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In antagonistic symbioses, such as host–parasite interactions, one
population’s success is the other’s loss. In mutualistic symbioses,
such as division of labor, both parties can gain, but they might
have different preferences over the possible mutualistic arrange-
ments. The rates of evolution of the two populations in a symbio-
sis are important determinants of which population will be more
successful: Faster evolution is thought to be favored in antago-
nistic symbioses (the “Red Queen effect”), but disfavored in cer-
tain mutualistic symbioses (the “Red King effect”). However, it
remains unclear which biological parameters drive these effects.
Here, we analyze the effects of the various determinants of evo-
lutionary rate: generation time, mutation rate, population size,
and the intensity of natural selection. Our main results hold for
the case where mutation is infrequent. Slower evolution causes
a long-term advantage in an important class of mutualistic inter-
actions. Surprisingly, less intense selection is the strongest driver
of this Red King effect, whereas relative mutation rates and gen-
eration times have little effect. In antagonistic interactions, faster
evolution by any means is beneficial. Our results provide insight
into the demographic evolution of symbionts.
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Antagonistic symbioses can be conceptualized well in the fol-
lowing simple, constant-sum game (1, 2):

Player 2
C D

Player 1 A 1, 0 0, 1
B 0, 1 1, 0

. [1]

Here, player 1’s available strategies are A and B , player 2’s are
C and D , the first payoff in each cell is player 1’s, and the sec-
ond one is player 2’s. Interacting populations of “player 1s” and
“player 2s” constitute an antagonistic symbiosis, which we expect
to evolve according to arms-race dynamics (3). To see why, sup-
pose we start with population 1 all playing strategy A and popu-
lation 2 all playing strategy C , so that population 1 is doing well
at the expense of population 2. Now, a mutant in population 2
who plays strategy D does better (payoff 1) than other mem-
bers of population 2 (payoff 0) and can take over, at population
1’s expense (their payoff decreases from 1 to 0). Population 1
is then expected to switch to strategy B , after which population
2 switches to strategy C , and so on. As the Red Queen said to
Alice, “it takes all the running you can do, to keep in the same
place” (ref. 4, p. 42).

Arms-race dynamics characterize many interactions both in
the natural world and in human behavior. In a host–parasite
interaction, for example, the host is selected to develop immu-
nity to the parasite, which in turn selects for new “resistance”
mutations in the parasite, which selects for the host to develop
immunity to the new mutant parasite, and so on. In Batesian
mimicry, a palatable species (of butterfly, for example) evolves
to mimic the warning display of an unpalatable species, so that it
is mistaken by predators for the unpalatable species. This selects
for the unpalatable species to evolve a new display, to not be mis-
taken for the palatable species, which is then under selection to
mimic the new display, and so on (5).

Antagonistic interactions play out at an intragenomic level as
well. Examples, among many others (6, 7), are the X-linked male-
meiotic driving gene Dox and its autosomal suppressor Nmy in
Drosophila simulans (8, 9), centromeric repeat sequences seeking
to drive in female meiosis and the centromere-histone genes that
keep them in check (10, 11), and the mammalian recombination-
specifying gene Prdm9 and the binding sequences of its pro-
tein [which are under positive selection to escape PRDM9 bind-
ing (12–15)]. Consistent with arms-race dynamics, the conflicting
elements in these examples all show genetic evidence of rapid
evolution (10, 11, 16–23).

Mutualistic symbioses with a degree of conflict (24, 25) can
also be conceptualized in a simple game (26),

Player 2
C D

Player 1 A 2, 1 0, 0
B k , k 1, 2

, [2]

with 0  k < 2. From either of the two mutualistic coordination
states (A,C ) and (B ,D), neither population is under selection to
deviate to one of the noncoordination states (A,D) and (B ,C ).
But population 1 prefers coordination state (A,C ), whereas pop-
ulation 2 prefers coordination state (B ,D). Of most interest is
the case k < 1, where game 2 is a true mutualism (both popula-
tions prefer the two coordination states to the two noncoordina-
tion states).

This game also describes many interactions in both nature and
humans. Mutualisms often involve a division of labor (27), such
as the production of different nutrients in a microalgal–microbial
partnership (28), the separate production of a “poison” and its
“antidote” by two linked genetic elements in a gamete-killing
meiotic drive complex (6, 29), or the economic production of
different goods by trading partners under increasing returns to
scale (30). In these cases, it is beneficial to both interactants that
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all tasks be carried out, but there can be conflict over who should
do which (31). For example, it is better to be the antidote pro-
ducer than the poison producer in the meiotic drive complex,
because the gains of their partnership are shared equally, but its
disruption (by recombination) is costlier to the poison producer.

Another example, Müllerian mimicry, involves two poisonous
species (of butterfly, say) evolving to share a common pattern,
one pattern being easier for their predators to learn than two
(32). But if the species’ original patterns evolved to suit differ-
ences in their respective habitats, behaviors, or genomic back-
grounds, then there might be conflict over which pattern to con-
verge on, with each species enjoying an evolutionary advantage
if convergence is on its original pattern.

In both antagonistic and mutualistic symbioses, the relative
rates of evolution of the participating populations are thought
to be important determinants of their relative evolutionary suc-
cess. A faster rate of evolution could be achieved through vari-
ous means (3, 24–26). First, it could derive from a shorter gener-
ation time, allowing more generations over which to adapt (2).
Second, it could derive from a higher rate of mutation, more
rapidly generating new variants that allow a population to escape
an unfavorable state of interaction (24, 33, 34). Finally, it could
derive from more effective action of natural selection. This could
be because the stakes are higher for one population than the
other—“the rabbit is running for his life, while the fox is only
running for his dinner” (ref. 3, p. 493)—or because selection acts
more effectively in large populations, owing (roughly speaking)
to a reduced effect of random drift (35) (a precise formulation of
this statement is given in SI Appendix, section S5.2).

Common wisdom holds that a faster rate of evolution is advan-
tageous in antagonistic interactions (36), the better to “keep
ahead in the race” (ref. 3, p. 492). But it has not, to our
knowledge, been clearly demonstrated which individual biolog-
ical parameters drive this Red Queen effect in theory.

In an important paper, Bergstrom and Lachmann (26) (here-
after, B&L) demonstrated that a slower rate of evolution might
be advantageous in some mutualistic interactions, an effect they
called the Red King effect. They studied two populations inter-
acting according to the mutualism game 2, with determinis-
tic evolutionary dynamics operating in each of the two pop-
ulations, both of infinite size and without the possibility of
mutations.

In their model, x is the proportion of population 1 playing
strategy A (so that the proportion 1� x play B), and y is the
proportion of population 2 playing D (1� y play C ). Then the
expected payoff to a member of population 1 who plays A when
interacting with a random member of population 2 is, from the
payoff matrix 2, ⇡A

1 =2(1� y). On the other hand, the payoff to
a member playing B is ⇡B

1 = k(1�y)+y , and the average payoff
in population 1 is ⇡̄1 = x⇡A

1 + (1� x )⇡B
1 . The analogous quanti-

ties in population 2, ⇡C
2 , ⇡D

2 , and ⇡̄2, are calculated similarly. The
strategy frequencies in the two populations evolve according to
replicator dynamics:

ẋ = mx

h
⇡A
1 (y)� ⇡̄1(x , y)

i
, ẏ = ny

h
⇡D
2 (x )� ⇡̄2(x , y)

i
. [3]

Here m,n > 0 are parameters that calibrate the relative rates of
evolution of the two populations by determining how responsive
their respective evolutionary dynamics are to fitness differences
among strategies.

These dynamics are deterministic—evolutionary trajectories
are fully determined once their starting points are known—
and evolution necessarily leads to one of the two coordination
equilibria, (A,C ) (x =1, y =0; population 1’s preference) or
(B ,D) (x =0, y =1; population 2’s preference), where evolution
then halts.

B&L (26) showed that, when k > 1 in game 2 and population
1 evolves slower than population 2 (m <n), the set of starting

points from which evolution proceeds to population 1’s favored
equilibrium (A,C ) (the equilibrium’s “basin of attraction”) is
larger than the basin of attraction of the equilibrium (B ,D). In
this sense, slower evolution is beneficial. When k < 1, the oppo-
site result holds: If population 1 evolves slower, the basin of
attraction of (A,C ) is smaller than that of (B ,D).

Here, we construct a finite-population model of symbiosis evo-
lution, incorporating all of the biological determinants of evolu-
tionary rate. This model allows us to extend B&L’s (26) results
for mutualisms in several ways and to apply a similar analysis to
antagonistic symbioses, leading to a richer picture of the evolu-
tionary dynamics of symbioses.

First, our model allows for an explicit characterization of
which evolutionary rate parameters influence the relative success
of the interacting populations. This is unknown for mutualisms
[B&L’s (26) general rate parameters m and n have no clear bio-
logical interpretation], has not been fully disentangled for antag-
onistic symbioses, and in both cases is crucial for standard empir-
ical measures of evolutionary rate [such as the substitution rate at
neutral genetic loci, which depends on mutation rate and gener-
ation time, but is insensitive to changes in population size (37)].

Second, our model allows us to uncover a key influence of
evolutionary timescale on symbiosis evolution. In the mutual-
ism game 2, we show that the short-run behavior of our stochas-
tic evolutionary dynamics is very similar to that of the replica-
tor dynamics studied by B&L (26): From a given starting state,
the dynamics rapidly converge to, or near to, one of the two
equilibria of the game. Which equilibrium is most likely to be
approached depends critically on the starting point, just as in the
dynamics of B&L (26). On a longer timescale, however, we show
the evolutionary dynamics of this game to be of a very differ-
ent nature. The long-run dynamics involve transitions between
equilibria, driven by sporadic mutation, and eventually become
independent of where the dynamics first started. As we show, in
mutualisms, many of the conclusions concerning the short-run
dynamics are either annulled or reversed in the long run.

Our main results are summarized in Table 1.

A Finite-Population Model of Symbiosis Evolution
Populations 1 and 2 are of sizes N1 and N2 and interact according
to a two-player, two-strategy game such as games 1 and 2. The
“populations” here can be broadly construed: They could be all
of the individuals of two species in a symbiosis, for example, or all
of the alleles at two distinct loci among the genomes of a single
species.

The evolutionary process occurs in discrete time steps. Each
time step, individuals in each population receive their average
payoffs from interacting with a random member of the opposite
population. An individual’s payoff ⇡ in population l is translated
to a nonnegative fitness value 1 + wl⇡, so that the “selection
strengths” w1,w2 > 0 calibrate the effectiveness of natural selec-
tion in the two populations.

In each time step, a “birth–death event” occurs in one of the
populations. Individuals in the two populations have relative gen-
eration times g1 and g2: In a given time step, the birth–death
event occurs in population l with probability proportional to
Nl/gl , independently across time steps.

A birth–death event in a population involves choosing an indi-
vidual to reproduce, with probability proportional to fitness, and
an individual to die, with each one equally likely. These can be
the same individual. A single offspring of the reproducing indi-
vidual replaces the individual that was chosen to die. This within-
population process, the Moran process (38, 39), has been used as
a model both of biological evolution (40, 41) and of imitation
learning (42–44). In the Moran process, one “generation” of a
population typically corresponds to the number of birth–death
events that is about the same as the population’s size (41). In our
two-population framework, we label the number of time steps
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Table 1. The biological parameters that drive the Red Queen and King effects in antagonistic and
mutualistic symbioses

Antagonistic symbiosis Mutualism, k small Mutualism, k large

Short run Long run Short run Long run Short run Long run

1/generation time QQ QQ QQ No effect KK No effect
Mutation rate No effect QQ No effect No effect No effect No effect
Selection strength QQ QQ QQ KK KK QQ
Population size QQ QQ QQ KK KK QQ

For each of the parameters that determine evolutionary rate, we ask whether the population with the larger param-
eter value, which therefore evolves faster, is more successful (QQ, a Red Queen effect) or less successful (KK, a Red King
effect) in the interaction, holding the other rate parameters constant and equal between the two populations. The
short-run results are numerically computed for particular parameter values (Figs. 1–3). The long-run results are for the
weak-mutation limit and are exact (see text for details). For selection strength and population size in the mutualisms,
(i) we set one population’s selection strength to w (or both populations’, when studying the effect of population size)
and assume that the larger parameter value is larger by a small amount, (ii) we define “k small” as k < 1/(1 + w) and
“k large” as k > 1/(1 + w), and (iii) we assume the populations to be sufficiently large.

equal to the sum of the populations’ sizes as a common gener-
ation: Each individual experiences on average one birth–death
event per generation.

Finally, to account for the possibility of mutation, we assume
that, in a birth–death event in population l , the offspring inher-
its its parent’s strategy with probability 1 � "µl or mutates to
the alternative strategy with probability "µl . Thus, µ1 and µ2

represent the relative mutation rates of the two populations
(they are unitless), whereas the parameter " calibrates the over-
all frequency of mutations in the two populations (in units “per
replication”).

In sum, given a payoff matrix such as [1] and [2] and rate
parameters N1, N2, g1, g2, w1, w2, µ1, µ2, and " and provided
µ1, µ2, " > 0, the above defines an ergodic Markov chain over a
state space comprising all possible strategy compositions of the
two populations. If 0  i  N1 is the number of A strategists
in population 1 at some point in time (so that N1 � i individu-
als play B), and 0  j  N2 is the number of C strategists in
population 2 (N2 � j play D), then the population state is (i , j ).
The behavior of the evolutionary process is characterized by the
probability of moving from state (i , j ) to (i

0, j 0) in one time step,
for all such pairs of states—these probabilities are provided in SI

Appendix, section S1.
Two regimes are of interest in these dynamics, corresponding

roughly to their short-run and long-run behavior.
Given some initial population state (i

0, j 0), the short-run
dynamics (i) are not affected much by mutations, instead being
governed mostly by selection strengths, population sizes, and
generation times; (ii) depend critically on the starting point
(i

0, j 0); (iii) have trajectories that are similar to those of the
replicator dynamics, especially when the populations are large;
and (iv) in coordination games, like game 2, converge rapidly to
or near one of the pure population states (in which each pop-
ulation is monomorphic) associated with the equilibria of the
game. For illustration, Figs. 2 A–D, Upper and 3 A–D, Upper and
especially SI Appendix, Fig. S1 display the similarity of the short-
run behavior of our dynamics to that of the replicator dynam-
ics, in the context of the mutualism game 2 [compare figure 2 of
B&L (26)].

