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Indirect reciprocity is a mechanism for cooperation based on
shared moral systems and individual reputations. It assumes that
members of a community routinely observe and assess each other
and that they use this information to decide who is good or
bad, and who deserves cooperation. When information is trans-
mitted publicly, such that all community members agree on each
other’s reputation, previous research has highlighted eight cru-
cial moral systems. These “leading-eight” strategies can maintain
cooperation and resist invasion by defectors. However, in real
populations individuals often hold their own private views of oth-
ers. Once two individuals disagree about their opinion of some
third party, they may also see its subsequent actions in a different
light. Their opinions may further diverge over time. Herein, we
explore indirect reciprocity when information transmission is pri-
vate and noisy. We find that in the presence of perception errors,
most leading-eight strategies cease to be stable. Even if a leading-
eight strategy evolves, cooperation rates may drop considerably
when errors are common. Our research highlights the role of reli-
able information and synchronized reputations to maintain stable
moral systems.

cooperation | indirect reciprocity | social norms | evolutionary
game theory

Humans treat their reputations as a form of social capital
(1–3). They strategically invest into their good reputa-

tion when their benevolent actions are widely observed (4–6),
which in turn makes them more likely to receive benefits in
subsequent interactions (7–12). Reputations undergo constant
changes in time. They are affected by rumors and gossip (13),
which themselves can spread in a population and develop a
life of their own. Evolutionary game theory explores how good
reputations are acquired and how they affect subsequent behav-
iors, using the framework of indirect reciprocity (14–17). This
framework assumes that members of a population routinely
observe and assess each other’s social interactions. Whether
a given action is perceived as good depends on the action
itself, the context, and the social norm used by the population.
Behaviors that yield a good reputation in one society may be
condemned in others. A crucial question thus becomes: Which
social norms are most conducive to maintain cooperation in a
population?

Different social norms can be ordered according to their com-
plexity (18) and according to the information that is required
to assess a given action (19, 20). According to “first-order
norms,” the interpretation of an action depends only on the
action itself. When a donor interacts with a recipient in a social
dilemma, the donor’s reputation improves if she cooperates,
whereas her reputation drops if she defects (21–26). Accord-
ing to “second-order norms,” the interpretation of an action
additionally depends on the reputation of the recipient. The
recipient’s reputation provides the context of the interaction. It
allows observers to distinguish between justified and unjustified
defections (27–29). For example, the standing strategy consid-
ers it wrongful only to defect against well-reputed recipients;
donors who defect against bad recipients do not suffer from

an impaired reputation (30). According to “third-order norms,”
observers need to additionally take the donor’s reputation into
account. In this way, assessment rules of higher order are increas-
ingly able to give a more nuanced interpretation of a donor’s
action, but they also require observers to store and process more
information.

When subjects are restricted to binary norms, such that repu-
tations are either “good” or “bad,” an exhaustive search shows
there are eight third-order norms that maintain cooperation (20,
31). These “leading-eight strategies” are summarized in Table
1, and we refer to them as L1–L8. None of them is exclu-
sively based on first-order information, whereas two of them
(called “simple standing” and “stern judging,” refs. 32 and 33)
require second-order information only. There are several uni-
versal characteristics that all leading-eight strategies share. For
example, against a recipient with a good reputation, a donor who
cooperates should always obtain a good reputation, whereas a
donor who defects should gain a bad reputation. The norms dif-
fer, however, in how they assess actions toward bad recipients.
Whereas some norms allow good donors to preserve their good
standing when they cooperate with a bad recipient, other norms
disincentivize such behaviors.

Ohtsuki and Iwasa (20, 31) have shown that if all members of a
population adopt a leading-eight strategy, stable cooperation can
emerge. Their model, however, assumes that the players’ images
are synchronized; two population members would always agree
on the current reputation of some third population member. The
assumption of publicly available and synchronized information
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Table 1. The leading-eight strategies of indirect reciprocity

There are eight strategies, called the “leading eight,” that have been
shown to maintain cooperation under public assessment (20, 31). Each such
strategy consists of an assessment rule and of an action rule. The assessment
rule determines whether a donor is deemed good (g) or bad (b). This assess-
ment depends on the context of the interaction (on the reputations of the
donor and the recipient) and on the donor’s action (C or D). The action rule
determines whether to cooperate with a given recipient when in the role of
the donor. A donor’s action may depend on her own reputation, as well as
on the reputation of the recipient. All of the leading-eight strategies agree
that cooperation against a good player should be deemed as good, whereas
defection against a good player should be deemed bad. They disagree in
how they evaluate actions toward bad recipients.

greatly facilitates a rigorous analysis of the reputation dynam-
ics. Yet in most real populations, different individuals may have
access to different kinds of information, and thus they might
disagree on how they assess others. Their opinions may well
be correlated, but they will not be correlated perfectly. Once
individuals disagree in their initial evaluation of some person,
their views may further diverge over time. How such initial dis-
agreements spread may itself depend on the social norm used
by the population. While some norms can maintain coopera-
tion even in the presence of rare disagreements, other norms
are more susceptible to deviations from the public information
assumption (34–37). Here, we explore systematically how the
leading-eight strategies fare when information is private, noisy,
and incomplete. We show that under these conditions, most
leading-eight strategies cease to be stable. Even if a leading-
eight strategy evolves, the resulting cooperation rate may be
drastically reduced.

Results

Model Setup. We consider a well-mixed population of size N .
The members of this population are engaged in a series of
cooperative interactions. In each round, two individuals are ran-
domly drawn, a donor and a recipient. The donor can then
decide whether to transfer a benefit b to the recipient at own
cost c, with 0< c< b. We refer to the donor’s two possible
actions as cooperation (transferring the benefit) and defection
(not doing anything). Whereas the donor and the recipient
always learn the donor’s decision, each other population mem-
ber independently learns the donor’s decision with probability
q > 0. Observations may be subject to noise: We assume that
all players who learn the donor’s action may misperceive it with
probability ✏> 0, independently of the other players. In that case,

a player misinterprets the donor’s cooperation as defection or,
conversely, the donor’s defection as cooperation. After observ-
ing an interaction, population members independently update
their image of the donor according to the information they
have (Fig. 1).

To do so, we assume that each individual is equipped with a
strategy that consists of an assessment rule and an action rule.
The player’s assessment rule governs how players update the rep-
utation they assign to the donor. Here we consider third-order
assessment rules. That is, when updating the donor’s reputa-
tion, a player takes the donor’s action into account, as well as
the donor’s and the recipient’s previous reputation. Importantly,
when two observers differ in their initial assessment of a given
donor, they may also disagree on the donor’s updated reputa-
tion, even if both apply the same assessment rule and observe the
same interaction (Fig. 1C). The second component of a player’s
strategy, the action rule, determines which action to take when
chosen to be the donor. This action may depend on the player’s
own reputation, as well as on the reputation of the recipient. A
player’s payoff for this indirect reciprocity game is defined as the
expected benefit obtained as a recipient, reduced by the expected
costs paid when acting as a donor, averaged over many rounds
(see Materials and Methods for details).

