategies yield the same expected 
payoff,  

(!")! = (!")! for all 1 ≤ !, ! ≤ !. 
Moreover, since ! is the fixed point of Eq. [4], and hence the eigenvector of ! corresponding to some 
real eigenvalue ! > 0 , it follows that  

! ∙ !! = (!")! = (!")! = ! ∙ !!. 
In particular, !! = !! for all 1 ≤ !, ! ≤ !, and thus ! = (1/!,⋯ ,1/!)! . 

2 ⇒ 3. As !" = !" for some ! > 0 and for ! = (1/!,⋯ ,1/!)!, it follows that 
!
! !!! +⋯+!!" = !/! for all 1 ≤ ! ≤ !. 

Since the right hand side does not depend on i, neither does the left hand side. Therefore,  

!!! +⋯+!!" = !!! +⋯+!!" for all 1 ≤ !, ! ≤ !. 

3 ⇒ 1. If the row sums of M coincide, it is easy to check that ! = (1/!,⋯ ,1/!)! is the unique fixed point 
of Eq. [4]. In this fixed point, (!")! = (!")! for all 1 ≤ !, ! ≤ !, and hence ! is a Nash equilibrium. � 

 
The previous result shows that in general, the kinetic equilibrium of Eq. [4] is not a Nash equilibrium – the 
only exception occurs when all rows of the payoff matrix sum up to the same value.  
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Discussion of the utility of game theory at the chemical level 
 
Given the concordance between our experimental results and the ODE models that we constructed, the 
game-theoretic analysis appears to be a natural consequence of chemical kinetics, but kinetics viewed in an 
entirely new way. Our formalism allows us to summarize the dynamics between two genotypes in a single 
matrix, whose values can easily be interpreted. One only needs to know this matrix to calculate genotype 
equilibria. The dynamics can be interpreted using frequency-dependent selection. Each step along this 
analytical process is performed exactly as in evolutionary game theory, although the applied equilibrium 
concepts differ. 
 
Put another way, game theory adds to the ability to assess rapidly the evolutionary outcomes of contests 
among pre-biotic genotypes such as RNA. Specifically it can allow one to understand how two general 
outcomes arise (dominance vs. co-existence), but more importantly, which specific mechanism is 
operational in any given situation: auto- and/or cross-catalysis. The Counter-dominance situation is a good 
example of this. An ODE analysis on its own would tell you that one genotype would rise to a high 
frequency at the expense of the other, but the specific mechanism for this – the receipt of greater cross-
assembly benefits than self-assembly benefits – may be obscured. The 2x2 payoff matrix reveals this 
dynamic quickly and allows insight into the precise molecular events that underlie the evolutionary 
dynamics. The Prisoner’s Dilemma has been biologically demonstrated in viruses (8) and yeast (9, 10), and 
we now demonstrate it at the raw (bio)chemical level. 
 
In many environments envisaged for plausible conditions for the origin of life, there is a steady-state flux of 
resources or energy. Examples include, but are not limited to, thermal gradients leading to thermophoresis 
(11, 12), streams flowing downhill absorbing leaching chemical precursors (13, 14), and sporadically-fed 
aqueous pools (15). In these situations, nascent reproducing molecules would have had to compete for 
common resources, and our molecular experiments and model were designed to capture these 
characteristics, targeting a “pre-Darwinian” description of molecular evolution (e.g., 16, 17). The chemical 
game theoretic treatment allows an extention of the benefits of traditional evolutionary game theory down 
to a simpler, pre-life level. 
 
With these parallels, we propose that game theory is applicable to the events leading to the chemical origins 
of life. Intermolecular interactions, driven mainly by non-covalent bonding strengths, can be hypothesized 
as giving rise to a build-up of network complexity among prebiotic polymers as has been discussed for 
other RNAs (18), proteins (19), and lipids (20). Here we have provided an empirical example of how game-
theoretic patterns can be manifest in a chemical system, and one that has prebiotic relevance. While the 
dynamics of chemical reproducers can be described in terms of classical ODE equations, the game-
theoretic construct gives insight as to what happens when one goes from a small number of nodes in a 
network to a larger number of nodes.  
 