The long-run dynamics are of a very different nature. Because
the evolutionary process, as we have defined it, is ergodic, the
probability that the system is in some state in the future eventu-
ally becomes independent of where the system started (45). This
effect is illustrated for the antagonistic symbiosis game in Fig. 1
A–D, Lower and for the mutualism game in Figs. 2 A–D, Lower

and 3 A–D, Lower. The state of the system comes to depend not
on the early dynamics that emanate from the starting point, but
instead on infrequent transitions between equilibria, driven by
mutations.

The object of interest in these long-run dynamics is their sta-
tionary distribution, the proportion of time spent in each pop-
ulation state in the long run. Equivalently, the stationary distri-
bution tells us, were we to observe many independent instances
of equivalent symbioses evolving, what proportion of these sym-
bioses we should expect to find in each possible state at some
fixed point in time in the long run (45).

Whereas we numerically study the stationary distribution of
our evolutionary process for large mutation rates and selection
strengths, we also invoke recent methodological advances in evo-
lutionary game theory (46, 47) to study it analytically in certain
limits. Chief among these is the “weak-mutation limit,” " ! 0,
which approximates the case where mutations are very infre-
quent: N1"µ1,N2"µ2 ⌧ 1 (44, 46). This is a common assump-
tion in the population genetics and evolutionary game theory
literatures (44, 48, 49) and is realistic when populations are
small or when the individual mutation rate is very small. For
example, in genetical evolution, the mutations we are consid-
ering might be single-nucleotide substitutions, which occur at
rates of order 10

�8 or smaller per generation for most organ-
isms (50); if multiple nucleotide substitutions are required to
change strategies, then the relevant mutation rates are even
lower. Therefore, whereas the case of infrequent mutations is
certainly not general, it is a relevant and interesting case to
consider.

In the weak-mutation limit, the dynamics converge to an
embedded dynamical process over just the four pure states (42,
46); the stationary distribution collapses to a probability distribu-
tion over these pure states, ��� =

⇥
�(A,C),�(A,D),�(B,C),�(B,D)

⇤
.

In the embedded dynamics, transitions between pure states
occur with probabilities determined by the relative frequency of
appearance of mutants in the two populations and the proba-
bilities of fixation of these mutants (46) (details in SI Appendix,
section S4).

In this paper, we examine the influence of individual rate
parameters—mutation rate, generation time, selection strength,
and population size—on the outcomes of antagonistic and mutu-
alistic symbioses. For the majority of our analysis, we take the
following “all-else equal” approach: For each rate parameter,
we hold equal and constant for the two populations all but that
parameter and then ask whether the population with the larger
value of that parameter is, by some relevant criterion, evolution-
arily more successful.

This all-else equal approach is motivated by two considera-
tions: First, it allows for simple mathematical characterization
of the long-run dynamics in the weak-mutation limit. Second, it
allows us to ask in a clear way, “What is the contribution of a
given parameter to the success of the populations?” For illustra-
tion, suppose we see that a large population of parasites does
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well against a small host population. We might wonder whether
it is the parasite’s large population size or its rapid generation
time that is the main reason for its success. To get at an answer,
we would ask what the effect of the parasite’s large population
size would be if we eliminated any benefit from a faster gener-
ation time—i.e., by setting the parasite’s generation time equal
to its host’s. We would then do the same for generation time, by
setting the parasite and the host population sizes equal.

This approach ignores possible interactions between rate
parameters—for example, if the parasite’s larger population size
is beneficial only if the parasite has a faster generation time than
its host’s. For antagonistic symbioses, in the weak-mutation limit,
we will be able to relax the all-else equal simplification to prove
more general results about the long-run effect of the various rate
parameters. For mutualisms, our long-run weak-mutation ana-
lytical results do require the all-else equal assumption. We give
some numerical suggestion that they hold qualitatively when we
relax this assumption.

Antagonistic Symbioses
In this section, we study the evolutionary dynamics of popula-
tions interacting according to the antagonistic symbiosis game 1.
An appropriate measure of the relative success of population 1 in
a given population state is the proportion of (A,C ) and (B ,D)

matchings (favorable to population 1) minus the proportion of
(A,D) and (B ,C ) matchings (unfavorable to population 1). If
this quantity is positive, then population 1 has a larger average
payoff than population 2 in that state.

Strong Mutation, Strong Selection. We begin by numerically study-
ing the short- and long-run dynamics, when mutations are not
very rare and selection is not very weak.

We first set the two populations’ sizes, selection strengths, and
mutation rates to be equal (N1 =N2, w1 =w2, µ1 =µ2) and vary
their relative generation times g1 and g2. For the parameter val-
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Fig. 1. Evolutionary dynamics of antagonistic symbioses, when population 1 evolves slower than population 2 owing to (A) a longer generation time, (B)
a lower mutation rate, (C) weaker selection, and (D) a smaller population size. Each panel shows the numerically computed dynamics, assuming that both
populations coincide in their evolutionary rate parameters except for the parameter explicitly varied. A–D, Upper show, for each initial population state,
population 1’s relative success after 50 generations. Except when the populations differ only in their mutation rates, a short-run Red Queen effect operates
in all cases: As the blue area covers more than 50% of the square, population 1’s slower evolution leads to its typically being disfavored after 50 generations
for a larger fraction of initial population states. The short-run Red Queen effect is strongest for selection strength and population size. A–D, Lower show
population 1’s relative success after 50, 000 generations, by which time the starting configuration no longer influences the dynamics: The panels have a
uniform color. A strong long-run Red Queen effect is observed in all cases: Population 1’s slower evolution causes a larger fraction of long-run time to be
spent in states unfavorable to it. Baseline parameters are N1 = N2 = 50, w1 = w2 = 0.05, g1 = g2 = 1, µ1 =µ2 = 1, and "= 0.001. (A) g1 = 10; (B) µ1 = 0.1;
(C) w2 = 0.5; (D) N1 = 25, N2 = 250. A generation is N1 + N2 elementary time steps of the Moran process.

ues that we consider, we find a weak Red Queen effect in the
short run (Fig. 1A): When population 1 has a longer generation
time, the set of initial states from which, after 50 generations,
population 1 is on average more successful is greater than the set
of initial states for which the reverse is true. We find a more pro-
nounced Red Queen effect in the long run, when the dynamics
have become independent of where they started (Fig. 1A).

We then set the populations’ generation times equal (g1 = g2),
as well as their sizes (N1 =N2) and mutation rates (µ1 =µ2), and
allow their selection strengths w1 and w2 to vary. We now find
very strong Red Queen effects in both the short run and the long
run (Fig. 1C). We find similar Red Queen effects, especially in
the long run, when populations differ in their mutation rates (Fig.
1B) or in their sizes (Fig. 1D).

We have spoken loosely of the “short run” and “long run.”
Whereas 50 generations are certainly short run, the long run
should be more precisely defined as the time by which the dis-
tribution over population states is close to the stationary distri-
bution. In the language of Markov chains, this is known as the
“mixing time” of the dynamical process (51).

For small population sizes, the time evolution of the probabil-
ity distribution over states can feasibly be computed given any
starting point. SI Appendix, Fig. S6 shows that, in the antago-
nistic dynamics, for the parameter values used in Fig. 1 (with
small populations, of size 50), we may speak of the long run as
being after 100–1,000 generations. For larger population sizes,
it is not computationally feasible to compute the time evolution
of the probability distribution over states, and we must resort to
approximate analytical arguments.

We give such arguments in SI Appendix, section S3. Here,
we summarize their conclusions. We assume that mutations are
infrequent. When selection acts weakly in at least one of the pop-
ulations l (Nlwl < 1), the mixing time is approximately propor-
tional to 1/("µl). When selection acts strongly in both popula-
tions (N1w1,N2w2 > 1), then the mixing time is proportional to
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1/minl(Nlwl"µl). In this latter case, the mixing time decreases
with increasing population size, owing to a higher substitution
rate of beneficial mutations (which drive the arms-race dynam-
ics) in larger populations (SI Appendix, section S5.2). That the
mixing time does not increase rapidly with increasing population
size, and in fact decreases in the case of strong selection, indi-
cates that the stationary distribution will be relevant on realistic
timescales.

Weak Mutation. To gain a greater understanding of the above
results, we study the analytically tractable case of rare mutations,
" ! 0, using the methodology developed in ref. 46.

In this “weak-mutation limit,” the long-run stationary dis-
tribution collapses to a distribution over just the four pure
states, ���=

⇥
�(A,C),�(A,D),�(B,C),�(B,D)

⇤
. The relative suc-

cess of population 1, as defined above, then simplifies to�
�(A,C) +�(B,D)

�
�
�
�(A,D) +�(B,C)

�
, which, by symmetry of

the underlying states [�(A,C) =�(B,D), �(A,D) =�(B,C)], is pro-
portional to �(A,C) ��(A,D).

First, we examine the influence of generation time and muta-
tion rate on the success of population 1. We fix N1 =N2 =

N and w1 =w2 =w and write �=(1 + w)

N�1 > 1. Define
r1 =(µ1/g1)/(µ2/g2), the relative arrival rate of mutations in
population 1. The stationary distribution of the evolutionary pro-
cess, ���=

⇥
�(A,C),�(A,D),�(B,C),�(B,D)

⇤
, is then

��� =


1 + �r1
r1 + �

, 1, 1,
1 + �r1
r1 + �

��
¯�, [4]

where ¯� ensures that ��� sums to one (calculations in SI Appendix,
section S5.4). The relative success of population 1 is

�(A,C) � �(A,D) =
(� � 1)(r1 � 1)

(r1 + �)¯�
, [5]

which is increasing in r1. Because both a higher mutation rate
and a shorter generation time for population 1 increase r1, they
are both associated with greater evolutionary success in Red
Queen interactions. In fact, this result can be shown to hold far
more generally: It does not require that the population sizes and
selection strengths be set equal for the two populations and holds
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Fig. 2. Evolutionary dynamics of mutualisms when k is small, and population 1 evolves slower than population 2 owing to (A) a longer generation time,
(B) a lower mutation rate, (C) weaker selection, and (D) a smaller population size. Population parameters are the same as in Fig. 1, and k = 1/2. A short-run
Red Queen effect is observed for generation time, selection strength (especially), and population size. Relative differences in mutation rate again have no
discernible short-run effect. In the long run, differences in mutation rate and generation time again have no effect, whereas a Red King effect is found for
selection strength and population size.

for all standard evolutionary dynamics, including those exhibiting
frequency dependence (39, 40, 47, 52, 53) (proof in SI Appendix,
section S5.3).

A larger population size and a stronger selection strength
of population 1 can also be shown to increase its relative suc-
cess, �(A,C) � �(A,D), although the results cannot be written as
neatly as in Eq. 4 (SI Appendix, sections S5.1 and S5.2). Again,
these results hold more generally: For many evolutionary pro-
cesses, including the Moran and Wright–Fisher processes, they
hold even if the generation times, mutation rates, and selection
strengths are not set equal for the two populations.

Mutualistic Symbioses
In this section, we study the evolutionary dynamics of popula-
tions interacting according to the mutualism game 2. We take
the measure of relative success of population 1 in a given pop-
ulation state to be the proportion of (A,C ) matchings in that
state minus the proportion of (B ,D) matchings. If this quantity
is positive, then population 1 has a larger average payoff than
population 2 in that state.

Strong Mutation, Strong Selection. As we did for the antagonistic
game in the previous section, we begin by numerically studying
the short- and long-run dynamics, when mutations are not rare
and selection is not weak. We consider small and large values of
k , specifically k =1/2 and k =3/2.

When k =1/2, and we set the populations’ sizes, selection
strengths, and mutation rates equal (N1 =N2, w1 =w2, µ1 =µ2)
and vary their relative generation times g1 and g2, we find a weak
Red Queen effect in the short run for the parameter values we
consider: When population 1 has a longer generation time, the
set of initial states from which, after 50 generations, the pro-
portion of (A,C ) matchings is expected to be less than that of
(B ,D) matchings is larger than the set of initial states for which
the reverse is true (Fig. 2A). This is similar to B&L’s (26) general
replicator-dynamics result for k < 1.

In the long run, however, the average proportion of (A,C )

matchings relative to (B ,D) matchings becomes independent of
where the dynamics started; this effect is clear after 50,000 gener-
ations (Fig. 2 A–D, Lower). In this case, we find that differences
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in generation time between the two populations have almost no
effect on their relative success (Fig. 2A).

We also find that differences in the populations’ relative muta-
tion rates µ1 and µ2, when their other rate parameters are equal,
confer almost no advantage to either population, in both the
short run and the long run (Fig. 2B).

If, instead, we allow the populations’ selection strengths w1

and w2 to differ, setting their other rate parameters equal, we
observe stronger effects. Now, there is a pronounced Red Queen
effect in the short run, which reverses to a strong Red King effect
in the long run (Fig. 2C). A similar result is found when the pop-
ulations have equal rate parameters except for their population
sizes: When population 1 is smaller (so that it evolves slower—
see SI Appendix, section S5.2 for a precise statement of this),
it suffers a small disadvantage in the short run (a Red Queen
effect), but an advantage in the long run (a Red King effect)
(Fig. 2D).

When k =3/2, these results reverse (Fig. 3). We now find a
Red King effect in the short run, which is largest when rate
differences between the populations derive from differences in
selection strength (Fig. 3C). This is similar to B&L’s (26) general
replicator-dynamics result for k > 1, and indeed, Fig. 3 A, B, and
D, Upper and SI Appendix, Fig. S1 look very similar to B&L’s fig-
ure 2 (26). Again, generation time and mutation rate differences
have little effect on the long-run dynamics (Fig. 3 A and B). In
contrast, a strong Red Queen effect is found in the long run when
the populations differ in their selection strengths (Fig. 3C), with
population size having a weak Red Queen effect in the long run
(Fig. 3D).

To summarize, when mutation rates are not very small, we
find, for k =1/2, a Red Queen effect in the short run and a Red
King effect in the long run; for k =3/2, we find a Red King effect
in the short run and a Red Queen effect in the long run. The
long-run effects are driven by selection strengths and population
sizes; generation times and mutation rates have little effect on
the long-run dynamics.