Analysis of the Reputation Dynamics. We first explore how differ-
ent social norms affect the dynamics of reputations, keeping the
strategies of all players fixed. To this end, we use the concept of
image matrices (34–36). These matrices record, at any point in
time, which reputations players assign to each other. In Fig. 2
A–H, we show a snapshot of these image matrices for eight dif-
ferent scenarios. In all scenarios, the population consists in equal
proportions of a leading-eight strategy, of unconditional cooper-
ators who regard everyone as good (ALLC) and of unconditional
defectors who regard everyone as bad (ALLD). Depending on
the leading-eight strategy considered, the reputation dynamics
in these scenarios can differ considerably.

First, for four of the eight scenarios, a substantial propor-
tion of leading-eight players assigns a good reputation to ALLD
players. The average proportion of ALLD players considered

Fig. 1. Under indirect reciprocity, individual actions are continually assessed
by all population members. (A) We consider a population of different
players. All players hold a private repository where they store which of
their coplayers they deem as either good (g) or bad (b). Different play-
ers may hold different views on the same coplayer. In this example, player
2 is considered to be good from the perspective of the first two play-
ers, but he is considered to be bad by player 3. (B) In the action stage,
two players are randomly chosen, a donor (here, player 1) and a recipient
(here, player 2). The donor can then decide whether or not to cooper-
ate with the recipient. The donor’s decision may depend on the stored
reputations in her own private repository. (C) After the action stage, all
players who observe the interaction update the donor’s reputation. The
newly assigned reputation may differ across the population even if all
players apply the same social norm. This can occur (i) when individuals
already disagreed on their initial assessments of the involved players, (ii)
when some subjects do not observe the interaction and hence do not
update the donor’s reputation accordingly, or (iii) when there are percep-
tion errors.

12242 | www.pnas.org/cgi/doi/10.1073/pnas.1810565115 Hilbe et al.
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as good by L3, L4, L5, and L6 is given by 31%, 31%, 42%,
and 50%, respectively (SI Appendix, Fig. S1). In terms of these
four leading-eight strategies, a bad player who defects against
another bad player deserves a good reputation (Table 1). In
particular, ALLD players can easily gain a good reputation
whenever they encounter another ALLD player. Moreover,
the higher the proportion of ALLD players in a population,
the more readily they obtain a good reputation. This finding
suggests that while L3–L6 might be stable when these strate-
gies are common in the population (20, 38), they have prob-
lems in restraining the payoff of ALLD when defectors are
predominant.

Second, leading-eight players may sometimes collectively
judge a player of their own kind as bad. In Fig. 2, such cases
are represented by white vertical lines in the upper left square
of an image matrix. In SI Appendix, Fig. S2 we show that such
apparent misjudgments are typically introduced by perception
errors. They occur, for example, when a leading-eight donor
defects against an ALLC recipient, who is mistakenly considered
as bad by the donor. Other leading-eight players who witness this
interaction will then collectively assign a bad reputation to the
donor—in their eyes, a good recipient has not obtained the help
he deserves. This example highlights that under private infor-
mation, an isolated disagreement about the reputation of some
population member can have considerable consequences on the
further reputation dynamics.

To gain a better understanding of such cases, we analytically
explored the consequences of a single disagreement in a homo-
geneous population of leading-eight players (see SI Appendix

for all details). There we assume that initially, all players con-
sider each other as good, with the exception of one player who
considers a random coplayer as bad. Assuming that no further
errors occur, we study how likely the population recovers from
this single disagreement (i.e., how likely the population reverts
to a state where everyone is considered good) and how long
it takes until recovery. While some leading-eight strategies are
guaranteed to recover from single disagreements, we find that
other strategies may reach an absorbing state where players
mutually assign a bad reputation to each other. Moreover, even
if recovery occurs, for some strategies it may take a consider-
able time (SI Appendix, Fig. S3). Two strategies fare particularly
badly: L6 and L8 have the lowest probability to recover from a

single disagreement, and they have the longest recovery time.
This finding is also reflected in Fig. 2, which shows that these
two strategies are unable to maintain cooperation. L6 eventually
assigns random reputations to all coplayers, whereas L8 assigns
a bad reputation to everyone (SI Appendix, Fig. S4). While L6
(“stern”) has been found to be particularly successful under pub-
lic information (18, 32, 33), our results confirm that this strategy
is too strict and unforgiving when information is private and
noisy (34–36).

Evolutionary Dynamics. Next we explore how likely a leading-eight
strategy would evolve when population members can change
their strategies over time. We first consider a minimalistic sce-
nario, where players can choose among three strategies only, a
leading-eight strategy Li , ALLC, and ALLD. To model how play-
ers adopt new strategies, we consider simple imitation dynamics
(39–42). In each time step of the evolutionary process, one player
is picked at random. With probability µ (the mutation rate),
this player then adopts some random strategy, corresponding
to the case of undirected learning. With the remaining prob-
ability 1�µ, the player randomly chooses a role model from
the population. The higher the payoff of the role model, the
more likely it is that the focal player adopts the role model’s
strategy (Materials and Methods). Overall, the two modes of
updating, mutation and imitation, give rise to an ergodic process
on the space of all population compositions. In the following,
we present results for the case when mutations are relatively
rare (43, 44).

First, we calculated for a fixed benefit-to-cost ratio of b/c=5
how often each strategy is played over the course of evolu-
tion, for each of the eight possible scenarios (Fig. 3). In four
cases, the leading-eight strategy is played in less than 1% of the
time. These cases correspond to the four leading-eight strate-
gies L3–L6 that frequently assign a good reputation to ALLD
players. For these leading-eight strategies, once everyone in a
population has learned to be a defector, players have difficul-
ties in reestablishing a cooperative regime (in Fig. 3 C–F, once
ALLD is reached, every other strategy has a fixation probabil-
ity smaller than 0.001). In contrast, the strategy L8 is played
in substantial proportions. But in the presence of noise, players
with this strategy always defect, because they deem everyone as
bad (Fig. 2).

L1

ALLC

ALLD

L1 ALLC ALLDA
L2

ALLC

ALLD

L2 ALLC ALLDB
L3

ALLC

ALLD

L3 ALLC ALLDC
L4

ALLC

ALLD

L4 ALLC ALLDD

L5

ALLC

ALLD

L5 ALLC ALLDE
L6

ALLC

ALLD

L6 ALLC ALLDF
L7

ALLC

ALLD

L7 ALLC ALLDG
L8

ALLC

ALLD

L8 ALLC ALLDH

Fig. 2. (A–H) When individuals base their decisions on noisy private information, their assessments may diverge. Models of private information need to
keep track of which player assigns which reputation to which coplayer at any given time. These pairwise assessments are represented by image matrices.
Here, we represent these image matrices graphically, assuming that the population consists of equal parts of a leading-eight strategy, of unconditional
cooperators (ALLC) and unconditional defectors (ALLD). A colored dot means that the corresponding row player assigns a good reputation to the column
player. Without loss of generality, we assume that ALLC players assign a good reputation to everyone, whereas ALLD players deem everyone as bad. The
assessments of the leading-eight players depend on the coplayer’s strategy and on the frequency of perception errors. We observe that two of the leading-
eight strategies are particularly prone to errors: L6 (“stern judging”) eventually assigns a random reputation to any coplayer, while L8 (“judging’) eventually
considers everyone as bad. Only the other six strategies separate between conditionally cooperative strategies and unconditional defectors. Each box shows
the image matrix after 2 · 106 simulated interactions in a population of size N = 3 · 30 = 90. Perception errors occur at rate "= 0.05, and interactions are
observed with high probability, q = 0.9.
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Consistent Standing