Although one needs to be wary of over-interpretation, game theory at the chemical level allows for a clear 
evolutionary perspective of prebiotic dynamics. From a practical standpoint, what we have shown is that 
from knowing the influence on catalysis of a single nucleotide-pair interaction – here the middle nucleotide 
of the IGS-tag triplet, akin to the middle position in a codon-anticodon pairing – on catalysis, one could 
predict general outcomes from contests among a small number of competitors vying for a shared resource. 
Note that in the predicted Cooperation competitions – those leading to significant steady-state frequencies 
of both genotypes – none of the participating genotypes has a Watson-Crick pair between their M and N 
nucleotides. The presence of a non-canonical nucleotide pair in the IGS-tag recognition process leads to the 
situation where the off-diagonal terms in the payoff matrix (b and c) are greater than the diagonal terms (a 
and d), thereby promoting a type of molecular cooperation (21), in that molecules are forced kinetically to 
forego some of their reproductive potential to assemble others (22). In the converse case, the Selfish 
scenario, the diagonal terms in the matrix exceed the off-diagonal terms, leading also to co-existence, but 
one achieved in the opposite manner. (The CG vs. AU game is perhaps the most extreme example of a 
Selfish scenario, and while the CG self-assembly rate constant exceeds that of AU by only 30%, we predict 
that the steady-state frequency of CG should reach 96% even with a continual supply of equimolar AU; see 
Fig. S4.)  
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Supplementary Figure 1. Calculation of self-assembly autocatalytic rate constants. Left: raw data for the 
rates of self-assembly for the 16 genotypes GMGWXYCNU, where M and N are free to vary. Rates were 
measured by doping in 0 µM, 0.5 µM, 1 µM, or 2 µM full-length WXYZ into reactions containing 1 µM 
GMGWXYCNU and 1 µM Z as described in ref. (2) and the Methods above. Each point represents the average 
of three independent trials. Main plot: data for the 11 fastest self-assembling genotypes, where rates were 
measured for reaction times of 5 minutes or less. Inset: data for the five slowest self-assembling genotypes, 
where rates were measured for reaction times of 10 minutes or less. Right: Table (with r2 linear regression 
values included) that depicts the computed autocatalytic rate constants (ka) via the means described above 
(2), based on the method of von Kiedrowski (7). 
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Supplementary Figure 2. Variation of the initial frequencies in the AU vs. UC contest. From left to right, 
the initial WXY molar frequencies are AU:UC:50:50 (experimental), AU:UC:20:80 (experimental), 
AU:UC:5:95 (experimental), and AU:UC:20:80 (model). All experiments converge on similar final 
equilibrium concentrations, with AU > UC (but not exclusionary), as predicted by the model. Note, in this 
2-strategy contest, the chemical outcome (Selfish) is an analog of the Stag Hunt biological game scenario. 
In biological evolutionary competitions, the Stag Hunt scenario is a bi-stable one, in which the final 
outcome is heavily dependent on the initial conditions, with a definable tipping point. Such bi-stability is 
not observed in these experiments, highlighting a key difference between biological games based on 
replication and chemical games based on reproduction (assembly). See main text for more discussion. 
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Supplementary Figure 3. Use of IGS and tag nucleotides to predict 2-strategy outcomes. Here the logic 
for the construction of the predicted 2x2 payoff matrices is explained. (a) A depiction of how the MN 
notation translates into the a, b, c, and d values in the payoff matrix. The a and d values (diagonal terms) 
are data taken from the empirical self-assembly experiments tabulated in the Table in Fig S1. (b) and (c) 
An example game of AU vs. UC is shown. The a value is the self-assembly autocatalytic rate constant that 
results when GAGWXYCUU is incubated with Z. This reaction is determined by the strength of a A-U 
nucleotide pair within the interaction between an IGS triplet in one RNA fragment and the “tag” in another 
(Fig. 1C). Likewise the d value is the self-assembly autocatalytic rate constant that results when 
GUGWXYCCU is incubated with Z. On the other hand, the b and c values (off-diagonal terms) can be derived 
in two different manners. They can either be estimated using the appropriate nucleotide-pair value from the 
Table in Fig. S1 (panel c), or they can be measured using an experimental competition between two WXY 
genotypes as shown in Fig. 2 (panel b). Using estimated values of b and c, we have predicted the outcomes 
of all 72 contests in which no values are predicted to be equal (Fig. S4). For example, the AU vs. UC 
contest is predicted to give a Selfish outcome by this method, as shown. In all panels, the asterisk (*) here 
denotes that in a 2-genotype interaction, the payoff is to the row player in competition with the column 
player, and using the differential 32P-labeling technique (Fig. 2A), we can track the rate of assembly of 
single genotypes in a mixture. 
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Supplementary Figure 4. Plots of outcomes of all 72 strict 2-strategy contests from predicted self-
assembly matrices. By eliminating cases with equal payoffs (e.g., AU vs. AC; Fig. S5), there are 72 
possible such contests. The predictions are that 26% of the scenarios should lead to the Dominance, 32% to 
the Cooperation, 32% to the Selfish, and 10% to the Counter-dominance outcomes (Fig. S4). It is important 
to realize that the Dominance and Counter-dominance scenarios occasionally lead to fairly high frequencies 
of the “losing” genotype (e.g., 30% UU, in CC vs. UU; Fig. S4). Conversely the two co-existence scenarios 
can sometimes lead to the near fixation of one genotype (e.g., CG in CG vs. GU). These cases are the 