Again, the appropriate definition of the long run is how long
it takes for the dynamics to get close to their stationary distri-
bution. This can be computed exactly for small population sizes.
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Fig. 3. Evolutionary dynamics of mutualisms when k is large and population 1 evolves slower than population 2 owing to (A) a longer generation time,
(B) a lower mutation rate, (C) weaker selection, and (D) a smaller population size. Population parameters are the same as in Fig. 2, but now k = 3/2. A
short-run Red King effect is observed for generation time, selection strength, and population size, with that for selection strength most pronounced. These
short-run Red King effects are analogous to those found by B&L (26). Relative differences in mutation rate have no discernible short-run effect. In the long
run, differences in mutation rate and generation time have no effect on the relative success of the populations, whereas a Red Queen effect is found for
selection strength and population size.

In the mutualism game 2, for the parameter values we have con-
sidered in Figs. 2 and 3, SI Appendix, Fig. S6 suggests that the
long run could be considered any time after about 1,000–10,000
generations.

For larger population sizes, such computations are not feasi-
ble, and we must again resort to approximate analytical argu-
ments. These are detailed in SI Appendix, section S3. We sum-
marize their conclusions here. Mutations are assumed to be
infrequent. When selection acts weakly in both populations
(N1w1,N2w2 < 1), the mixing time is approximately proportional
to 1/minl("µl). When selection acts strongly in at least one pop-
ulation l , then the mixing time is approximately proportional to
e

Nlwl /(Nlwl"µ).
The exponential term in this last expression is a result of

requiring substitutions against selection for the process to mix.
It means that the mixing time will be prohibitively long when
populations are large and selection acts strongly in them [mix-
ing times increasing exponentially with population size have also
been observed in single-population coordination games (54, 55),
where transitions between equilibria require evolution against
selection too]. In these cases, our stationary distributions will not
be empirically relevant; evolution over realistic timescales will
involve movement to an equilibrium and then stasis there, as in
B&L’s (26) analysis. When populations are not large and selec-
tion is not very strong, then the stationary distribution will still be
reached on a realistic timescale. This will also be true when the
effective sizes of the populations are not large (56) or when the
populations are subdivided into small subpopulations (57, 58),
properties that hold for many mutualistic symbionts (59–61).

Weak Mutation. Again, analytical results can be obtained for the
long-run dynamics in the weak-mutation limit ("! 0), using the
methodology developed in ref. 46. In this limit, the station-
ary distribution collapses to a distribution over just the pure
states, ���=

⇥
�(A,C),�(A,D),�(B,C),�(B,D)

⇤
, and population 1’s

relative success, as defined above, simplifies to the quantity
�(A,C) � �(B,D).

We first examine the influence of generation time and
mutation rate. Setting N1 =N2 =N and w1 =w2 =w , but not
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specifying k , g1, g2, µ1, or µ2, the stationary distribution of the
evolutionary process is

��� =

"
1,

✓
1

1 + w

◆N�1

,

✓
1 + kw

1 + 2w

◆N�1

, 1

#,
¯�, [6]

where ¯� ensures that ��� sums to one (calculations in SI Appendix,
section S6.1). As expected, most time in the long run is spent in
the two coordination states (A,C ) and (B ,D), because w > 0

and 0  k < 2. Less intuitively, for small values of k (< 1/[1 +

w ]), more time is spent in the worse noncoordination state
(A,D) than in the better noncoordination state (B ,C ).

Similar to the numerical results we obtained for the case where
mutations are not very rare, neither the generation times nor the
relative mutation rates of the two populations have any influence
on the stationary distribution ��� in the weak-mutation limit: If
populations 1 and 2 are of the same size, and if natural selec-
tion acts equally efficiently in them, then they will be equally suc-
cessful in the long run, no matter their relative generation times
or mutation rates. This weak-mutation result in fact holds for
all standard evolutionary processes, including those exhibiting
within-population frequency dependence, such as the dynamics
that govern Müllerian mimicry (SI Appendix, section S6.1).

It turns out (mathematical details in SI Appendix, section S6.1)
that transitions against selection play an important role in this
weak-mutation result. For example, whereas a higher relative
mutation rate (or shorter generation time) in population 1 ren-
ders the transition from (A,D) to (B ,D) more likely than that
from (A,D) to (A,C ), they also make the reverse transition,
from (B ,D) to (A,D), more likely than that from (A,C ) to
(A,D). Because of the symmetry of the fitness changes in these
two sets of transitions, these mutation effects (and, similarly, gen-
eration effects) cancel out exactly. In words, with a higher muta-
tion rate, population 1 is typically the one that evolves to a coor-
dination equilibrium (in the direction of selection), but it is also
typically the one that evolves back out of it (against the direction
of selection).

Numerical calculations suggest that this weak-mutation result
is broadly robust to inequalities in population sizes and selection
strengths (SI Appendix, Fig. S10 C and D).

The directional effects of selection strength and population
size limit are more subtle. For selection strength, we equate
population 1 and 2’s sizes at N and fix population 2’s selection
strength at w2 =w . Then, if N is sufficiently large, and popula-
tion 1 has a slightly higher selection strength than population 2,
population 1 is less successful when k < 1/(1+w) and more suc-
cessful when k > 1/(1+w) (proofs in SI Appendix, section S6.3).
Numerical calculations suggest that the “sufficiently large” popu-
lation size is not very large: Results for N =100 agree with those
above (SI Appendix, Fig. S10A).

The results are similar if we equate the selection strengths
in the two populations at w and set population 1’s size slightly
higher than that of population 2: Population 1 is less successful
when k < 1/(1 + w) and more successful when k > 1/(1 + w)

(proofs in SI Appendix, section S6.4). Again, numerical calcula-
tions suggest that these results are robust to inequality in muta-
tion rates and generation times and larger differences in the two
populations’ sizes when both are sufficiently large (SI Appendix,
Fig. S10 B, E, and F).

Intuition for these results can be gained by noting that any
switch from one coordination state to the other involves two tran-
sitions: one transition out of the original equilibrium (against
the direction of selection) and a subsequent transition into the
new equilibrium state (in the direction of selection). Whether
weaker selection (or a smaller population size) favors population
1 depends on which nonequilibrium state is more often passed
during these two transitions. This is driven predominantly by the
relative probabilities of the transitions against selection, because

these probabilities are much more sensitive to population size,
selection strength, and the payoffs involved.

Of the transitions against selection, transitions to (B ,C )

always involve the fixation of mutants of payoff k in populations
of payoff 2, whereas transitions to (A,D) always involve the fix-
ation of mutants of payoff 0 in populations of payoff 1.

Therefore, when k is large, the passed nonequilibrium state
is usually (B ,C ) [indeed, note that (B ,C ) has a higher weight
than (A,D) in the stationary distribution 6 precisely when k >
1/(1 + w)]. Focusing therefore on transitions through (B ,C ), if
population 1 experiences weaker selection (or is of smaller size),
the transition from (A,C ) to (B ,C ) occurs more easily than that
from (B ,D) to (B ,C ). So we expect more time to be spent in
population 1’s disfavored equilibrium state (B ,D) in the long
run—a Red Queen effect.

Contrariwise, if k is small, the passed nonequilibrium state is
usually (A,D). So, if selection is less effective in population 1,
more time is spent in its favored equilibrium state (A,C )—a
Red King effect—because transitions from this state to (A,D),
involving fixation of a selected-against mutant in population 2,
are relatively very rare.

In contrast to the minor influence of mutation rates and gen-
eration times in the long run, the effects of population size
and selection strength are very large. For example, when N1 =

N2 = 100 and w2 =0.15, a small increase in w1 from 0.15 to
0.16 increases �(A,C)/�(B,D) (another measure of population
1’s relative success, useful for extreme values) by 35% when
k =1.5 and decreases it by 30% when k = 0.8 (SI Appendix,
Fig. S10A). Changes of similar magnitude are seen when holding
w1 = w2 = 0.15 and increasing N1 from 100 to 105 (SI Appendix,
Fig. S10B). These effects, caused by small changes in population
size and selection strength, are larger than those caused by vary-
ing relative mutation rates and generation times across 10 orders
of magnitude (SI Appendix, Fig. S10 C and D). Larger changes in
population size and selection strength have enormous effects on
the long-run relative success of the two populations (SI Appendix,
Fig. S10 E and F).

Weak Selection. Returning to the effect of mutation rate and gen-
eration time, we have shown analytically that these have no effect
on the long-run stationary distribution in the weak-mutation
limit. To analytically study the long-run effect of mutation rates
when they need not be negligibly small, we make use of another
recent advance in evolutionary game theory (47). We impose
that the population sizes N , selection strengths w , and gener-
ation times g of the two populations be equal. Their mutation
rates, "µ1 and "µ2, need not be equal, and we do not impose
that " ! 0. Instead, we assume w ⌧ 1; that is, we assume that
selection operates very weakly in the two populations. Long-run
Red King and Queen effects consistent with those we have found
above for selection strength and population size would have that
slower evolution (via a smaller mutation rate) is favored when
k < 1 and disfavored when k > 1 [the threshold for k that was
previously relevant, 1/(1 + w), tends to 1 as w ! 0].

Unlike in the weak-mutation case, the stationary distribution
of this process places nonnegligible weight on every possible
population state, including those where one or both popula-
tions are polymorphic. Again, the relative success of popula-
tion 1 depends on the long-run proportion of (A,C ) and (B ,D)

matchings, which, following the notation in ref. 47, we denote by
hpAqC i and hpBqDi, respectively. Using equation 29 in ref. 47,
we calculate the long-run advantage to population 1 in the weak-
selection limit,

hpAqC i � hpBqDi = A(1� k)"(µ2 � µ1), [7]

where A=wN (N � 1)/[8(1+ [N � 1]"µ1)(1+ [N � 1]"µ2)]> 0

(calculations in SI Appendix, section S7). So, when k < 1, popula-
tion 1 does better when it evolves slower (µ1 <µ2); when k > 1,

Veller et al. PNAS Early Edition | 7 of 10



population 1 does better when it evolves faster (µ1 >µ2). We
have thus recovered long-run Red King and Queen effects of
mutation consistent with those for selection strength and popula-
tion size. When mutation rates are small ("⌧ 1), the two popu-
lations do approximately equally well, consistent with our weak-
mutation results above.

Discussion
We have placed the evolution of symbioses, both antagonistic
and mutualistic, into a simple finite-population model and stud-
ied the effect of parameters that influence the rate of evolution
of the participating populations on those populations’ relative
success.

Among these “rate parameters,” mutation rate and genera-
tion time are perhaps the most responsive (34, 62–68). Selection
strengths, although also a clear determinant of evolutionary rate,
seem more of a fixed property of an interaction, but could change
over time if one population reduces its dependence on the inter-
action (3) or actively increases the dependence of its interactant
(69). Population size is the most complicated of the rate param-
eters, because changes in the relative success of interacting pop-
ulations (possibly driven by differences in their population sizes)
are expected to manifest themselves in subsequent changes in the
populations’ sizes (70).

It is important to realize that, although we have studied differ-
ences in the relative success of interacting populations caused
by different evolutionary rate parameters, our results do not
say anything directly about how the rate parameters themselves
should evolve. For example, it is conceivable that a slower gen-
eration time leads to greater success for a population (i.e., that
a Red King effect holds), but that a faster generation time is
selected for within that population. In this example, slow evo-
lution could be interpreted as a public good.

This has important implications for how results such as ours
and those of B&L (26) should be interpreted in studies of molecu-
lar evolution (e.g., ref. 71). Although generation times and muta-
tion rates determine the rate of nucleotide substitution at neu-
tral sites (37), were we to find that a slower generation time or a
lower mutation rate leads to greater success for a population in a
mutualism, this would not necessarily imply that species involved
in mutualisms should exhibit lower neutral substitution rates.

Examining the evolution of the rate parameters themselves
would require a more complicated model than the one we have
studied. In a population genetic setting, one could posit in each
population two distinct genetic loci: a “strategy locus,” the alle-
les at which determine which game strategies their bearers play,
and a “rate locus,” the alleles at which determine the value of a
rate parameter such as mutation rate. The evolutionary dynam-
ics would then inform how both the success of the populations
and their evolutionary rates evolve. One setting where we might
expect the evolutionary rate within a population to evolve to
increase that population’s relative success is if the interacting
populations are subdivided into many isolated symbioses (on
“islands”), between which migration occurs [this model is similar
to the “haystack model” considered by B&L (26)]. A rate param-
eter value that improves a subpopulation’s success on an island
causes that subpopulation to send out more migrants—who bear
the rate parameter value—to colonize other islands. Thus, in sym-
bioses with a high degree of population structure, we might expect
the results we have found in this paper to be informative of how
evolutionary rate will evolve within populations.

In antagonistic symbioses, we have shown that faster evolution
through any of the rate parameters leads to greater evolutionary
success in our model, in both the short run and the long run—a
clear Red Queen effect. Mutation rate and generation time play
similar roles in determining the long-run outcome of antagonistic
interactions when mutations are infrequent. As far as our results
have implications for evolution within populations, this suggests

that one population might compensate for a longer generation
time by evolving an elevated mutation rate. Consistent with this,
bacterial strains subjected to antagonistic interactions with bac-
teriophages often exhibit much higher mutation rates than con-
trol strains (72). A similar explanation has been suggested for
the finding that, in mammals, generation time is positively cor-
related with the rate of intrachromosomal recombination (73),
which, like mutation, is a generator of variation (1). With partic-
ular respect to selection strength, the “life–dinner principle” (3)
holds in our model: In an antagonistic interaction, the popula-
tion for whom the interaction matters more (the rabbit, not the
fox) is evolutionarily more successful.

In mutualistic symbioses, we have uncovered an important
influence of evolutionary timescale on the relative success of
interacting populations, with results in the short run and long
run often being in opposition. In the short run, the stochastic
evolutionary dynamics that we have studied are similar to the
deterministic dynamics studied by B&L (26), and our short-run
results replicate theirs: We find a short-run Red Queen effect
when k is small in game 2 and a short-run Red King effect when k

is large. Our analysis extends B&L’s (26) by allowing us to deter-
mine which of the biological rate parameters drive these effects:
to wit, generation times, population sizes, and (especially) selec-
tion strengths.

In the long run, we find a Red King effect when k is small
and a Red Queen effect when k is large, contrary to the short-
run results. Among the rate parameters that could drive these
long-run results, mutation rate and generation time in fact have
little to no effect, unless mutation is frequent. This is a sur-
prising result, given that mutation rate and generation time are
perhaps the most prominent determinants of evolutionary rate.
This result depends on the possibility of evolution against selec-
tion, always present in stochastic evolutionary dynamics. It could
not be discovered using deterministic evolutionary dynamics,
because in such dynamics, evolution always proceeds in the direc-
tion of selection. Deterministic dynamics admit little notion of
the strength of selection: Selection is either “positive” or “nega-
tive.” In reality, selection is a continuum—as the Red Queen said
to Alice, “I could show you hills, in comparison with which you’d
call that a valley” (ref. 4, p. 37)—and deleterious mutations do
sometimes fix because of random drift (37, 74–77).