0.002
0.139

<0.001
0.668

0.017
<0.001

10.6%

ALLD

0.3%

ALLC

89.1%

L2 C
Simple Standing

0.098
0.012

<0.001
0.668

<0.001
<0.001

99.4%

ALLD

0.1%

ALLC

0.5%

L3 D

0.121
0.009

<0.001
0.668

<0.001
<0.001

99.8%

ALLD

0.0%

ALLC

0.1%

L4

E

<0.001
0.148

<0.001
0.668

<0.001
<0.001

99.5%

ALLD

0.0%

ALLC

0.5%

L5 F
Stern Judging

<0.001
0.376

<0.001
0.668

<0.001
0.401

100.0%

ALLD

0.0%

ALLC

0.0%

L6 G
Staying

0.152
0.007

<0.001
0.668

0.052
<0.001

70.1%

ALLD

5.5%

ALLC

24.4%

L7 H
Judging

<0.001
0.668

<0.001
0.668

0.020
0.020

50.0%

ALLD

0.0%

ALLC

50.0%

L8

Fig. 3. Most of the leading-eight strategies are disfavored in the presence of perception errors. We simulated the evolutionary dynamics when each of the
leading-eight strategies competes with ALLC and ALLD. These simulations assume that, over time, players tend to imitate coplayers with more profitable
strategies and that they occasionally explore random strategies (Materials and Methods). The numbers within the circles represent the abundance of the
respective strategy in the selection–mutation equilibrium. The numbers close to the arrows represent the fixation probability of a single mutant into the
given resident strategy. We use solid lines for the arrows to depict a fixation probability that exceeds the neutral probability 1/N, and we use dotted lines if
the fixation probability is smaller than 1/N. In four cases, we find that ALLD is predominant (C–F). In one case (H), the leading-eight strategy coexists with
ALLD but without any cooperation. In the remaining cases (A, B, and G), we find that L1 and L7 are played with moderate frequencies, but only populations
that have access to L2 (“consistent standing”) settle at the leading-eight strategy. Parameters: Population size N = 50, benefit b = 5, cost c = 1, strength of
selection s = 1, error rate "= 0.05, observation probability q = 0.9, in the limit of rare mutations µ! 0.

There are only three scenarios in Fig. 3 that allow for positive
cooperation rates. The corresponding leading-eight strategies
are L1, L2 (“consistent standing”), and L7 (“staying,” ref. 45).
For L1 and L7, the evolutionary dynamics take the form of
a rock–scissors–paper cycle (46–50). The leading-eight strategy
can be invaded by ALLC, which gives rise to ALLD, which in
turn leads back to the leading-eight strategy. Because ALLD is
most robust in this cycle, the leading-eight strategies are played
in less than one-third of the time (Fig. 3 A and G).

Only consistent standing, L2, is able to compete with ALLC
and ALLD in a direct comparison (Fig. 3B). Under consistent
standing, there is a unique action in each possible situation that
allows a donor to obtain a good standing. For example, when a
good donor meets a bad recipient, the donor keepsv her good
standing by defecting, but loses it by cooperating. Compared
with stern judging, which has a similar property (18), consis-
tent standing incentivizes cooperation more strongly. When two
bad players interact, the correct decision according to consistent
standing is to cooperate, whereas a stern player would defect
(Table 1).

Nevertheless, we find that even when consistent standing is
common, the average cooperation rate in the population rarely
exceeds 65%. To show this, we repeated the previous evolution-
ary simulations for the eight scenarios while varying the benefit-
to-cost ratio, the error rate, and the observation probability
(Fig. 4). These simulations confirm that five of the leading-eight
strategies cannot maintain any cooperation when competing with
ALLC and ALLD. Only for L1, L2, and L7 are average coop-
eration rates positive, reaching a maximum for intermediate
benefit-to-cost ratios (Fig. 4A). If the benefit-to-cost ratio is too
low, we find that each of these leading-eight strategies can be
invaded by ALLD, whereas if the ratio is too high, ALLC can
invade (SI Appendix, Fig. S5). In between, consistent standing
may outperform ALLC and ALLD, but in the presence of noise
it does not yield high cooperation rates against itself. Even if all
interactions are observed (q =1), cooperation rates in a homoge-
neous L2 population drop below 70% once the error rate exceeds
5% (SI Appendix, Fig. S4). Our analytical results in SI Appendix

suggest that while L2 populations always recover from single dis-
agreements, it may take them a substantial time to do so, during

which further errors may accumulate. As a result, whereas L2
seems most robust when coevolving with ALLC and ALLD, it
is unable to maintain full cooperation. Furthermore, additional
simulation results suggest that even if L2 is able to resist invasion
by ALLC and ALLD, it may be invaded by mutant strategies that
differ in only one bit from L2 (SI Appendix, Fig. S6).

So far, we have assumed that mutations are rare, such that
populations are typically homogeneous. Experimental evidence,
however, suggests that there is considerable variation in the
social norms used by subjects (4, 7–11). While some subjects are
best classified as unconditional defectors, others act as uncon-
ditional cooperators or use more sophisticated higher-order
strategies (11). In agreement with these experimental studies,
there is theoretical evidence that some leading-eight strategies
like L7 may form stable coexistences with ALLC (36). In SI

Appendix, Figs. S7–S9, we present further evolutionary results for
higher mutation rates, in which such coexistences are possible.

A B C

Fig. 4. Noise can prevent the evolution of full cooperation even if leading-
eight strategies evolve. We repeated the evolutionary simulations in Fig. 3,
but varying (A) the benefit of cooperation, (B) the error rate, and (C) the
observation probability. The graph shows the average cooperation rate for
each scenario in the selection–mutation equilibrium. This cooperation rate
depends on how abundant each strategy is in equilibrium and on how much
cooperation each strategy yields against itself in the presence of noise. For
five of the eight scenarios, cooperation rates remain low across the con-
sidered parameter range. Only the three other leading-eight strategies can
persist in the population, but even then cooperation rates typically remain
below 70%. We use the same baseline parameters as in Fig. 3.

12244 | www.pnas.org/cgi/doi/10.1073/pnas.1810565115 Hilbe et al.
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There we show that in the three cases L1, L2, and L7, popula-
tions may consist of a mixture of the leading-eight strategy and
ALLC for a considerable time. However, in agreement with our
rare-mutation results, we find for L1 and L7 that this mixture
of leading-eight strategy and ALLC is susceptible to stochastic
invasion by ALLD.

Discussion

Indirect reciprocity explores how cooperation can be maintained
when individuals assess and act on each other’s reputations. Sim-
ple strategies of indirect reciprocity like image scoring (21, 22)
have been suspected to be unstable, because players may abstain
from punishing defectors to maintain their own good score (27).
In contrast, the leading-eight strategies additionally take the con-
text of an interaction into account. They have been considered
to be prime candidates for stable norms that maintain coop-
eration (20, 31). Corresponding models, however, assume that
each pairwise interaction is witnessed only by one observer, who
disseminates the outcome of the interaction to all other popula-
tion members. As a consequence, the resulting opinions within
a population will be perfectly synchronized. Even if donors are
subject to implementation errors, or if the observer misperceives
an interaction, all players will have the same image of the donor
after the interaction has taken place.