exceptions to the rule however, and are a consequence of the steady-state nature of both the experiments 
and modeling where the Z resource is continually replenished. Each panel shows the expected 2-strategy 
dynamics, for all 72 payoff matrices that can be derived from the self-assembly data in the Table in Fig. S1. 
For details on how these matrices were obtained, see Fig. 2B and Fig. S3. These matrices were then used as 
our input to calculate the expected dynamics according to the kinetic equation [1] above. As this figure 
suggests, different 2-strategy contests can have remarkably different dynamics, even if the contests are 
taken from the same game class. The predicted equilibrium frequencies according to equation [2] above are 
depicted by the dotted black lines. Exact equilibrium frequencies are provided at the bottom of each panel. 
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Supplementary Figure 5. Tabluation of the 48 2-genotype contests that generate predicted equal values in 
their 2x2 payoff matrices. There are 16(15)/2 = 120 distinct 2-strategy contests from 16 WXY genotypes, 
but 48 of these will generate values in the predicted payoff matrix that are equal, using the logic shown 
here. When two genotypes compete with the same M or N nucleotide, then the self-assembly values (Table) 
will predict two identical values in the matrix. For example, when AU competes vs. AC as shown here, the 
a and b values in the matrix both would derive from the AU self-assembly rate constant value in the Table, 
which is 0.0319 min–1. The a value represents an A-U pairing during the catalytic self-assembly of 
GAGWXYCUU and Z, while the b value represents an A-U pairing during the catalytic cross-assembly of 
GAGWXYCUU and Z by a GAGWXYCCU-containing ribozyme. Likewise in this particular contest, the c and d 
values would be predicted to be equal. Equal values in the payoff matrix do not lead to strict equilibria. 
Thus for the purposes of forecasting outcomes from all possible 2-strategy contests using only self-
assembly data, these 48 cases are excluded, leaving 72 possible contests, as shown in Fig. S4. Again, the 
asterisk (*) here denotes that in a 2-genotype interaction, the payoff is to the row player in competition with 
the column player, and using the differential 32P-labeling technique (Fig. 2A), we can track the rate of 
assembly of single genotypes in a mixture. 
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Supplementary Figure 6. Predicted 3x3 payoff matrix in the 3-strategy contest between UC, AA, and GU 
(Fig. 4). (a) The 3x3 matrix, compiled from two sources (in analogy to Fig. 2B). The diagonal terms 
(0.0038, 0.0004, and 0.0091) were self-assembly autocatalytic rate constants from the Table in Fig. S1. The 
off-diagonal terms were collected from the appropriate off-diagonal terms measured in individual 2-
strategy contests shown in panel (b). For example, the value 0.0504 (first column, second row) in the 3x3 
matrix derives from the measured value of c in the 2x2 matrix for the UC vs. AA contest. A stable interior 
equilibrium point is predicted to exist (23, 24). This was in fact seen in the experiment (Fig. 4A), and the 
scenario is thus a chemical form of Rock-Paper-Scissors (RPS). Because one pairwise interaction (UC vs. 
AA) in this context results not in pure dominance, but Cooperation, the present contest is technically a 
weak form of a RPS, in the sense that every strategy can invade the previous strategy, and it can be invaded 
by the next strategy (see Fig. S7). In our system with only 16 possible genotypes that are roughly binary in 
their interactions with other genotypes (Watson-Crick base pairing in the M-N interaction or not), it is not 
possible to construct a strictly strong RPS scenario, because at least one pairwise interaction will not be a 
dominance scenario. With this matrix analysis, one can see a more general connection to network 
evolution. The values in the payoff matrix are equivalent to the weights of the connections in a network, 
and the sum of the weighted paths in a network gives an approximation of the dominant eigenvector xi (the 
steady-state frequencies of each of i species in a network). See reference (25) for more discussion of this 
point. 
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Supplementary Figure 7. Comparison of biological (replicator) dynamics with the chemical game 
dynamics. Based on the 3x3 experimental matrix displayed in Fig. S6, the two graphs show the resulting 
replicator dynamics (left) and the dynamics according to the kinetic equation [4] above (right). Replicator 
dynamics predicts cyclical behavior: AA can be invaded by GU, GU can be invaded by UC, and UC in turn 
can be invaded by AA. The fixed point on the edge between UC and AA is unstable, and all orbits spiral 
towards the unique Nash equilibrium in the interior of the state space (with equilibrium proportions UC 
35.8%, AA 50.4%, GU 13.8%). However, in the kinetic equilibrium (right), AA is considerably less 
abundant than predicted by the Nash equilibrium (UC 39.1%, AA 35.0%, GU 25.8%). Moreover, in the 
right graph, the edges of the Simplex are no longer invariant because absent strategies are introduced 
continually (as described in detail in the Mathematical Modeling section above). 
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Supplementary Figure 8. Statistical tests for ordinal rankings. The Kruskal-Wallis non-parametric test 
was used to test the statistical significance of the rank order of the values in the 2x2 payoff matrices. The 
seven 2-strategy contests depicted in Fig. 2 were analyzed in this fashion, using the variation in empirical 
data provided by the three independent replicates of the experiments. The test statistic H was computed as 
per Sokal and Rohlf (26) and compared to the critical values provided by Meyer and Seaman (27) from the 
exact probability distribution. All rank-order values for these games were statistically significant at the P < 
0.05 value or better. 
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