The long-run Red King and Queen effects in mutualisms, for
small k and large k , respectively, instead operate predominantly
in our model through the efficiency of selection (which increases
with selection strength and population size), not the generation
of variation (mutation and generation rates).

Which results, short-run or long-run, are relevant to a spe-
cific case depends on which evolutionary timescale is appropri-
ate. Again, this question is treated quantitatively in SI Appendix,
section S3. In mutualisms, the long-run dynamics are character-
ized by transitions between the equilibria—involving evolution
first against, and then with, selection—so the applicability of our
long-run results depends on the timescale of these transitions.
When both populations are very large and under strong selec-
tion, the time it takes for a transition between equilibria to occur
can be so long as to be empirically irrelevant; here, the short-run
dynamics are of more interest. When the populations have small
effective population sizes (owing to small census size or popu-
lation structure, for example) or selection acts weakly in them,
equilibrium transitions can be frequent, and the long-run dynam-
ics apply.

In our analysis, we have made several modeling decisions and
simplifying assumptions, described below.

We have assumed that interactions are pairwise, for simplic-
ity. The consideration of multiplayer games (2, 78–83) is a desir-
able extension and has been shown to influence the outcome
of mutualism games in infinite populations (80) and antagonism
and Snowdrift games in finite populations (2).
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In deriving our main analytical results, we assumed that muta-
tions are infrequent. This is a realistic assumption in many cases,
but not always. SI Appendix, Fig. S5 shows that mutation rates
in the two populations do not have to be exceedingly small for
our weak-mutation analytical results to be an excellent quanti-
tative match (46, 84, 85), and in SI Appendix, Figs. S2–S5 sug-
gest that, even for very large mutation rates, the long-run rela-
tive success of the populations qualitatively matches our weak-
mutation results in most cases. The only notable exceptions, all
for the mutualism game 2, are (i) for large k , when the popu-
lations have different selection strengths, a strong long-run Red
Queen effect for small mutation rates reverses to a weak Red
King effect when mutation rates are very large (SI Appendix, Figs.
S2C and S5C); (ii) when the populations have different muta-
tion rates and both their mutation rates are very large, then,
contrary to our weak-mutation result where differences in muta-
tion rates have no effect, we find a long-run Red King effect
for small k (SI Appendix, Figs. S3B and S5B) and a Red Queen
effect for large k (SI Appendix, Figs. S2B and S5C) (exception ii

is consistent with our weak-selection result, Eq. 7); and (iii) for
small k , generation time has a Red Queen effect for intermedi-
ate and large mutation rates (SI Appendix, Figs. S3A and S5B).
A very recent methodological advance in stochastic evolution-
ary dynamics (86) suggests that tractable analysis of the station-
ary distribution outside the weak-mutation regime may soon be
possible.

In finite-population evolutionary game theory, game payoffs ⇡
must be translated to positive fitnesses f (40), with this transla-
tion calibrated by a strength of selection w . We have used the
commonly used linear translation f =1 + w⇡, but others are
also possible. The exponential translation f = exp(w⇡) has the
advantage that it guarantees fitnesses always to be positive, no
matter the range of game payoffs, and also sometimes allows for
neater characterization of long-run dynamics (87–90). Results
are expected to be similar for the two translations, and they are
identical in the weak-selection limit w ! 0. SI Appendix, Fig. S5
suggests that our results are essentially unchanged when we use
either translation.

The dynamics in our model, based on the Moran process, are
highly stylized, especially in their assumption of constant popu-
lation sizes. It would be interesting to study evolution in games
1 and 2, using more complicated intergenerational population
dynamics (91–93).

Finally, the games themselves are particular simplifications of
more complex interactions. One key simplification in games 1
and 2 is that strategies are discrete: A, B , C , D . This will be rel-
evant for many antagonistic symbioses; for example, it is prob-
ably a reasonable summary that a pathogen is either resistant
or not to a host’s defenses. For mutualisms, we have motivated
the discrete game 2 with examples that exhibit such discreteness,

such as division of labor and Müllerian mimicry. However, many
mutualisms are likely to involve continuous strategies: for exam-
ple, how much energy to expend on a cooperative task, as in the
degree to which an ant colony protects from herbivores the plant
that houses and feeds it (94) and in turn the energy the plant ded-
icates to housing and feeding the ants. For such cases, an alter-
native, continuous-strategy model specification is appropriate.

An attractive option is a simple modification of a Nash bar-
gaining game (95). Players 1 and 2 choose activity levels x and y .
If x + y > 1, then both receive zero payoff. If x + y  1, then
player 1 receives payoff ↵x + (1 � ↵)y , and player 2 receives
↵y + (1� ↵)x . ↵ 2 (0, 1) calibrates the degree to which players’
payoffs depend on their own actions. As long as x + y < 1, both
players’ payoffs increase if either player increases its activity, so
that the game is mutualistic. But when ↵ is small, each player
would prefer to have a lower activity than the other, whereas
when ↵ is large, each would prefer to have the larger activity.
In contrast to the discrete-strategy mutualism game, where there
were two discrete equilibria, here there is a continuous path of
equilibria (the line x + y = 1). In SI Appendix, section S8, we
study the coevolutionary dynamics of populations of player 1s
and 2s. The short-run dynamics in this game involve evolution
to the equilibrium line, whereas the long-run dynamics involve
drift-like movement along and around it.

In both the short and long runs, the faster-evolving popula-
tion is at an advantage when ↵ is large (a Red Queen effect;
SI Appendix, Fig. S11), but at a disadvantage when ↵ is small (a
Red King effect; SI Appendix, Fig. S12). The short-run effects are
driven by all rate parameters. But similar to what we found for the
discrete mutualism game, the long-run effects are driven predom-
inantly by selection strength and population size—differences
in mutation rate and generation time have little effect. This is
because selection strength and population size contribute dif-
ferentially here to a case of drift-induced selection: Stochastic
jumps off the equilibrium path return with an average directional
bias. Drift-induced selection is a newly recognized phenomenon
that has recently gained attention in the stochastic dynamics lit-
erature (96–98). It can be studied analytically using diffusion
approximations and separations of timescales (99). Such a study
in the context of continuous-strategy mutualisms would be an
important extension of our preliminary analysis.

In this vein, studying the finite-population dynamics of other
games in which slow evolution has been hypothesized to be ben-
eficial (100) would also be desirable.
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S1 Transition probabilities and time evolution of symbiotic

dynamics

Here, we describe our full dynamical model of symbiosis evolution, calculate the probabil-

ities of transitions from state to state, and use these to calculate the time evolution of the

probability distribution over population states, given some initial distribution.

We suppose that the symbiosis is characterized by pairwise interactions according to

the following asymmetric game:

Player 2

C D

Player 1 A ↵

AC

,�

AC

↵

AD

,�

AD

B ↵

BC

,�

BC

↵

BD

,�

BD

(1)

Populations 1 and 2 (composed of player 1s and player 2s respectively) are of sizes N
1

and N

2

, and have relative generation times g

1

and g

2

. Each time-step, each individual

receives its average payo↵ from interacting with a random member of the other population

(each equally likely). If, in a given time-step, i members of population 1 play A, and j

members of population 2 play C, then we may describe the population state in that time-

step simply as (i, j), and the average payo↵ to individuals playing strategies A, B, C, and

D are:

⇡

A

(i, j) =
j

N

2
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+
N

2

� j
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If an individual in population l receives average payo↵ ⇡, this translates to a positive

fitness f via f = 1+w

l

⇡, so that w
1

, w

2

> 0 calibrate the strength of selection in the two

populations. The fitnesses of individuals playing the various strategies in population state

(i, j) are f

A

(i, j) = 1+w

1

⇡

A

(i, j), f
B

(i, j) = 1+w

1

⇡

B

(i, j), f
C

(i, j) = 1+w

2

⇡

C

(i, j), and

f

D

(i, j) = 1 + w

2

⇡

D

(i, j)

In each elementary time step, exactly one birth-death event occurs between the two

populations. With probability N1/g1

N1/g1+N2/g2
this is in population 1, and with probability

N2/g2

N1/g1+N2/g2
it is in population 2. If a birth-death event occurs in population l in a given

time-step, then one individual in population l is chosen to reproduce, with probability

proportional to fitness, and one individual is chosen to die, with each equally likely. The

2



same individual can be chosen to reproduce and die. The reproducing individual produces

an o↵spring, which replaces the individual chosen to die. With probability 1 � "µ

l

, the

o↵spring inherits the strategy its parent plays, and with probability "µ

l

the o↵spring plays

the other strategy instead (it ‘mutates’).

With populations of sizeN
1

andN

2

, there are n = (N
1

+1)(N
2

+1) possible populations

states (i, j), which can be given some (arbitrary) enumeration 1, 2, . . . , n. Let P
(i,j)!(i

0

,j

0

)

be the probability that the system moves in one time-step from state (i, j) to step (i0, j0).

These one-step transition probabilities are:
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with P

(i,j)!(i,j)

= 1 � P

(i,j)!(i+1,j)

� P

(i,j)!(i�1,j)

� P

(i,j)!(i,j+1)

� P

(i,j)!(i,j�1)

, and

P

(i,j)!(i

0

,j

0

)

= 0 for all other states (i0, j0). We refer to the n ⇥ n matrix P that contains

these one-step transition probabilities as the transition matrix of the complete Markov

chain.

Given some initial probability distribution over the set of population states, v

0 =⇣
v

0

(i,j)

⌘
, we can compute the distribution over population states after t time-steps by

taking t successive powers of the transition matrix P :

v

t = v

0

P

t

. (2)

Note that v

t is a stochastic vector of length n, respecting the particular enumeration

1, 2, . . . , n chosen for the n population states.

The stationary distribution, v = lim
t!1

v

t, is the unique stochastic vector that solves,

for each state (i, j),

v

(i,j)

=
X

(i

0

,j

0

)

v

(i

0

,j

0

)

P

(i

0

,j

0

)!(i,j)

. (3)

S1.1 Mutualistic symbioses

The payo↵ matrix of the mutualism game [game (2) in the Main Text] is

Player 2

C D

Player 1 A 2, 1 0, 0

B k, k 1, 2

(4)

3



Among the two coordination matchings, (A,C) and (B,D), population 1 prefers (A,C)

and population 2 prefers (B,D). The other matchings give the members of populations

1 and 2 equal payo↵. Therefore, given a population state (i, j), a measure of the success

of population 1 in that state is simply the average proportion of (A,C) matchings in that

state minus the average proportion of (B,D) matchings: ij

N1N2
� (N1�i)(N2�j)

N1N2
. Given any

distribution over population states p, we may calculate the expected value of population

1’s success,
P

(i,j)

p

(i,j)

·
⇣

ij

N1N2
� (N1�i)(N2�j)

N1N2

⌘
.

Therefore, given an initial distribution over population states, v0 =
⇣
v

0

(i,j)

⌘
, making

use of Eq. (2), the expected value of population 1’s relative success after t time-steps is:

X

(i,j)

v

t

(i,j)

·
✓

ij

N

1

N

2

� (N
1

� i)(N
2

� j)

N

1

N

2

◆
. (5)

This is the basis of Figs. 2 and 3 in the Main Text, and Figs. S1, S6B,C, and S5B,C,E,F in

this SI Appendix. For each possible starting point, these figures begin with a degenerate

initial distribution that is one at that point and zero elsewhere, and calculate according to

Eq. (5) the average relative success of population 1 after a short-run and long-run number

of time-steps. The figures display the results for all possible initial starting points.

S1.2 Antagonistic symbioses

The payo↵ matrix of the antagonism game [game (1) in the Main Text] is

Player 2

C D

Player 1 A 1, 0 0, 1

B 0, 1 1, 0

(6)

Among the four matchings, population 1 prefers (A,C) and (B,D) while population 2

prefers (A,D) and B,C). Therefore, given a population state (i, j), a measure of the

success of population 1 in that state is the average proportion of (A,C) and (B,D)

matchings in that state minus the average proportion of (A,D) and B,C) matchings:
ij+(N1�i)(N2�j)

N1N2
� i(N2�j)+(N1�i)j

N1N2
. Given any distribution over population states p, we may

calculate the expected value of population 1’s success,
P

(i,j)

p

(i,j)

·
⇣
ij+(N1�i)(N2�j)

N1N2
� i(N2�j)+(N1�i)j

N1N2

⌘
.

Given an initial distribution over population states, v

0 =
⇣
v

0

(i,j)

⌘
, making use of

Eq. (2), the expected value of population 1’s relative success after t time-steps is:

X

(i,j)

v

t

(i,j)

·
✓
ij + (N

1

� i)(N
2

� j)

N

1

N

2

� i(N
2

� j) + (N
1

� i)j

N

1

N

2

◆
. (7)

This is the basis of Fig. 1 in the Main Text, and S6A, and S5A,D here.
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S2 Numerical analysis of the complete Markov chain

The stochastic process for the complete Markov chain defined by Eq. (2) does not make

any restrictions on the evolutionary parameters. It applies for any choice of generation

times, mutation rates, strengths of selection, and population sizes. But computation of the

time evolution of the distribution over population states requires us to calculate powers

of a transition matrix of dimension n⇥ n, where n = (N
1

+ 1)(N
2

+ 1), and so analytical

results for arbitrary parameter values quickly become infeasible. However, provided that

the two populations are of moderate size, we can still use Eq. (2) to obtain exact numerical

results, which we report in what follows.

S2.1 Short-run dynamics versus long-run dynamics

For the complete Markov chain, we can distinguish two timescales. In the short run, the

fate of the two populations largely depends on the populations’ initial composition. For

example, when mutualistic symbioses start close to one of the two equilibria, (A,C) or

(B,D), they can be expected to further approach that equilibrium in the short run. But

as time goes by, mutations and random movements against the gradient of selection can

lead populations to leave one equilibrium, and to move near the other one. In the long

run, the process’s dependence on initial conditions disappears: as the transition matrix P

in Eq. (2) is primitive, the eventual success of a population is independent of where the

populations have started.