While the assumption of perfectly synchronized reputations is
a useful idealization, we believe that it may be too strict in some
applications. Subjects often differ in the prior information they
have, and even if everyone has access to the same information [as
is often the case in online platforms (51, 52)], individuals differ in
how much weight they attribute to different pieces of evidence.
As a result, individuals might disagree on each other’s reputa-
tions. These disagreements can proliferate over time. Herein,
we have thus systematically compared the performance of the
leading-eight strategies when information is incomplete, private,
and noisy. The leading-eight strategies differ in how they are
affected by the noise introduced by private perception errors.
Strategies like stern judging, that have been shown to be highly
successful under public information (18, 32, 33), fail to distin-
guish between friend and foe when information is private. While
we have considered well-mixed populations in which all play-
ers are connected, this effect might be even more pronounced
when games take place on a network (53, 54). If players are able
only to observe interactions between players in their immediate
neighborhood, network-structured populations may amplify the
problem of incomplete information. Pairwise interactions that
one player is able to observe may be systematically hidden from
his neighbor’s view. Thus, the study of indirect reciprocity on
networks points to an interesting direction for future research.

The individuals in our model are completely independent
when forming their beliefs. In particular, they are not affected
by the opinions of others, swayed by gossip and rumors, or
engaged in communication. Experimental evidence suggests that
even when all subjects witness the same social interaction, gos-
sip can greatly modify beliefs and align the subjects’ subsequent
behaviors (13). Seen from this angle, our study highlights the
importance of coordination and communication for the stability
of indirect reciprocity. Social norms that fail when information is
noisy and private may sustain full cooperation when information
is mutually shared and discussed.

Materials and Methods

Model Setup. We consider N individuals in a well-mixed population. Each
player’s strategy is given by a pair (↵, �). The first component,

↵= (↵gCg, ↵gCb, ↵bCg, ↵bCb, ↵gDg, ↵gDb, ↵bDg, ↵bDb), [1]

corresponds to the player’s assessment rule. An entry ↵xAy is equal to one if
the player assigns a good reputation to a donor of reputation x who chooses
action A against a recipient with reputation y. Otherwise, if such a donor is
considered as bad, the corresponding entry is zero. The second component
of the strategy,

�= (�gg, �gb, �bg, �bb), [2]

gives the player’s action rule. An entry �xy is equal to one if the focal player
with reputation x cooperates with a recipient with reputation y; otherwise
it is zero. The assessment and action rules of the leading-eight strategies
are shown in Table 1. We define ALLC as the strategy with assessment rule
↵= (1, . . . , 1) and action rule �= (1, . . . , 1). ALLD is the strategy with ↵=
(0, . . . , 0) and �= (0, . . . , 0).

Reputation Dynamics. To simulate the reputation dynamics for players with
fixed strategies, we consider the image matrix (34–36) M(t) =

�
mij(t)

�
of a

population at time t. Its entries satisfy mij(t) = 1 if player i deems player
j as good at time t and mij(t) = 0 otherwise. We assume that initially, all
players have a good reputation, mij(0) = 1 for all i, j. However, our results
are unchanged if the players’ initial reputations are assigned randomly. We
get only slightly different results if all initial reputations are bad; in that
case, L7 players are unable to acquire a good reputation over the course of
the game (for details, see SI Appendix).

In each round t, two players i and j are drawn from the population at ran-
dom, a donor and a recipient. The donor then decides whether to cooperate.
Her choice is uniquely determined by her action rule� and by the reputations
she assigns to herself and to the recipient, mii(t) and mij(t). The donor and the
recipient always observe the donor’s decision; all other players independently
observe it with probability q. With probability ", a player who observes the
donor’s action misperceives it, independent of the other players. All players
who observe the interaction update their assessment of the donor according
to their assessment rule. This yields the image matrix M(t + 1).

We iterate the above elementary process over many rounds (our num-
bers are based on 106 rounds or more). Based on these simulations, we can
now calculate how often player i considers j to be good on average and
how often player i cooperates with j on average. If the estimated pairwise
cooperation rate of i against j is given by x̂ij , we define player i’s payoff as
⇡̂i =

1
N�1

P
j 6= i bx̂ji � cx̂ij.

Evolutionary Dynamics. On a larger timescale, we assume that players can
change their strategies (↵, �). To model the strategy dynamics, we consider
a pairwise comparison process (39–41). In each time step of this process,
one individual is randomly chosen from the population. With probability
µ this individual then adopts a random strategy, with all other available
strategies having the same probability to be picked. With the remaining
probability 1 �µ the focal individual i chooses a random role model j
from the population. If the players’ payoffs are ⇡̂i and ⇡̂j , player i adopts
j’s strategy with probability P(⇡̂j , ⇡̂i) =

�
1 + exp[�s(⇡̂j � ⇡̂i)]

��1 (55). The
parameter s � 0 is the “strength of selection.” It measures how strongly imi-
tation events are biased in favor of strategies with higher payoffs. For s = 0
we obtain P(⇡̂j , ⇡̂i) = 1/2, and imitation occurs at random. As s increases,
payoffs become increasingly relevant when i considers imitating j’s strategy.

In the main text, we assume players can choose only between a leading-
eight strategy Li , ALLC, and ALLD. As we show in SI Appendix, Fig. S6, the
stability of a leading-eight strategy may be further undermined if additional
mutant strategies are available. Moreover, in the main text we report only
results when mutations are comparably rare (43, 44). In SI Appendix, Figs.
S7–S9 we show further results for substantial mutation rates. Given the
players’ payoffs for each possible population composition, the selection–
mutation equilibrium can be calculated explicitly. All details are provided in
SI Appendix.
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We are interested in the evolution of indirect reciprocity under incomplete and noisy information. To
this end, we describe the dynamics on two separate timescales. First, we consider the game dynamics.
Here, we take the players’ strategies as given, and we compute how the players’ reputations change
over time, how often they cooperate, and which payoffs they obtain on average. Second, we describe
the evolutionary dynamics. Here, we allow players to change their strategies over time, assuming that
strategies that yield a comparably high payoff are more likely to be adopted. In the following, we describe
these two dynamics in more detail.

1 Game dynamics

1.1 Description of the indirect reciprocity game

We consider a well-mixed population of size N whose members engage in a series of cooperative inter-
actions. In each time step, two members of the population are randomly drawn from the population, a
donor and a recipient. The donor can then decide whether or not to pay a cost c>0 to transfer a benefit
b > c to the recipient. We interpret paying the cost as cooperation (C) and refusing to do so as defec-
tion (D). The donor’s decision is partially observable: the donor and the receiver always learn whether
or not the donor decided to cooperate, whereas the other population members independently observe it
with probability q. Observations may be subject to noise: with probability " the donor’s action is misin-
terpreted such that a C is taken for a D, or vice versa. All players are equally likely to misperceive an
action, independent of whether or not they actively took part in the respective interaction. We assume
that there are infinitely many rounds in which players are asked to cooperate, and that the players’ pay-
offs for the indirect reciprocity game are defined as their average payoffs over time (explicit definitions
will be provided in the next section).

To make their cooperation decisions, we assume that each player is equipped with a strategy and a
private reputation repository. The reputation repository is used to keep track of the reputations of all
population members (as illustrated in Fig. 1). In line with a large body of the previous literature (1–3),
we assume that reputations are binary: players are either considered as ‘good’ or ‘bad’. We represent the
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state of player i’s reputation repository at time t by an N -dimensional vector

mi(t) =
⇣
mi1(t), . . . ,miN (t)

⌘
. [1]

The entries mij of this vector are either 0 or 1, whereby mij(t) = 1 means that player i assigns a good
reputation to player j at time t, whereas mij(t) = 0 means that i views j as bad. We assume that
mi(0) = (1, . . . , 1) for all players i. That is, initially all players consider everyone as good.

A player’s strategy then needs to tell the player (i) how to update the entries in her reputation reposi-
tory after observing a donor’s action, and (ii) whether to cooperate if the focal player finds herself in the
role of the donor. The first aspect is determined by the player’s assessment rule. Assessment rules take
the form of an 8-dimensional vector

↵ = (↵gCg, ↵gCb, ↵bCg, ↵bCb, ↵gDg, ↵gDb, ↵bDg, ↵bDb). [2]

The entries of ↵ can again take either the value 0 or 1. An entry ↵xAy =1 means that it is regarded as
good if a donor with reputation x chooses action A against a recipient with reputation y. Analogously,
↵xAy =0 means that the focal player assigns a bad reputation to the corresponding donor. We note that
after any interaction, players only update the donor’s reputation; the reputation of the receiver remains
unaffected. Assessment rules of the form [2] are called third-order assessment rules, since they depend
on the donor’s action, on the reputation of the donor, and on the reputation of the recipient. If the
assessment is independent of the donor’s current reputation, the assessment rule is referred to as second-
order; and if the assessment is independent of both players’ reputations, the assessment rule is referred
to as first-order. The two unconditional cases ↵=1 := (1, . . . , 1) and ↵=0 := (0, . . . , 0), according to
which donors are always considered as good or bad, respectively, are zeroth-order assessment rules.

If the focal player finds herself in the role of the donor, her decision is determined by her action rule.
Action rules are given by a 4-dimensional vector

� = (�gg, �gb, �bg, �bb). [3]

An entry �xy = 1 indicates that a respective donor chooses to cooperate if her own reputation is x and
the recipient’s reputation is y. An entry �xy=0 indicates that she defects. A player’s strategy �=(↵;�)

is a combination of an assessment rule and an action rule. Since there are 28 different assessment rules
and 24 different action rules, the space of third-order strategies contains 212 = 4, 096 elements.

Herein, we have only considered the dynamics for a small subset of third-order strategies (but the
methods that we introduce in the following sections equally apply to all other strategies). The subset
we have considered consists of the so-called leading-eight strategies (4). Under the assumption that all
relevant information is shared publicly and that all players agree on everyone’s reputation, past research
has shown that if the whole population adopts any of the leading-eight strategies, the population will
be fully cooperative and no other strategy can invade (5). However, the assumption of publicly shared
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information seems rather stringent; it implies that the reputation repositories of all players agree at all
times, mi(t)=mj(t) for all i, j and t. Instead, we explore the robustness of the leading-eight strategies
when information is incomplete, noisy, and private. In that case, different players may hold different
beliefs about their co-players, such that for any pair of players i and j there may be times for which
mi(t) 6=mj(t). To probe the robustness of the leading-eight strategies, we let each of these strategies
compete with the two unconditional strategies ALLC and ALLD. Herein, we define these two strategies
as ALLC= (1;1) and ALLD= (0;0). We note that alternative strategy representations are possible:
For example, we could define ALLC as the strategy that deems everyone as bad but cooperates anyway.
Using such an alternative definition would not alter our qualitative results.

1.2 A formal description of the reputation dynamics

If the strategies (↵i;�i) are given for all players 1 iN , we can describe the reputation dynamics of
the population as a Markov chain. As the state of the Markov chain at time t, we collect all individual
reputation repositories into an N⇥N matrix

M(t) =
⇣
mij(t)

⌘
. [4]

We call M(t) the image matrix of the population at time t. Given the players’ strategies and the current
image matrix M =M(t) we can in principle calculate the transition probability hM,M 0 that describes
how likely we are to find the population in state M

0 at time t+1. Because in every single time-step
at most one column of the image matrix can change (the column with respect to the player who was
randomly chosen to be the donor), we observe that hM,M 0 = 0 if M and M

0 differ in more than one
column. Otherwise, when the image matrices M and M

0 differ in at most one column, the exact value of
hM,M 0 depends on the players’ strategies, on the observation probability q, and on the error probability ".

Over time, the average probability to observe a given image matrix M approaches an invariant distri-
bution v=(vM ) of the Markov chain H=(hM,M 0), such that vH=v and

P
M vM = 1. The entries vM

give the expected frequency with which we observe the image matrix M over the course of the indirect
reciprocity game. Given the invariant distribution v, we can calculate the average probability that player
i considers j as good as

m̄ij =
X

M

vM ·mij . [5]

Moreover, we can calculate the average probability x̄ij with which player i cooperates with player j over
the course of the game as

x̄ij =
X

M

vM�
i
mii,mij

. [6]

Using this average cooperation probability, we define player i’s expected payoff ⇡̄i as

⇡̄i =
1

N � 1

X

j 6=i

bx̄ji � cx̄ij . [7]
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Unfortunately, we note that the above approach quickly becomes computationally infeasible as the
population becomes large. For a population of size N , the image matrix has N2 entries, implying that
there are 2N

2 possible image matrices.
Instead of calculating numerically exact payoffs according to Eq. [7], we have thus simulated the

reputation dynamics to obtain estimates x̂ij for the average probability that player i cooperates with j.
These estimates are then plugged into Eq. [7] to obtain estimated payoffs

⇡̂i =
1

N � 1

X

j 6=i

bx̂ji � cx̂ij . [8]

By the theory of Markov chains, the estimated payoffs according to [8] converge to the true values [7]
if the simulation is iterated for sufficiently many time steps. Unless noted otherwise, we have simulated
the Markov chain for 2 · 106 time steps, using a population of size N =50. The respective simulations
have been run with MATLAB; all scripts are provided in the Appendix.

Depending on the players’ strategies, the Markov chain of the reputation dynamics does not need to
be ergodic. In those cases, the players’ average payoffs according to Eq. [8] may depend on their initial
reputations. All our figures are based on the assumption that all players begin with a good reputation.
To explore the robustness of our results, we have re-run the simulations in Fig. 2 for two alternative
scenarios. First we have run ten independent simulations in which the initial reputations are assigned
randomly. For each of these ten simulations, we have obtained the same result as reported in the main
text. Second, we have run a simulation assuming that all players start with a bad reputation. Again, we
obtain the same result as in Fig. 2 for seven out of the eight cases. Only for L7 the result is different.
According to the assessment rule of L7 (Tab. 1), a bad donor can only gain a good reputation by cooper-
ating against a good recipient. However, since there are no good recipients to start with, it is impossible
for donors to gain a good standing in the eyes of an L7 observer. Hence, all L7 players keep their initial
bad assessment of all co-players. We conclude that under such an initial assignment of reputations, L7
does not yield any cooperation at all.