Figs. 1-3 in the Main Text, and Figs. S1, S6 show how di↵erences in generation times,

mutation rates, selection strength and population sizes a↵ect population 1’s success [as

measured by Eqs. (5) and (7)] for the two di↵erent timescales. In mutualistic symbioses

where k is large, we observe that populations with a longer generation time, lower selection

strength and smaller population size have an advantage in the short run (i.e., the respective

population is favored for a majority of initial conditions; see Main Text Fig. 2). In the

long run, however, di↵erences in generation time become largely irrelevant, and the weaker

strength of selection and the smaller population size turn out to put population 1 at a

disadvantage. These results are reversed when k is small (Main Text Fig. 3), in which

case weaker selection is a disadvantage in the short run, but an advantage in the long run.

In antagonistic symbioses, the e↵ect of the evolutionary parameters is unambiguous.

Here, the population with shorter generation time, higher mutation rate, higher selection

strength or larger population size is favored for all time scales.

S2.2 Robustness of results with respect to our modeling assumptions

In the Main Text, we predominantly considered in our long-run analysis the case where

mutations are rare (i.e., where the parameter " is very small). In addition, we assumed

the fitness of an individual to be a linear function of its expected payo↵, though other

functions are also admissible. To show that these assumptions are not responsible for our
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Figure S1: Mutualism dynamics when k = 3/2, and population 1 has (A) a longer generation time than
population 2, (B) an equal generation time to population 2’s, (C) a shorter generation time than population
2. For comparison with Fig. 2 in Bergstrom and Lachmann [1]. Each panel shows the numerically computed
dynamics, assuming that both populations coincide in their other evolutionary parameters. The upper
panels show population 1’s success, as measured by Eq. (5), after 50 generations for every possible initial
population (i.e., for each point in the squared state space). We observe a Red King e↵ect: when population
1 has a longer generation time, the red area covers more than 50% of the square; the reverse is true
when population 1 has a shorter generation time. These short-run results are similar to Bergstrom and
Lachmann’s, and indeed, the upper panels of this figure closely resemble their Fig. 2. The lower panels
show the success of population 1 after 50,000 generations. By this time, selection-mutation equilibrium
has been reached, so that the starting point no longer influences the dynamics: all lower panels have a
uniform color. The populations are equally successful in the long run, no matter their relative generation
times. Parameters: k = 3/2, g1 = g2 = 1, N1 = N2 = 50, w1 = w2 = 0.05, g1 = g2 = 1, µ1 = µ2 = 1, and
" = 0.001. (A) g1 = 10; (C) g2 = 10. A ‘generation’ is defined as N1 +N2 elementary updating events of
the Moran process.

qualitative results, we have calculated the invariant distribution of the complete Markov

chain for various values of " (Figs. S2–S4), and using an exponential fitness function instead

of the linear one (Fig. S5).

Figs. S2–S4 visualize the invariant distribution of the Markov chain for three di↵erent

values of the baseline mutation rate, varying the parameter " from " = 0.0001 (top panels)

to " = 0.01 (bottom panels). When mutations are rare, the two populations are almost

always situated at a boundary of the state space, and the states at the four corners are

most abundant (as indicated by the red color). That is, in this regime, the two populations

are usually monomorphic. Occasionally, a mutation introduces a new strategy into one

of the two populations; this mutation typically goes extinct or fixes in that population

before the next mutation occurs in either population. In this case, the weak-mutation

methodology (as introduced in detail in Section S4) provides an excellent approximation

of the dynamics of the complete Markov chain. We note that for mutualistic symbioses,

the value of k in the payo↵ matrix controls the path that leads from one equilibrium to
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Figure S2: E↵ect of baseline mutation rate on the long-run abundance of strategies in mutualistic
symbioses with k = 3/2. All panels show how abundant each population state is in the long run, according
to the invariant distribution of the complete Markov chain. The numbers in each quadrant correspond
to the fraction of time the respective quadrant is visited. Increases in the baseline mutation rate do not
qualitatively change the weak-mutation conclusions for this game, except that di↵erences in generation
time and mutation rates lead to weak Red Queen e↵ect [(A) and (B)]. With respect to di↵erences in
selection strength we find that a strong Red Queen e↵ect for small mutation rates can reverse to a weak
Red King e↵ect when mutation rates are very large [(C), bottom panel]. For better visibility, we have
increased the baseline strength of selection compared to the previous figures: w1=w2=0.2 [and w1=0.05,
w2=0.5 in (C)]. All other parameters are the same as before.
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Figure S3: E↵ect of baseline mutation rate on the long-run abundance of strategies in mutualistic
symbioses with k = 1/2. As in Fig. S2, the figure illustrates the invariant distribution of the complete
Markov chain. Di↵erences in selection strength and population size lead to a comparably strong Red King
e↵ect, whereas di↵erences in mutation rates yield a weak Red King e↵ect. Di↵erences in generation time
can result in a notable Red Queen e↵ect. All parameters are the same as in the previous figure, except k.
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Figure S4: E↵ect of baseline mutation rate on the long-run abundance of strategies in antagonistic
symbioses. In all panels, the invariant distribution puts less weight on states that are beneficial for
population 1, i.e., states close to the (A,C) and (B,D) corners. This is as expected under Red Queen
dynamics, as population 1 has a larger generation time (A), a lower mutation rate (B), weaker selection
(C), or a smaller population size (D). All evolutionary parameters are the same as in Figs. S2 and S3.

another. For k = 3/2, transitions from (A,C) to (B,D) and back typically pass through the

non-coordination state (B,C) (Fig. S2), whereas for k = 1/2, these transitions typically

pass through the other non-coordination state (A,D) (Fig. S3).

As the mutation parameter " increases, states in the interior of the state space occur

more often, and the weak-mutation approximation is no longer an excellent quantitative

match. Nevertheless, Figs. S2–S4 indicate that the qualitative predictions from the weak-

mutation case are largely robust to changes in ", in the sense that populations that are

favored under the weak-mutation regime also tend to be favored as the baseline mutation

rate is increased.

Similarly, we observe only a small quantitative change, and no qualitative change,

when we assume that the fitness of an individual is defined as f = exp(w⇡), instead of the

linear specification f = 1 + w · ⇡ used in the Main Text (Fig. S5).

S3 Mixing time of the Markov chain

We have distinguished the behavior of the dynamics in the ‘short run’ and the ‘long run’.

Here, we provide a more precise picture of how many generations it takes to be in the

‘long run’, for the two games we have studied. Since the object of interest in the long-run

dynamics is the stationary distribution of the co-evolutionary process, the ‘long run’ should

be defined as the number of generations required for the distribution over population states

8



−1.0

0.0

1.0

10−6 10−4 10−2 100

R
e

la
tiv

e
 s

u
cc

e
ss

o
f 

p
o

p
u

la
tio

n
 1

Mutation rate ε

A Population 1 is
strongly favored

Population 1 is
strongly disfavored

L
in

e
a

r 
F

it
n

e
s

s

−1.0

0.0

1.0

10−6 10−4 10−2 100

R
e

la
tiv

e
 s

u
cc

e
ss

o
f 

p
o

p
u

la
tio

n
 1

Mutation rate ε

B

−1.0

0.0

1.0

10−6 10−4 10−2 100

R
e

la
tiv

e
 s

u
cc

e
ss

o
f 

p
o

p
u

la
tio

n
 1

Mutation rate ε

C

−1.0

0.0

1.0

10−6 10−4 10−2 100

R
e

la
tiv

e
 s

u
cc

e
ss

o
f 

p
o

p
u

la
tio

n
 1

Mutation rate ε

D Population 1 is
strongly favored

Population 1 is
strongly disfavored

E
x

p
o

n
e

n
ti

a
l 

F
it

n
e

s
s

−1.0

0.0

1.0

10−6 10−4 10−2 100

R
e

la
tiv

e
 s

u
cc

e
ss

o
f 

p
o

p
u

la
tio

n
 1

Mutation rate ε

E

−1.0

0.0

1.0

10−6 10−4 10−2 100

R
e

la
tiv

e
 s

u
cc

e
ss

o
f 

p
o

p
u

la
tio

n
 1

Mutation rate ε

F

Population 1 has
longer generation time

(g
1
=10g

2
)

Population 1 has
lower mutation rate

(10µ
1
=µ

2
)

Population 1 is
under weaker selection

(10w
1
=w

2
)

Population 1 is
of smaller size

(10N
1
=N

2
)

Antagonistic Symbioses Mutualistic Symbioses (k<1) Mutualistic Symbioses (k>1)

Figure S5: Impact of baseline mutation rate on the long-run relative success of population 1 in antagonis-
tic and mutualistic symbioses. For various parameter combinations and two di↵erent fitness specifications,
each panel shows the relative success of population 1, either using the payo↵ matrix for antagonistic sym-
bioses (A), for mutualistic symbioses with k = 1/2 (B), or for mutualistic symbioses with k = 3/2 (C).
We consider di↵erences in generation time (blue), mutation rate (red), the strength of selection (purple),
and population size (yellow). Dots show the numerically computed measures of population 1’s success, as
defined in (5) and (7) respectively. Dashed lines indicate the respective analytical solution in the limit of
rare mutations. In antagonistic symbioses, all four dimensions put population 1 at a disadvantage when
mutations become su�ciently rare. In mutualistic symbioses, only population size and selection strength
have a notable e↵ect; this e↵ect is positive for k = 1/2 and negative for k = 3/2. The analytical solution
provides a good approximation when "µ10�4. Parameters are the same as in Figs. S2–S4.

to be close to the stationary distribution, i.e., the ‘mixing time’ of the process.

For small populations, such as those for which we have displayed results in our various

figures, the time evolution of the probability distribution can be computed exactly, and

so we can directly see how rapidly it converges to being stationary (Fig. S6). We see that,

for the parameters we have studied in the Main Text figures and in Figs. S1-6 here (i.e.,

all with small population sizes, of order 50), the long run in antagonistic symbioses can be

thought to be after about 102-103 generations (Fig. S6A), while in mutualistic symbioses,

the long run is after about 103-104 generations (Fig. S6B,C).

For larger population sizes, direct computation of the time evolution of the evolutionary

process is not feasible, since it involves taking successive powers of very large matrices.

Moreover, numerical estimation of the mixing time is computationally very di�cult, and

in fact not feasible for our purposes, which are to see how the mixing time changes as we

vary key parameters like population size. Therefore, we resort to approximate analytical

arguments. We shall focus on the case where mutations are rare in both populations, so

that there are seldom several mutations segregating in the populations.
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Figure S6: Dynamics of mutualistic and antagonistic symbioses over time. For various parameter combi-
nations, the three plots show the relative success of population 1, using the payo↵ matrix for antagonistic
symbioses (A), for mutualistic symbioses with k = 1/2 (B), and for mutualistic symbioses with k = 3/2
(C). The panels illustrate the temporal e↵ects of di↵erences in generation time (blue), mutation rate (red),
the strength of selection (purple), and population sizes (yellow). The curves show the expected evolu-
tion of population 1’s relative success, as measured by the quantities (5) for mutualistic symbioses and
(7) for antagonistic symbioses. (A) In the long run, antagonistic symbioses disfavor the population with
longer generation time, lower mutation rate, weaker selection strength and smaller population size. (B)
In mutualistic symbioses with k = 1/2, the population with longer generation time and weaker selection
strength is disfavored in the intermediate run. However, in the long run, di↵erences in generation time
have a negligible impact on the success of a population, and the e↵ect of weaker selection becomes positive.
The other two dimensions have either no substantial e↵ect (di↵erences in mutation rates) or they have a
positive e↵ect as well (smaller population size). (C) When k = 3/2, the e↵ects of weaker selection and
smaller population size are reversed from the case of k = 1/2. Parameters are the same as in Figs. 1-3 in
the Main Text.

S3.1 Antagonistic symbioses

In antagonistic symbioses, when the mutation rate is small, the probability distribution

over time is influenced predominantly by those transitions from pure state to pure state

that are driven by positive selection (i.e., the ‘arms race’). Given some initial starting

point, the dynamics quickly move towards one of the pure states, after which the cycle

from pure state to pure state begins. Having moved to some new pure state, how quickly

the dynamics subsequently move to a new pure state is a random variable, but after

su�ciently many such transitions, we expect the proportion of time that has been spent

in each state to be close to that in the stationary distribution.

Therefore, the mixing time should be proportional to the time it takes to move from one

pure state to another. Starting from a pure state, this requires a mutation to substitute,

i.e., to arrive and fix, in the presently disfavored population. If the mutation rate is

low enough, then the rate-limiting part of this process is the arrival time of a mutation

destined to fix, and not the time it takes the mutation to fix (which occurs relatively

quickly). Mutations arrive in this population i at rate N
i

"µ

i

, and have selective advantage

w

i

(= [1 + w

i

(1)]� [1 + w

i

(0)]).

We may distinguish two cases: weak selection and strong selection. Weak selection

applies when N

i

w

i

< 1, in which case the fixation probability of beneficial mutations is

10



approximately 1/N
i

(i.e., they are nearly neutral). So, under weak selection, the substitu-

tion rate of beneficial mutations in population i is approximately N

i

"µ

i

/N

i

= "µ

i

, and so

the mixing time of the process will be approximately proportional to 1/min
i

("µ
i

). That

is, the mixing time should decrease as the mutation rates of the populations increase. This

approximation should be good as long as the waiting time for a mutation destined to fix

in a population, 1/"µ
i

, is significantly longer than the time it takes that mutation to fix,

which in the case of weak selection is about 2N
i

generations, on average. So, our above

analytical reasoning should be valid when is N
i

"µ

i

⌧ 1.

Strong selection applies when N

i

w

i

> 1, and if w

i

is small, the fixation probabil-

ity of beneficial mutations with selective advantage w

i

is approximately w

i

[3]. Under

strong selection, therefore, the substitution rate of beneficial mutations in population i

is approximately N

i

"µ

i

w

i

, and so the mixing time of the process will be proportional to

1/min
i

(N
i

"µ

i

w

i

). That is, the mixing time should decrease as the sizes, mutation rates,

and selection strengths of the populations increase. Again, this approximation will be

good if the waiting time for a mutation destined to fix in a population, here 1/(N
i

"µ

i

w

i

),

is much larger than the time it takes to fix, which is log(N
i

)/w
i

on average. So, we require

N

i

log(N
i

)"µ
i

⌧ 1.