1.3 Recovery analysis after single disagreements

While we use simulations to explore the general reputation dynamics under noisy private information,
we can derive analytical results in the limiting case that the players’ actions are perfectly observable
(q = 1) and that perception errors are rare (" ! 0). To this end, we consider a homogeneous population
of players who all apply the same leading-eight strategy (as given in Tab. 1). We assume that initially,
all players perceive everyone as good; only player 1 perceives player 2 as bad, possibly because of an
error (Fig. S3a). That is, the initial image matrix is given by M(0) = M

0 with entries

m
0
ij =

(
0 if i = 1, j = 2

1 otherwise.
[9]
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We assume that in subsequent rounds, no further errors occur and that all individuals observe all co-
players’ interactions. We say that the population recovers from a single disagreement, if it returns to
the state where all players have a good reputation starting from the state M

0. In the following we are
interested in the following two quantities, depending on the applied leading-eight strategy Li:

1. The population’s recovery probability ⇢i

2. The expected time until recovery ⌧i (conditioned on that the population actually recovers)

The following Proposition simplifies the corresponding analysis.

Proposition 1. Consider the indirect reciprocity game for a population in which everyone applies the
same leading-eight strategy Li. Moreover, assume that the initial image matrix is M(0) = M

0 as defined
in [9], and let M(t) denote the image matrix at some subsequent time t>0 according to the process with
perfect observation and no noise, q = 1 and "= 0. Then M(t) 2 M, where M is the set of all image
matrices that satisfy the following three conditions

(i) mii = 1 for all i, (ii) mij = 1 for all i, j � 2, (iii) mi1 = mj1 for all i, j � 2. [10]

All proofs are provided in the Appendix. The above Proposition guarantees that in the process with
perfect observation and no noise, (i) all players think of themselves as good, (ii) the players 2  i, j  N

consider each other as good, and (iii) all players 2  i, j  N have the same opinion about player 1.
Proposition 1 is useful because it allows us to consider a simplified state space. Instead of considering

the space of all image matrices M , in the following we consider the space of all tuples (r, k) with
r 2 {0, 1} and k 2 {0, . . . , N�1}. The value of r refers to the reputation of player 1 from the perspective
of all other players (due to Proposition 1 (iii) all other players agree on player 1’s reputation). We use
r=1 to indicate that player 1 is perceived as good, and r=0 to indicate that she is perceived as bad. The
value of k refers to the number of co-players that player 1 considers as good (due to Proposition 1, we
can treat all other players as equivalent). In this reduced state space, the initial state thus corresponds to
the pair (1, N�2), and the full recovery state is (1, N�1), see Fig. S3a for an illustration.

Let f i(r, k; r0, k0) denote the transition probabilities for the reduced state space; the value of f i(r, k; r0, k0)

corresponds to the probability that a population of Li players moves from state (r, k) to (r0, k0) in one
round. We can deduce these probabilities as follows:

Transition (1, k) ! (1, k+1). This case can only occur if a player i > 1 is chosen to be the donor who
is perceived as bad by player 1. Given that the current state is (1, k), it follows from Proposition 1
that the donor considers everyone as good, and hence she cooperates. If player 1 considers the
receiver to be good, this leads her to assign a good reputation to the donor, independent of the
applied leading-eight strategy Li. Otherwise, if player 1 considers the receiver to be bad, the donor
only obtains a good reputation for L1, L2, L3, and L5. Therefore, the corresponding transition
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probability is

f
i(1, k; 1, k+1) =

(
N�k�1

N if i 2 {1, 2, 3, 5}
N�k�1

N
k+1
N�1 if i 2 {4, 6, 7, 8}.

[11]

Transition (1, k) ! (1, k�1). This case can only occur if a player i > 1 is randomly chosen to act as
the donor who is perceived as good by player 1. Similar to before, player i will always cooperate,
which is only considered as bad by player 1 if the receiver is considered as bad by player 1 and if
the applied strategy is either L2, L5, L6, or L8. Therefore, the transition probability is

f
i(1, k; 1, k�1) =

(
0 if i 2 {1, 3, 4, 7}

k
N

N�k�1
N�1 if i 2 {2, 5, 6, 8}.

[12]

Transition (1, k) ! (0, k). This case can only occur if player 1 is chosen to be the donor, and if player 1
defects against the receiver (which in turn requires player 1 to consider the receiver as bad). The
corresponding transition probability is

f
i(1, k; 0, k) =

1

N

N � k � 1

N � 1
. [13]

Transition (0, k) ! (0, k+1). This case requires that a player i>1 is chosen to be the donor who is con-
sidered as bad by player 1. This donor cooperates, unless the randomly chosen receiver happens
to be player 1 (who is bad from the perspective of all other players). Thus, player 1 considers the
donor as good after this round unless the receiver is player 1, or the receiver is a group member
that is considered as bad by player 1 and the applied leading-eight strategy is L4, L6, L7, or L8.
Hence, we obtain

f
i(0, k; 0, k+1) =

(
N�k�1

N
N�2
N�1 if i 2 {1, 2, 3, 5}

N�k�1
N

k
N�1 if i 2 {4, 6, 7, 8}.

[14]

Transition (0, k) ! (0, k�1). This case requires that a player i > 1 is chosen to be the donor who
player 1 considers as good. To become bad in player 1’s eyes, this donor then either needs to
defect against player 1, or he needs to cooperate against a receiver who is considered as bad by
player 1 (provided that the applied leading-eight strategy is L2, L5, L6, or L8). The transition
probability becomes

f
i(0, k; 0, k�1) =

(
k
N

1
N�1 if i 2 {1, 3, 4, 7}

k
N

N�k
N�1 if i 2 {2, 5, 6, 8}.

[15]

Transition (0, k) ! (1, k). This case requires player 1 to be the donor, and that player 1 cooperates with
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her co-player. The corresponding probability is

f
i(0, k; 1, k) =

1

N

k

N � 1
. [16]

All other transitions from (r, k) to (r0, k0) have transition probability f
i(r, k; r0, k0) = 0. We note that

for this reduced Markov chain, the recovery state (1, N�1) is absorbing. Once this state is reached, it
cannot be left anymore, because f

i(1, N�1; 1, N�2) = 0 and f
i(1, N�1; 0, N�1) = 0 for all i.

However, for populations that apply one of the four leading-eight strategies L4, L6, L7, L8, there exists
another absorbing state, which is (0, 0). This state corresponds to a full segregation state: player 1 con-
siders everyone else as bad, whereas all other players consider player 1 to be bad (Fig. S3a). Whether the
population is able to recover from a single disagreement thus depends on how likely the full segregation
state is reached. We obtain the following three cases.

Proposition 2 (Recovery probabilities).
Suppose the population applies the leading-eight strategy Li.

1. For i 2 {1, 2, 3, 5}, the recovery probability is ⇢i = 1.

2. For i 2 {4, 7}, the recovery probability satisfies 1� 2/(N�1)!  ⇢i < 1.

3. For i 2 {6, 8}, the recovery probability is ⇢i = 1� 1/N .

With respect to the time it takes the population to recover from a single disagreement, we obtain a similar
case distinction.

Proposition 3 (Expected time until recovery).
Suppose the population applies the leading-eight strategy Li.

1. For i 2 {1, 3, 4, 7}, the expected time until recovery ⌧i is of order ⇥(N).

2. For i 2 {2, 5}, the expected time until recovery ⌧i is of order ⇥(N logN).

3. For i 2 {6, 8}, the expected time until recovery is ⌧i = N ·HN �N , where HN =
PN

n=1
1
n is the

N -th harmonic number.