S3.2 Mutualistic symbioses

For the evolutionary process to mix in the case of the mutualism game also requires that

each pure state be visited su�ciently often, the equilibria (A,C) and (B,D), as well as

the non-equilibria (A,D) and (B,C).

In the case of weak selection in both populations, N
1

w

1

, N

2

w

2

< 1, substitutions that

drive the population state from one pure state to the other occur at rate "µ
i

if in population

i, and so the mixing time of the process should be proportional to 1/min
i

("µ
i

), as in the

case of antagonistic symbioses with weak selection.

In the case of strong selection in at least one population, the mixing time of the evo-

lutionary process will be determined by how long it takes to substitute against selection

in that population (or both), i.e., to substitute out of equilibrium. This is because substi-

tutions into equilibrium, under positive selection, occur on a much faster timescale than

substitutions out of equilibrium when the mutation rates in the two directions are equal.

Another way of saying this is that the evolutionary process will spend most of the time in

equilibrium states.

For example, consider the substitution rate from the equilibrium state (A,C) to the

non-equilibrium state (A,D). This involves the arrival in an all-C population 2 of a D

mutant, and the subsequent fixation of the D mutant. D mutants arrive at rate N

2

"µ

2

.

They receive payo↵ 0 versus the incumbent strategy C’s payo↵ of 1, and are therefore at

relative selective disadvantage �w

2

/(1 + w

2

). Under strong selection, the fixation proba-

bility of such a mutant is approximately w2
1+w2

exp (�N

2

w2
1+w2

) [5], and so the substitution

rate from (A,C) to (A,D) is approximately N

2

"µ

2

w2
1+w2

exp
⇣
�N

2

w2
1+w2

⌘
. The substitu-
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tion rates from (A,C) to (B,C), from (B,D) to (B,C), and from (B,D) to (A,D) can be

estimated similarly as N
1

"µ

1

w1(2�k)

1+2w1
exp

⇣
�N

1

w1(2�k)

1+2w1

⌘
, N

2

"µ

2

w2(2�k)

1+2w2
exp

⇣
�N

2

w2(2�k)

1+2w2

⌘
,

and N

1

"µ

1

w1
1+w1

exp
⇣
�N

1

w1
1+w1

⌘
respectively.

The mixing time under strong selection should be proportional to the inverse of the

smallest of these four substitution rates. In each case, the properties of the mixing time

will be similar. Suppose, for instance, that the (A,C) to (A,D) substitution is slowest.

Then the mixing time of the process is proportional to

exp
⇣
N

2

w2
1+w2

⌘

N

2

w2
1+w2

"µ

2

.

For large N

2

w2
1+w2

, the exponential term in the numerator dominates, and the mixing

time becomes very large. In such cases, the stationary distribution is unlikely to be

approached on realistic timescales. For smaller values of N
2

w2
1+w2

, mixing will occur on

realistic timescales.

S4 Weak-mutation methodology

A general description of the weak-mutation methodology that we have employed can be

found in ref. [9]. The inclusion of generation rates is the only di↵erence between this and

the methodology set out there. Here, we shall give the method in full for the particular

case of 2-player, 2-strategy games that we have studied. We alter the notation a little from

the previous section, so that the payo↵ to a member of population i playing strategy X

who encounters a member of the other population playing strategy Y is denoted ⇡

i

(X,Y )

In the weak mutation limit, " ! 0, the evolutionary dynamics converge to an em-

bedded dynamics over just the pure states (in which each population is monomorphic).

These pure states can be labelled (A,C), (A,D), (B,C), and (B,D), which we shall, for

notational convenience, enumerate as pure states 1, 2, 3, and 4. We write ⇢

i

(x, y) for

the fixation probability of a single payo↵-x mutant in population i otherwise pure for a

payo↵-y strategy. In the Moran process that we have predominantly used, and which is

described in the previous section,

⇢

i

(x, y) =
1�

⇣
1+wix

1+wiy

⌘
�1

1�
⇣
1+wix

1+wiy

⌘
�Ni

.

The dynamics can also easily be extended to other processes. For example, it could be

that population i experiences a full-population Wright-Fisher update with probability

proportional to g

i

. In this case, applying to the above, we write s(x, y) = 1 � 1+wix

1+wiy
and

12



make use of Kimura’s di↵usion approximation

⇢

i

(x, y) =
1� e

�s(x,y)

1� e

�Nis(x,y)
.

In fact, we may make use of any process that satisfies the properties that, without muta-

tions, (a) absent strategies would remain absent, and (b) any strategy that is present but

not fixed has positive probability of increasing its representation in the next generation.

Given such a process, and therefore fixation probability functions ⇢

1

(·, ·) and ⇢

2

(·, ·) for

the two populations, the one-step transition probabilities in the embedded dynamics are:

P

1!2

=
N

2

µ

2

g

2

⇢

2

⇣
⇡

2

(D,A),⇡
2

(C,A)
⌘
; P

2!1

=
N

2

µ

2

g

2

⇢

2

⇣
⇡

2

(C,A),⇡
2

(D,A)
⌘
;

P

1!3

=
N

1

µ

1

g

1

⇢

1

⇣
⇡

1

(B,C),⇡
1

(A,C)
⌘
; P

3!1

=
N

1

µ

1

g

1

⇢

1

⇣
⇡

1

(A,C),⇡
1

(B,C)
⌘
;

P

2!4

=
N

1

µ

1

g

1

⇢

1

⇣
⇡

1

(B,D),⇡
1

(A,D)
⌘
; P

4!2

=
N

1

µ

1

g

1

⇢

1

⇣
⇡

1

(A,D),⇡
1

(B,D)
⌘
;

P

3!4

=
N

2

µ

2

g

2

⇢

2

⇣
⇡

2

(D,B),⇡
2

(C,B)
⌘
; P

4!3

=
N

2

µ

2

g

2

⇢

2

⇣
⇡

2

(C,B),⇡
2

(D,B)
⌘
;

P

1!4

= P

4!1

= P

2!3

= P

3!2

= 0;

P

1!1

= 1� P

1!2

� P

1!3

; P

2,2

= 1� P

2!1

� P

2!4

;

P

3!3

= 1� P

3!1

� P

3!4

; P

4!4

= 1� P

4!2

� P

4!3

.

The stationary distribution over the states, � = [�
1

,�

2

,�

3

,�

4

], is the stochastic vector

that solves

�

i

=
4X

j=1

�

j

P

j!i

for i = 1, 2, 3, 4.

S5 Antagonistic symbioses, weak-mutation limit

We consider here the antagonistic symbiosis payo↵ matrix (game [1] in the Main Text).

Imposing no restrictions on the rate parameters µ

1

, µ
2

, g
1

, g
2

, N
1

, N
2

, w
1

, and w

2

,

the stationary distribution, calculated according to the method described in the previous

section, is

� = [s
1

, 1, 1, s
1

]/�̄,

where �̄ = 2 + 2s
1

, and

s

1

=

N1µ1
g1

⇢

1

(1, 0) + N2µ2
g2

⇢

2

(0, 1)
N1µ1
g1

⇢

1

(0, 1) + N2µ2
g2

⇢

2

(1, 0)
.

The long-run success of population 1 relative to population 2 is proportional to �

1

��

4

=

(s
1

� 1)/�̄, which is increasing in s

1

.

Holding the rate parameters of population 2 constant, and focusing on the rate pa-
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rameters of population 1, a su�cient condition for the success of population 1 to increase

is therefore that the term N1µ1
g1

⇢

1

(1, 0) increases and the term N1µ1
g1

⇢

1

(0, 1) decreases. The

former term is the substitution rate of beneficial mutations in population 1, while the

latter is the substitution rate of deleterious mutations.

S5.1 Selection strength

A higher selection strength w

1

increases the fixation probability of beneficial mutations

⇢

1

(1, 0) and decreases the fixation probability of deleterious mutations ⇢
1

(0, 1) for any rea-

sonable evolutionary process (this is, after all, a plausible definition of selection strength),

but has no e↵ect on the arrival rate of these mutations. It therefore increases the sub-

stitution rate of beneficial mutations and decreases the substitution rate of deleterious

mutations, and therefore increases s
1

and thus the relative success of population 1.

S5.2 Population size

It follows that, if the evolutionary process is such that beneficial mutations have a faster

and deleterious mutations a slower substitution rate in larger populations (loosely, if nat-

ural selection acts more e�ciently in larger populations), then a larger population size for

population 1 is associated with a larger value of s
1

, i.e., greater long-run success. It is folk

knowledge that this property holds of the Wright-Fisher and Moran processes, though we

have been unable to find direct proofs in the literature, and so provide them here.

We should note that the usual statement of the result that beneficial mutations sub-

stitute at a higher rate in larger populations assumes that the beneficial mutations in

question confer a selective advantage s ⌧ 1/N
e

while N

e

s � 1, so that their fixation

probability in isolation can be approximated by s (in a haploid population) or 2s (in a

diploid population, where s is the haploid fitness contribution). It follows directly that

the substitution rate, µNs (haploid) or 4µNs (diploid), is increasing in N .

In contrast, the results below hold for all selection coe�cients s (including s < 0) and

population sizes N .

Moran: Suppose that mutants are of relative fitness r 6= 1. Then, if independent (no

interference of any sort), they arrive and fix at rate

µN

1� r

�1

1� r

�N

.

The proportional change of this quantity with respect to change in N is

@

@N

ln

✓
µN

1� 1/r

1� 1/rN

◆
=

1

N

� ln r

r

N � 1
sign

= sgn(r � 1)[rN � 1�N ln r]
sign

= sgn(r � 1)

where the second step is the result of multiplying through by N(rN � 1), which is positive

if r > 1 and negative if r < 1, and the last step follows from x > 1 + ln (x) for all x 6= 1.
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Therefore,

sgn


@

@N

✓
µN

1� r

�1

1� r

�N

◆�
= sgn(r � 1),

and so beneficial mutations (r > 1) arrive and fix at a higher rate in a larger population,

while detrimental mutations (r < 1) arrive and fix at a lower rate in a larger population.

Wright-Fisher (di↵usion approximation): For a Wright-Fisher process, in the di↵usion

limit, writing s = r � 1, the arrival-fixation rate varies with N according to

@

@N

✓
µN

1� e

�s

1� e

�Ns

◆
= µ

✓
1� e

�s

1� e

�Ns

�N

1� e

�s

(1� e

�Ns)2
se

�Ns

◆

sign

= sgn(s)
⇥
1� e

�Ns �Nse

�Ns

⇤
= sgn(s)


1� 1 +Ns

e

Ns

�
.

But ex > 1 + x for all x 6= 0, and so

sgn


@

@N

✓
µN

1� e

�s

1� e

�Ns

◆�
= sgn(s).

Though they do not bear on the problem considered in our Main Text, it is nonetheless

worth noting some implications of the above results. One major implication concerns the

rate at which populations of di↵erent size are expected to adapt; that is, the average rate

at which fitness increases in populations of di↵ering size. Again, the result below is folk

knowledge in population genetics, but we have been unable to find a general proof.

Assume that mutations arise at rate µ per replication, and su�ciently infrequently at

the population level that their fate, extinction or fixation, is almost always determined

before the arrival of the next mutation in the population—this is the commonly-assumed

‘sequential fixations’ model [6]. We study a haploid population of size N , where the next

mutation that appears in the population is drawn from some fitness e↵ect distribution

f(s), where s is the fitness di↵erence between current members of the population and the

potential mutant. We assume this distribution to be atomless in what follows, but this is

not necessary in general. Writing ⇢(s,N) for the fixation probability of a mutant of fitness

e↵ect s in a population of size N (as written for the Moran and Wright-Fisher processes

above), the current rate of fitness increase of the population can then be written

R

fitness

= Nµ

Z
1

�1

sf(s)⇢(s,N)ds.
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This changes with N according to

@

@N

R

fitness

=
@

@N


Nµ

Z
1

�1

sf(s)⇢(s,N)ds

�

=
@

@N


�
Z

0

�1

�|s|f(s)µN⇢(s,N)ds+

Z
1

0

sf(s)µN⇢(s,N)ds

�

=

Z
0

�1

�|s|f(s)µ


@

@N

N⇢(s,N)

�
ds+

Z
1

0

sf(s)µ


@

@N

N⇢(s,N)

�
ds.

From what we showed earlier, we note that if the evolutionary process is a Wright-Fisher or

a Moran process, then both integrands in this last line are positive, and so @

@N

R

fitness

> 0.

S5.3 Mutation rate and generation time

Finally, write r

1

= (µ
1

/g

1

)/(µ
2

/g

2

), so that s
1

= N1r1⇢1(1,0)+N2⇢2(0,1)

N1r1⇢1(0,1)+N2⇢2(1,0)
. Then

@s

1

@r

1

= N

1

N

2

⇢

1

(1, 0)⇢
2

(1, 0)� ⇢

1

(0, 1)⇢
2

(0, 1)

[N
1

r

1

⇢

1

(0, 1) +N

2

⇢

2

(1, 0)]2
,

which is positive if ⇢
1

(1, 0) > ⇢

1

(0, 1) and ⇢

2

(1, 0) > ⇢

2

(0, 1), i.e., if, in both populations,

beneficial mutations have higher fixation probability than deleterious mutations. Again,

this is true of all reasonable evolutionary processes.

S5.4 Moran process

In the special case of a Moran process operating in each population, and assuming N

1

=

N

2

= N and w

1

= w

2

= w, we have ⇢

1

⌘ ⇢

2

= ⇢, and ⇢(1,0)

⇢(0,1)

= (1 + w)N�1 =: �. Then

s

1

=
Nr

1

⇢(1, 0) +N⇢(0, 1)

Nr

1

⇢(0, 1) +N⇢(1, 0)
=

r

1

⇢(1,0)

⇢(0,1)

+ 1

r

1

+ ⇢(1,0)

⇢(0,1)

=
r

1

� + 1

r

1

+ �

.

This is the basis of Eq. [3] in the Main Text.