While some of the results in Proposition 3 only address the asymptotic behavior as the population be-
comes large, we can numerically compute exact solutions for the expected recovery time for all popula-
tion sizes, based on the transition probabilities f i(r, k; r0, k0) specified above. The respective solutions
are shown in Fig. S3b.

The above results suggest that with respect to recovery from single disagreements, there are four
groups of leading-eight strategies. The strategies L1 and L3 are most robust: after a single disagreement,
they are guaranteed to recover, and the expected recovery time is linear in the population size. These two
strategies have in common that a cooperating donor is always perceived as good (even if the donor or the
receiver had a bad reputation to start with). Due to this property, a single individual who is perceived as
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bad can immediately regain a good reputation once it is chosen to act as a donor (which takes an expected
time of N rounds).

A similar observation holds for the two strategies L4 and L7: a single individual with bad reputation
can always regain a good reputation by cooperating, independent of the identity of the receiver. Unlike
the first two strategies, however, L4 and L7 can end up in the full segregation state. However, this
requires a rather specific sequence of events: before player 2 can regain his good reputation in the eyes
of player 1, it needs to be the case that player 1 is chosen to act as the donor with respect to player 2 as
the recipient. In such a scenario, player 1 would defect, yielding her a bad reputation from the viewpoint
of all other players. To end up in the full segregation state, all other players would then have to be chosen
to act as a donor against player 1. As the population grows bigger, this sequence of events becomes
increasingly unlikely, and the recovery probability quickly approaches 1.

Recovery is guaranteed for the two strategies L2 and L5, but in contrast to the first four strategies,
recovery may take substantially longer. The longer recovery time is due to the property of these strategies
that cooperation against an individual perceived as bad is itself perceived as bad. Thus, if player 2 is
randomly chosen to be the recipient of the next indirect reciprocity interaction, the donor is guaranteed
to obtain a bad reputation in the eyes of someone (either because the donor is an individual i� 2, who
is then perceived as bad by player 1; or because the donor is player 1, who is then perceived as bad by
everyone else).

The above recovery analysis confirms that L6 and L8 perform worst in the presence of single dis-
agreements. Recovery is not guaranteed, and even if it occurs, it may take a substantial time until
recovery. Both aspects are due to the relative ease with which these two strategies assign a bad reputa-
tion to other population members: a donor who cooperates against a receiver who is perceived as bad is
guaranteed to end up with a bad reputation (independent of whether the donor was perceived as good or
bad before). Under these conditions, bad reputations can proliferate comparably quickly.

2 Evolutionary dynamics

2.1 Description of the evolutionary process

While the previous section has assumed that the players’ strategies are fixed, we now describe a simple
process that allows us to explore which dynamics arises once players may change their strategies over
time. To allow for a transparent treatment, we assume that strategy adaptation occurs on a time scale that
is slow compared to the reputation dynamics.

Specifically, we assume that the strategies in the population change according to a simple imitation
process (6). For this process, we again consider a population of N individuals where each individual i
may have its own strategy (↵i; �

i). In each time step of the evolutionary process, one individual i is
chosen at random to update her strategy. There are two ways to do so: with probability µ (correspond-
ing to the mutation rate), she adopts a random strategy (with all remaining strategies having the same
probability to be picked). With the remaining probability 1�µ, she seeks for a role model instead, by
randomly choosing another individual j from the population. Suppose player i’s payoff is given by ⇡̂i
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and j’s payoff is ⇡̂j , where ⇡̂i and ⇡̂j are given by the estimated payoffs according to Eq. [8]. We assume
that the probability that i adopts j’s strategy is given by the Fermi function (7),

P (⇡̂j , ⇡̂i) =
1

1 + exp
�
� s(⇡̂j � ⇡̂i)

� . [17]

The parameter s� 0 is called the strength of selection. It determines how much players value payoffs
when adopting new strategies. For s = 0 we obtain P (⇡̂j , ⇡̂i) = 1/2, and imitation occurs essentially
at random. For s > 0, the imitation probability P (⇡̂j , ⇡̂i) is monotonically increasing in the payoff
difference ⇡̂j � ⇡̂i. That is, the more there is to gain for player i, the more likely she is to abandon her
old strategy and to imitate player j’s strategy instead.

This elementary updating process, involving mutation and imitation, is then iterated over many time
steps. As a result, we obtain an ergodic process on the space of all possible population compositions. This
process has again a unique invariant distribution, to which we refer as the selection-mutation equilibrium.
The abundance of each strategy in this equilibrium, and the corresponding average cooperation rate, can
always be obtained by simulating the above process over a sufficiently long time span. However, in
certain special cases, the selection-mutation equilibrium can be computed more efficiently. These more
efficient algorithms either require a small or intermediate-sized population in which only a few different
strategies are available, or that mutations are rare. In the following two sections we describe these
algorithms in more detail.

Here, we have phrased the evolutionary process as an imitation dynamics. However, similar results
can be obtained if one assumes that strategies are genetically encoded and inherited in a birth-death
process (8), where the fitness of an individual is given by an exponential function of its payoffs, exp(s⇡̂i).

2.2 Selection-mutation equilibrium in populations with few strategies

Throughout the main text, we have focused on a population of intermediate size N that has access to at
most k = 3 different strategies. The possible states of the population are elements of the set

�k
N :=

n
n = (n1, . . . , nk) 2 Nk

��
kX

i=1

ni = N

o
. [18]

The entries ni of each vector represent how many players currently apply strategy i. The number of such
population compositions is

���k
N

�� =
 
N + k

k

!
. [19]

The evolutionary process described in Section 2.1 defines a Markov chain with state space �k
N . For two

population states n,n0 2 �k
N , the transition probability to move from n to n0 in one step of the process
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is given by

wn,n0 =

8
>>>><

>>>>:

ni
N

⇣
µ

k�1 + (1�µ) nj

N P (⇡̂j , ⇡̂i)
⌘

if n0
i=ni�1, n0

j=nj+1, n0
l=nl for l /2 {i, j}

1�
P

j 6=i
ni
N

⇣
µ

k�1 + (1�µ) nj

N P (⇡̂j , ⇡̂i)
⌘

if n = n0

0 otherwise.
[20]

Provided that neither the population size N nor the number of strategies k is prohibitively large, the
transition matrix W =(wn,n0) can be computed explicitly. By computing the normalized left eigenvector
of W (with respect to eigenvalue 1), we obtain the selection-mutation equilibrium over an evolutionary
timescale. We have implemented this algorithm using MATLAB; the corresponding code is provided in
the Appendix.

2.3 Selection-mutation equilibrium in the limit of rare mutations

Alternatively, in arbitrarily large populations with an arbitrary number of available strategies, we can still
calculate exact strategy abundances in the selection-mutation equilibrium if mutations are sufficiently
rare (9–11). In that case, the population will find itself in a homogeneous state most of the time, in which
all individuals adopt the same strategy i. Only occasionally, a mutant strategy j arises. This mutant then
either reaches fixation in the population, or it goes extinct. The mutant’s fixation probability pij can be
calculated explicitly (12, 13),

pij =
1

1 +
PN�1

l0=1

Ql0
l=1 exp

�
� s(⇡̂j(l)� ⇡̂i(l))

� . [21]

Here, ⇡̂j(l) and ⇡̂i(l) refer to the payoffs of a mutant and a resident, provided that the number of mutants
in the population is l. Using Eq. [21], the selection-mutation equilibrium of the evolutionary process can
be computed by considering a reduced Markov chain with k states (corresponding to the homogeneous
populations in which every player applies the same strategy). The probability to move from state i to
state j is given by pij/(k�1). The invariant distribution of this reduced Markov chain approximates the
invariant distribution of the evolutionary process as µ becomes small (9). Again, we have implemented
this algorithm in MATLAB; the code is given in the Appendix.