S6 Mutualistic symbioses, weak-mutation limit

The mutualism payo↵ matrix (game [2] in the Main Text) is

Player 2

C D

Player 1 A 2, 1 0, 0

B k, k 1, 2
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The stationary distribution, calculated according to the method above, is

� =
h
�̃

1

, �̃

2

, �̃

3

, �̃

4

i
/�̄,

where �̄ is a normalization constant and

�̃

1

= ⇢

1

(2, k) [⇢
2

(k, 2)⇢
1

(1, 0) + ⇢

2

(1, 0)⇢
1

(0, 1)] + r

1

⇢

2

(1, 0) [⇢
2

(2, k)⇢
1

(0, 1) + ⇢

2

(k, 2)⇢
1

(2, k)]

�̃

2

= ⇢

1

(0, 1) [⇢
2

(2, k)⇢
1
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2
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1

(2, k)] + r

1

⇢

2

(0, 1) [⇢
2

(2, k)⇢
1

(0, 1) + ⇢

2

(k, 2)⇢
1

(2, k)]

�̃

3

= ⇢

1

(k, 2) [⇢
2

(k, 2)⇢
1

(1, 0) + ⇢

2

(1, 0)⇢
1

(0, 1)] + r

1

⇢

2

(k, 2) [⇢
2

(0, 1)⇢
1

(1, 0) + ⇢

2

(1, 0)⇢
1

(k, 2)]

�̃

4

= ⇢

1

(1, 0) [⇢
2

(2, k)⇢
1

(k, 2) + ⇢

2

(0, 1)⇢
1

(2, k)] + r

1

⇢

2

(2, k) [⇢
2

(0, 1)⇢
1

(1, 0) + ⇢

2

(1, 0)⇢
1

(k, 2)]

Here, r
1

= (µ
1

N

1

/g

1

)/(µ
2

N

2

/g

2

) (this definition is slightly di↵erent from that we employed

in the antagonistic symbiosis section above). Notice that the dependence on r

1

is not

necessarily as simple as it immediately appears from the expressions for the �̃

i

, because

the normalizing constant �̄ also depends on r

1

.

S6.1 Mutation rate and generation time

If we fix N

1

= N

2

= N and w

1

= w

2

= w, then the fixation probability functions of the

two populations coincide: ⇢

1

⌘ ⇢

2

=: ⇢. The stationary distribution takes on the simple

form

� =


1,

⇢(0, 1)

⇢(1, 0)
,

⇢(k, 2)

⇢(2, k)
, 1

�
/�̄,

where �̄ normalizes that � sums to one. The stationary distribution is therefore indepen-

dent of the mutations rates and generation times of the two populations.

In the case of the Moran process, on which we focused in the Main Text, the stationary

distribution simplifies to Eq. [5] in the Main Text:

� =

"
1,

✓
1

1 + w

◆
N�1

,

✓
1 + kw

1 + 2w

◆
N�1

, 1

#
/�̄.

Why do the mutation rate and generation time have no e↵ect on the stationary dis-

tribution when mutation is weak? This result is a special case of the following general

statement: For any 4-state Markov chain, if

P

1!2

/P

2!1

= P

2!4

/P

4!2

= A,

P

1!3

/P

3!1

= P

4!3

/P

3!4

= B,

and P

1!4

= P

4!1

= P

2!3

= P

3!2

= 0,

then the stationary distribution is simply � = [1, A,B, 1]/�̄, where �̄ = 2 +A+B.

In the mutualism game, when N

1

= N

2

= N and w

1

= w

2

= w, the fixation probability

functions ⇢

1

(·, ·) and ⇢

2

(·, ·) are identical (not just for the Moran process, but for any
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evolutionary process whose fixation probability function depends only on population size

and selection strength). Let ⇢(·, ·) = ⇢

1

(·, ·) = ⇢

2

(·, ·). Then

P

1!2

P

2!1

=

N2µ2
g2

⇢

2

(0, 1)
N2µ2
g2

⇢

2

(1, 0)
=

⇢(0, 1)

⇢(1, 0)
=

N1µ1
g1

⇢

1

(0, 1)
N1µ1
g1

⇢

1

(1, 0)
=

P

2!4

P

4!2

.

So P

1!2

/P

2!1

= P

2!4

/P

4!2

= A, where A = ⇢(0, 1)/⇢(1, 0) is independent of the

mutation rates and generation rates of the two populations. Similarly, P

1!3

/P

3!1

=

P

4!3

/P

3!4

= B, where B = ⇢(k, 2)/⇢(2, k) too depends only on N and w.

So the stationary distribution does not depend on µ

1

, µ

2

, g

1

, or g

2

. This result

stems from consideration of probabilities of transitions against selection (e.g., P
1!2

> 0);

it cannot be found using methods that rule out such transitions, such as deterministic

dynamics like the replicator equation.

S6.2 Selection strength

In order to explore the e↵ect of selection strength on how the populations fare (in the
case of a Moran process) we look at the e↵ect of this parameter on �

(A,C)

and �

(B,D)

, i.e.,
�

1

and �

4

. Using the expression given above for the stationary distribution, we calculate
that

�(A,C) � �(B,D)
sign
=

✓
1

⇢2(2, k)
+ r1

1

⇢1(2, k)

◆ ✓
1
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◆N1�1

�
✓
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!

�
✓

1
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�
✓
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1 + 2w2

◆N2�1
!

=: g(w1, w2).

Fix N

1

= N

2

= N and w

2

= w, and assume a slight increase in w

1

from this value

(w
1

! w +�w). Define

c

1

(x) :=
1�

⇣
1+kx

1+2x

⌘
�1

1�
⇣
1+kx

1+2x

⌘
�N

; g

1

(x) :=

✓
1

1 + x

◆
N�1

;

c

2

(x) :=
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⇣
1

1+x

⌘
�1

1�
⇣

1

1+x

⌘
�N

; g

2

(x) :=

✓
1 + kx

1 + 2x

◆
N�1

,

and note that c
1

(w) = 1/⇢
2

(2, k) and c

2

(w) = 1/⇢
2

(1, 0). Then

g(w
1

, w) = [c
1

(w) + r

1

c

1

(w
1

)] (g
1

(w
1

)� g

1

(w))� [c
2

(w) + r

1

c

2

(w)] (g
2

(w
1

)� g

2
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Let w
1

= w +�w. Taylor expanding c

1

, c
2

, g
1

and g

2

around �w = 0,

g(w +�w,w) = (1 + r

1

)
⇥
c

1

(w)g0
1

(w)� c

2

(w)g0
2

(w)
⇤

| {z }
First order term

�w + o (�w)

Hence, the sign of �
(A,C)

��

(B,D)

for�w su�ciently small (and positive) will be determined

by the sign of the first order term:

�

(A,C)

� �

(B,D)

sign

=
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⇢

2
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g

0
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(w)� 1

⇢

2
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2
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When w = w

⇤ := 1�k

k

, ⇢
2

(2, k) = ⇢

2

(1, 0) and g

1

(w) = g

2

(w). This suggests that a

useful reparameterization is w = 1�k+⌘

k

. Then ⌘ > 0 corresponds to w > w

⇤ and ⌘ < 0

corresponds to w < w

⇤. Since w is constrained to be positive, we must have that ⌘ > k�1.

With this reparameterization we have
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It can easily be verified that v
0

1

(⌘) < 0 and v

0

2

(⌘) < 0. Writing f(x) := 1�x

�1

1�x

�N x

N�2,

�
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� �

(B,D)

sign

= f(v
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Let

h

1
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⌘
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"
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Setting t
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k
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2
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We note that for any fixed values of x
1

and x

2

— for example, x
1
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(⌘) and x
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It can also be verified that v

1

(⌘) < v

2

(⌘) when ⌘ < 0, while v

1

(⌘) > v

2

(⌘) when ⌘ > 0.

Therefore, for large enough N :
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k
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1
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k
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2
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⇥
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⇤
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In the special case ⌘ = 0 (that is, w = w

⇤) we have that t
k
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1
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k
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2

(⌘)) so
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In summary, in the limit of large N , when w

1

= w +�w > w = w

2

,

1. If k 2 (0, 1), then

�

(B,D)

< �

(A,C)

if w � 1� k

k

That is, the increase in the strength of selection in population 1 is beneficial.
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(b) Increasing the strength of selection when
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(c) Increasing the population size when k 2
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(d) Increasing the population size when k 2
[1, 2).

Figure S7: The e↵ect of a slight increase in the population size or selection strength of population 1 for
di↵erent values of k. In each case, the blue and green lines are invisible because they coincide with the
yellow and red lines respectively. This highlights the insensitivity of e↵ects to large changes in r1.

�

(B,D)

> �

(A,C)

if w <

1� k

k

That is, the increase in the strength of selection in population 1 is detrimental.

2. If k 2 [1, 2):

�

(B,D)

< �

(A,C)

That is, the increase in the strength of selection in population 1 is beneficial.

To see a graphical representation of this behaviour refer to Figures S7a and S7b.

Numerical calculations suggest that for a large enough population size a generalization

of the above findings hold, beyond the marginal (w
1

= w

2

+�w) e↵ects we have studied

analytically above. That is, for fixed w

2

we have
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1. If k 2 (0, 1), then

(a) If w
2

> w

⇤

�

(B,D)

< �

(A,C)

if w
1

> w

2

or w
1

< w

⇤

That is, if w
2

is above the threshold then population 1 can do better either

by having a selection strength below the threshold or by having a selection

strength greater than that in population 2.

�

(B,D)

> �

(A,C)

if w⇤

< w < w

2

That is, having stronger selection in population 1 is detrimental.

(b) If w
2

< w

⇤

�

(B,D)

< �

(A,C)

if w
1

< w

2

That is, having weaker selection in population 1 is beneficial.

�

(B,D)

> �

(A,C)

if w
1

> w

2

That is, having stronger selection in population 1 is detrimental.

2. If k 2 [1, 2):

�

(B,D)

< �

(A,C)

if w
1

> w

2

That is, having stronger selection in population 1 is beneficial.

�

(B,D)

> �

(A,C)

if w
1

< w

2

That is, having weaker selection in population 1 is detrimental.

A graphical illustration of these results can be seen Figure S8.

S6.3 Population size

To investigate the e↵ect of population size we fix w

1

= w

2

= w and N

2

= N = lN

0

,

and assume a slight increase in N

1

(N
1

! lN

0

+ �N). Or rather, l
1

! l + �l so that

N

1

! N

0

(l +�l). Using the same methods and definitions as in the investigation of the
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(b) Varying the strength of selection in pop-
ulation 1 when k 2 (0, 1) and w2 > w
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(c) Varying the strength of selection in pop-
ulation 1 when k 2 [1, 2).
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(d) Varying the strength of selection in pop-
ulation 1 when k 2 [1, 2).

Figure S8: The e↵ect of changing the strength of selection in population 1, with selection strength in
population 2 held constant, for di↵erent values of k. The two populations are of equal size. Again, note
the insensitivity of e↵ects to large changes in r1.

e↵ect of selection strength, we arrive at
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(⌘))� h(v
1

(⌘)).
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For 0 < x < 1

h

0

(x)
sign

= x

N (1� x)(1� x

N )� ln(x)(2� x)(1� x

N ) +N ln(x)

✓
1� x

1� x

N

◆
,

which is decreasing on any fixed interval [x
1

, x

2

], where 0 < x

1

< x

2

< 1, for N large

enough. We use once again that v

1

(⌘) < v

2

(⌘) when ⌘ < 0, while v

1

(⌘) > v

2

(⌘) when

⌘ > 0.
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Figure S9: The e↵ect of large di↵erences in population size for di↵erent values of k. Note the insensitivity
of e↵ects to r1.

In summary we find that if N is su�ciently large, and N

1

= N +�N > N = N

2

,

1. If k 2 (0, 1)

�

(B,D)

< �

(A,C)

if w >

1� k

k

That is, the increase in population 1’s size is beneficial.
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�

(B,D)

> �

(A,C)

if w <

1� k

k

That is, the increase in population 1’s size is detrimental.

2. If k 2 [1, 2):

�

(B,D)

< �

(A,C)

That is, the increase in population 1’s size is beneficial.

To see a graphical representation of this behaviour refer to Figures S7c and S7d.

As in the case of selection strength, numerical calculations suggest that for a large

enough population size a generalization of the above findings hold. That is, for fixed

w

1

= w

2

= w, the above summary holds for any N

1

> N

2

(N
2

large enough).

A graphical illustration of these results can be seen Figure S9.

S6.4 Summary of results

A summary of our weak-mutation results for the mutualism game is found in Fig. S10.

S7 Mutualistic symbioses, weak-selection limit

We have shown that, when mutation rates are very small, they (and generation times)

have no e↵ect on the stationary distribution of the evolutionary process. To explore how

this result changes when mutation rates are allowed to be appreciably large, we resort to

an alternative simplification, allowing mutation rates to be large, but forcing selection to

be weak.

Since we are interested in the e↵ect of mutation rates in the two populations, we set

their sizes (N), selection strengths, and generation times equal. We make use of the

two-population Moran process studied elsewhere in this paper, which is identical to that

studied by Ohtsuki [8] when selection is weak. (In fact, Ohtsuki uses an exponential

translation of payo↵s to fitnesses, f = exp (w⇡), while we have used a linear translation,

f = 1 + w⇡. These translations coincide in the weak-selection limit, w ! 0, for which

Ohtsuki derives results, and which we consider here. This can easily be seen by Taylor

expanding the exponential translation around w = 0. Therefore, Ohtsuki’s weak-selection

results hold also for the linear fitness translation.)

The evolutionary process is an irreducible, aperiodic Markov chain over the state space

S of all possible population states. Ohtsuki [8] shows that, when the selection strength

w is small (w ! 0), the stationary distribution of this process, �(s), s 2 S, simplifies

significantly. Denote by hxi
w

the expectation of x, taken with respect to the stationary

distribution; i.e., hxi
w

=
P

s2S

x(s)�(s). Then, for example, the long run frequency of

members of population 1 who play strategy A is hp
A

i
w

=
P

s2S

p

A

(s)�(s), where p

A

(s) is
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Figure S10: Long-run evolutionary dynamics of mutualisms, when mutations are rare (" ! 0). (A)
Setting the populations’ sizes equal, we increase population 1’s selection strength slightly above population
2’s value of w2 = 0.15. Then population 1 does better (�(A,C) > �(B,D)) when k = 0.9 [because then
w2 = 0.15 > (1 � k)/k = 0.11], and when k > 1.5, but worse when k = 0.8 [because then w2 = 0.15 <
(1� k)/k = 0.25]. The populations do equally well when N1 = N2 and w1 = w2, no matter their relative
mutation rates or generation times. (B) Setting the populations’ selection strengths equal, we increase
population 1’s size slightly above population 2’s. Again, population 1 benefits from its greater rate of
evolution when k = 1.5 and k = 0.9, but not when k = 0.8. (C, D) We fix population 2’s size at N2 = 500
and selection strength at w2 = 0.2 (marked by the cross), set equal population 1 and 2’s generation
times, and vary population 1’s size N1 and selection strength w1. For each (N1, w1) combination, we
vary the relative rate of mutation of the two populations across ten orders of magnitude, and calculate
the ratio of the largest and smallest values of �(A,C)/�(B,D), i.e., the maximum e↵ect of mutation on the
long-run relative success of the two populations. (E, F ) For the same parameters as in (C, D), we set
equal the population’s mutation rates, and plot the natural logarithm of �(A,C)/�(B,D) for each (N1, w1)
combination.

the proportion of population 1 playing strategy A in population state s. For population

2, we denote strategy frequencies by q

C

and q

D

.

The quantities we are interested in are the long-run frequencies of (A,C) and (B,D)

pairings/interactions. If the former frequency is larger than the latter, then we say that

population 1 is more successful (recall that all other pairings yield the same payo↵ for

the population 1 and 2 interactants). These quantities, hp
A

q

C

i
w

and hp
B

q

D

i
w

, can be

26



calculated from Eq. (29) in ref. [8]. Writing µ̂

1

= (N � 1)"µ
1

and µ̂

2

= (N � 1)"µ
2

,

hp
A

q

C

i
w

=
1

4

⇢
1 + w

N � 1

("µ
1

+ "µ

2

)(1 + µ̂

1

)(1 + µ̂

2

)


"µ

1

(1� "µ

1

)
2� k

2
+ "µ

2

(1� "µ

2

)
1

2
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1� k

4
("µ

2

� "µ

1

)[1 + µ̂

1
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2

]

��
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B

q
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]
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.

From these expressions, we calculate the long run advantage to population 1,

hp
A

q

C

i
w

� hp
B

q

D

i
w

=
w

4

N � 1

("µ
1

+ "µ

2

)(1 + µ̂

1

)(1 + µ̂

2

)


"µ

1

(1� "µ

1

)

✓
2� k

2
� 1

2

◆

+"µ

2

(1� "µ

2

)

✓
1

2
� 2� k

2

◆
+

1� k

2
("µ

2

� "µ

1

)(1 + µ̂

1

+ µ̂

2

)

�

=
w

4

N � 1

("µ
1

+ "µ

2

)(1 + µ̂

1

)(1 + µ̂

2

)


"µ

1

(1� "µ

1

)
1� k

2
� "µ

2

(1� "µ

2

)
1� k

2

+
1� k

2
("µ

2

� "µ

1

)[1 + (N � 1)("µ
1

+ "µ

2

)]

�

=
w

4

N � 1

("µ
1

+ "µ

2

)(1 + µ̂

1

)(1 + µ̂

2

)

1� k

2
[N("µ

2

� "µ

1

)("µ
1

+ "µ

2

)]

=
w

8
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)
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where A = w

8

N(N�1)

(1+µ̂1)(1+µ̂2)
> 0. Therefore, if k < 1, population 1 does better (hp

A

q

C

i
w

�
hp

B

q

D

i
w

> 0) when it has the smaller mutation rate, µ
1

< µ

2

. On the other hand, when

k > 1, population 1 does better when it has the larger mutation rate, µ
1

> µ

2

. So slower

evolution, in terms of mutation rates, is favored when k < 1, and faster evolution is favored

when k > 1.

When mutation rates are low (" ⇡ 0), changes in relative mutation rates have very

little e↵ect on hp
A

q

C

i
w

� hp
B

q

D

i
w

, consistent with our weak-mutation results above.

S8 Mutualistic symbioses with continuous strategy spaces

So far, we have considered discrete-strategy games, where members of each population

choose between two strategy options (A or B for population 1, and C or D for popula-

tion 2). In the discrete mutualism game that we have studied, this discreteness results

in there being two stable equilibrium outcomes, one preferred by population 1, and the

other preferred by population 2. In the introductory section of our Main Text, we have dis-
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cussed examples of mutualistic interactions where this strategy discreteness clearly applies.

However, in many mutualisms, strategies are of a more continuous nature; for example,

how much energy does one species devote to a certain mutually beneficial task, instead

of reserving this energy for uses beneficial only to itself? In this section, we provide a

preliminary setup and analysis of how stochastic evolutionary dynamics apply to such

continuous-strategy mutualisms.

As before, we seek a game that describes interactions between two individuals drawn

from two di↵erent populations. The game we shall study is a continuous version of the Nash

bargaining game, which nests the classical ‘divide-the-dollar’ version [7] as a special case.

The two individuals choose some activity level, x 2 [0, 1] for individuals from population

1 and y 2 [0, 1] for individuals from population 2. Depending on the parameterization,

these activity levels may be thought of as contributions to a public good, for example, or

the amount extracted from a joint resource. Payo↵s are given by

⇡

1

(x, y) =

(
↵x+ (1�↵)y if x+ y  1

0 otherwise
and ⇡

2

(x, y) =

(
(1�↵)x+ ↵y if x+ y  1

0 otherwise
.

(8)

The parameter ↵measures to what extent individuals benefit from their own activity levels.

The assumption ↵2 (0, 1) ensures that the interaction can be interpreted as mutualistic:

provided that the sum of both players’ activities is at most 1, increasing one individual’s

activity increases both individuals’ payo↵s. As in many other studied bargaining games,

the restriction that payo↵s are positive only if x+y1 permits a simple characterization

of the equilibrium set: any combination (x, y) with x+y = 1 is an equilibrium of the

game. If ↵< 1/2, an equilibrium favors population 1 if x<y (i.e., the equilibrium favors

the population that shows the lower activity level). Conversely, if ↵>1/2, an equilibrium

favors population 1 if x>y. In the limiting case ↵ ! 1, the interaction reduces to ‘divide-

the-dollar’: there is a resource worth a total of one unit in payo↵s, and the individuals’

activities represent what fraction of this resource they demand for themselves (with the

convention that when the summed demands exceed the whole resource, both individuals

get nothing).

To model the evolutionary dynamics, we consider a weak-mutation scenario similar to

that we have employed in the discrete-strategy case—mutations are assumed to be rare,

so that populations are almost always monomorphic for some strategy. The key di↵erence

between the previous analyses and that here is that, while in the discrete 2-strategy case,

a mutation simply means switching to the other strategy, in the continuous case we need

to specify the distribution of possible mutations. We employ a ‘local mutations’ model [4].

From any state (x, y) in which populations 1 and 2 are monomorphic for strategies x

and y respectively, a mutation occurs in one of the populations; as before, the probability

that this happens in population l is proportional to N

l

µ

l

/g

l

. Mutations are ‘local’, that

is, of small e↵ect: if the mutation appears in population 1 when it is fixed for strategy x,

then the mutant’s strategy is x0 = x + u, where u is taken from the uniform distribution

28



on [��, �] (if x0 happens not to be in the unit interval, another mutant strategy is drawn).

The fitness of a resident x-player and of the mutant x

0-player are f

1

= 1 + w

1

⇡

1

(x, y)

and f

0

1

= 1 + w

1

⇡

1

(x0, y), respectively. If, instead, the mutant appears in population 2,

then the respective fitnesses f
2

and f

0

2

are calculated analogously (with the same maximum

mutation e↵ect � applying to both populations, though their mutation rates can di↵er). As

in the model with only two strategies, the mutant strategy fixes in its population l with

probability (1 � f

l

/f

0

l

)/[1 � (f
l

/f

0

l

)Nl ]. This elementary updating process then iterates:

another mutation occurs in one of the two population, and it again either fixes or goes

extinct. Initially, individuals from both populations are assumed to show no activity

x=y=0. By iterating this process for a su�cient timespan (for the simulations shown in

the following we introduce 109 mutant strategies in total), we approximate the distribution

of strategies in the mutation-selection equilibrium.

The evolutionary dynamics of this model with continuous activity levels is di↵erent

from the evolutionary dynamics of the discrete games studied in the Main Text, for at

least three reasons: First, given our assumptions that mutant strategies are close to the

strategies from which they mutated and that the payo↵ functions are continuous when

total activity does not exceed 1, the di↵erence between the fitness of a mutant strategy

and of the strategy from which it mutated will usually be small, so that we are in a weak-

selection regime [10]. Therefore, even mutants of reduced fitness may substitute at an

appreciable rate. Second, while the discrete mutualism game had two distinct equilibria,

in the continuous model there is a continuous path of equilibria (the line x+y=1); with local

mutation and the associated weak selection, we may expect to see stochastic movement

along this path. Third, in the discrete mutualism game, the Red King e↵ect arose in a

setting where it required both populations to evolve to reach an equilibrium—di↵erences

in their evolutionary rates then influenced the basins of attraction of the two equilibria.

In the continuous strategy section that we are considering here, mutation and selection in

one of the two populations would be su�cient to reach an equilibrium. For example, if

population 1 has a very much shorter generation time than population 2, we may expect

that, starting from the origin (x, y) = (0, 0), the dynamics quickly move towards a state

where individuals in population 1 show a much higher activity, (x, y) ⇡ (1, 0). Whether we

observe a Red King e↵ect then depends on whether states close to (1, 0) favor population

1 or population 2 (i.e., whether ↵ is larger or smaller than 1/2).

Figures S11 and S12 display simulation runs for two di↵erent values of ↵ (↵ = 0.75

and ↵ = 0.25). As for the discrete-strategy mutualism game studied in the Main Text,

we consider how the dynamics are a↵ected when the two populations di↵er in each of

four di↵erent evolutionary rate parameters: generation time (first column in Figs S11 and

S12), mutation rate (second column), selection strength (third column), and population

size (fourth column). For all parameters, we assume that it is population 2 that evolves at a

faster rate, either because it has a shorter generation time, a higher mutation rate, is under

stronger selection, or is larger. We again distinguish between the short-run dynamics (here

defined as the time it takes the populations to evolve to, or close to, one of the states on
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Figure S11: Short-run and long-run dynamics for continuous-strategy mutualisms,

when ↵ is large. Population 1 evolves slower owing to (A) a longer generation time, (B) a lower
mutation rate, (C) weaker selection, and (D) a smaller population size. The top panels illustrate the
short-run dynamics, showing typical evolutionary trajectories that the populations take from the
initial state (x, y) = (0, 0) to somewhere on or near the line of equilibria, x+y = 1 (the populations
are considered near this line if x + y � 0.98). The middle panels show the long-run positions of
the two populations over 109 elementary updating events. For clarity, these panels depict only
those strategy combinations corresponding to the 10,000 most successful strategy combinations
over time. The bottom panels depict the long-run average payo↵ of individuals in population 1,
depending on how much the two populations di↵er in the relevant evolutionary rate parameter.
Di↵erences in generation time and mutation rate have little e↵ect in the long run, but di↵erences
in selection strength and population size give rise to a strong Red Queen e↵ect: the slower-evolving
population 1 gets a lower share of the total payo↵. This is similar to the results we obtained for the
discrete-strategy mutualism game in the Main Text. Baseline parameters: ↵ = 0.75; g1 = g2 = 1,
µ1 = µ2 = 1, w1 = w2 = 0.5 and N1 = N2 = 100; mutant strategies are at most a distance � = 0.05
from the strategy from which they mutated.

the equilibrium line) and the long-run dynamics (which corresponds to the 109 elementary

updating events that we have simulated the evolutionary process for).

Independent of the value of ↵, and independent of the evolutionary rate parameter

that is varied, we observe that the short-run dynamics are dominated by the population

that evolves at a faster rate (see upper panels in Figs. S11 and S12). That is, when

population 2 evolves faster, by the time the two populations reach the line of equilibria

x + y = 1, we typically observe that y > x. The long-run dynamics depend on the

evolutionary parameter that is varied (middle panels in Figs. S11 and S12). Di↵erences
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Figure S12: Short-run and long-run dynamics for mutualisms with a continuous trait

space when ↵ is small. The setup of the simulations is the same as in Fig. S11, except that
here, ↵ = 0.25 (i.e., changes in own activity level usually have little influence on own payo↵, but
have a strong influence on payo↵s of individuals in the other population). In this case, we observe
a Red King e↵ect when the populations di↵er in their selection strength or in their population size.
Again, di↵erences in generation time and mutation rate have little e↵ect in the long run, similar
to our results for the discrete-strategy mutualism game.

in generation time and mutation rate have little influence on the activity levels of the two

populations, but di↵erences in selection strength and population size create a bias towards

higher activity levels in the faster-evolving population. To understand this, consider an

arbitrary population state (x, y) on the equilibrium line (so that x+ y = 1), and suppose

that the two populations di↵er only in their selection strength: w

2

> w

1

. In this case,

the most likely evolutionary trajectory out of the present equilibrium state (x, y) involves

the fixation in population 1 of a mutant with slightly reduced activity level x0 < x —

such a mutant in population 1 is of reduced fitness, but is more likely to fix than an

equivalent mutant in population 2 because selection is stronger in population 2 (and note

that, in any population, a mutant with increased activity level is strongly selected against

because it typically receives payo↵ 0). Then, again because w
2

> w

1

, the next evolutionary

step most likely involves population 2 slightly increasing its activity level y. Therefore,

stochastic fluctuations o↵ the equilibrium line tend to be in the direction of reduced x,

and tend to return to the equilibrium line in the direction of increased y. In total, these

two e↵ects make the two populations move to the upper left corner, as depicted in the

middle panels of Figs. S11 and S12. This is an example of drift-induced selection along an
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equilibrium line that would otherwise be stationary under deterministic dynamics; drift-

induced selection is a phenomenon of recent and growing interest in stochastic evolutionary

dynamics (e.g., [2]).

In Fig. S11, we consider the case ↵ = 0.75, where the population that on average

shows a higher activity level obtains higher average payo↵s. We observe a Red Queen

e↵ect in this scenario when populations di↵er in their selection strengths or population

sizes: the faster-evolving population 2 gets a higher share of the total payo↵. In contrast,

Fig. S12 shows the case ↵ = 0.25, where the population with the lower average activity

level obtains higher average payo↵s. Now, the slower-evolving population 1 outperforms

population 2 when its slower evolution is due to reduced selection strength or smaller

population size—a Red King e↵ect. Again, di↵erences in mutation rate and generation

time have little e↵ect. In addition, we note that for ↵ = 0.25, the two populations are

more dispersed across the strategy space. Intuitively, because ↵ is smaller, changes of

own strategy within a population are under weaker selection, so that deviations below the

equilibrium line are selected against less e↵ectively.
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