Appendix

Proofs of the recovery analysis

Proof of Proposition 1. For the proof, we consider the Markov chain H = (hM,M 0), as defined in Sec-
tion 1.2, for the limiting case "=0 and q=1. We show that the set M of image matrices that satisfy the
three properties in [10] is invariant. That is, let M 2 M be arbitrary and suppose hM,M 0 > 0 for some
image matrix M

0. Then also M
0=(m0

ij) satisfies the three characteristic properties [10].
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. . .
s0 s1 sk sk+1 sn�1 sn

. . .
sk�1

p�1 p�k p�k+1 p�n

p+kp+k�1p+0 p+n�1

Figure A1: One-dimensional random walk. A discrete-time Markov chain with n+1 states labelled
s0 . . . , sn arranged in a line and with transition probabilities p+k : sk ! sk+1 and p

�
k : sk ! sk�1.

(i) m0
ii = 1 for all i. Since M 2M, initially all players consider themselves as good. All leading-eight
strategies have the property that the strategy’s action rule prescribes an action that lets a good
donor maintain her good reputation in her own eyes, independent of which reputation she assigns
to the recipient. Thus all players keep considering themselves as good after one interaction; either
they do not need to make a decision (because they were not chosen to act as the donor), or they
choose an action they themselves evaluate as good.

(ii) and (iii) m0
ij = 1 and m

0
i1 = m

0
j1 for all i, j�2. Since M 2 M, all players i, j � 2 initially agree

on the reputations of all population members. Because they all apply the same assessment rule
and observation errors are excluded, they also agree on how the donor’s action in the subsequent
interaction needs to be assessed. This shows m0

il =m
0
jl for all i, j � 2 and all l. Moreover, since

all players i, j� 2 consider each other as good initially, and since their common action rule only
lets them choose actions that let them keep their good reputation, we conclude m0

ij=1 for i, j�2.

Proof of Propositions 2 and 3. In the following, we provide the proofs of Propositions 2 and 3 by con-
sidering each of the four different cases {L1, L3}, {L2, L5}, {L4, L7}, {L6, L8} individually. For a
given leading-eight strategy Li, we consider the respective Markov chain Mi with 2N states sr,k. The
value of r 2 {0, 1} corresponds to the reputation of player 1 from the perspective of all other players.
The value of k 2 {0, 1, . . . , N �1} corresponds to the number of co-players that player 1 considers
as good. Then the recovery probability ⇢i is the probability that a random realization of the process
(a random trace) starting in a state s1,N�2 reaches the absorbing state s1,N�1. The expected recovery
time ⌧i is the expected number of steps until a random trace starting in a state s1,N�2 reaches the state
s1,N�1, conditioned on it doing so. The main idea of the proof is to make use of a coupling argument.
That is, to each two-dimensional random walk defined by the Markov chain Mi, we associate a simpler,
one-dimensional random walk. For the one-dimensional random walk, the absorption probabilities and
conditional absorption times can be calculated explicitly, and they can serve as upper (or lower) bounds
for the respective quantities in the two-dimensional random walk. To this end, let us recall the following
result.

Proposition 4 (One-dimensional random walk, see Chapter 7.7, proof of Theorem 7.1 in (14)).
Let M be a discrete-time Markov chain with n+1 states s0, . . . , sn and transition probabilities p+i : si !
si+1 (i = 0, . . . , n� 1) and p

�
i : si ! si�1 (i = 1, . . . , n), as illustrated in Fig. A1.
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1

Figure A2: Markov chain M1 = M3. The transition probabilities are normalized by N(N�1). Self-
loops in non-absorbing states are not shown.

1. If both states s0 and sn are absorbing (i.e. p+0 = p
�
n = 0) then the probability ⇢(k) of reaching sn

before reaching s0 when starting at sk is given by

⇢(k) =
1 + r1 + r1r2 + · · ·+ r1 . . . rk�1

1 + r1 + r1r2 + · · ·+ r1 . . . rn�1
, [22]

where ri = p
�
i /p

+
i for each i = 1, . . . , n� 1.

2. If there is no absorbing state except, possibly, s0 then the expected number of time steps tk,k�1 to
reach state sk�1 from state sk is given by

tk,k�1 =
1

p
�
k

+
p
+
k

p
�
k+1p

�
k

+ · · ·+
p
+
k . . . p

+
n�1

p
�
n . . . p

�
k

=
1

p
�
k

0

@1 +
n�kX

i=1

iY

j=1

p
+
k+j�1

p
�
k+j

1

A . [23]

Moreover, the expected number of time steps tk,l to reach state sl from state sk, with l<k, is

tk,l = tk,k�1 + tk�1,k�2 + · · ·+ tl+1,l =
kX

i=l+1

ti,i�1. [24]

We use standard notation o(·) and ⇥(·) for strict asymptotic upper bound and for asymptotically tight
bound, ignoring the constant factors. Hence, for example, we have 1/n = o(1) and 2n+1 = ⇥(n),
because for large n we have 1/n ⌧ 1 whereas 2n+1

n tends to a constant. See Section 1.3 of (15) for a
detailed treatment. For asymptotic results, we assume N�4.

Recovery analysis for L1 = L3. The Markov chain M1 = M3 is depicted in Fig. A2.

• Recovery probability: M1 has a unique absorbing state s1,N�1. Moreover, starting from any other
state, there is a positive probability to reach the state s1,N�1. Hence, it follows that ⇢1 = 1.

• Recovery time: To get a lower bound on the recovery time, we note that reaching s1,N�1 requires
at least one non-self-looping transition. Starting from the state s1,N�2, the expected time until the first
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�
1

1(N � 1)

1
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Figure A3: Markov chain M
0
1. The transition probabilities are normalized by N(N�1). By coupling,

⌧
0
1 � ⌧1.

non-self-looping transition occurs is N(N�1)
N�1+1 = N�1. Hence ⌧1 � N�1.

In the following, we show ⌧1  N +7, which establishes the desired ⌧1 = ⇥(N). To this end,
consider the Markov chain M

0
1 obtained from M1 by erasing states s1,k for k  N�2, and by replacing

transitions s0,k ! s1,k with self-loops (see Fig. A3).

First, we argue that ⌧1  ⌧
0
1, where ⌧

0
1 is the expected number of steps to reach s1,N�1 from s1,N�2

in M
0
1. To this end, consider an arbitrary trace T in M1. If T never takes any transition s0,k ! s1,k,

for k<N�1, then we can associate the identical trace T
0 in M

0
1 to T . Otherwise, if there is a moment

when T moves from s0,k to s1,k for some k<N�1, the associated trace T 0 has a self-loop at s0,k. Since
for each k<N�1 the transition s1,k ! s1,k+1 has higher probability than the transition s0,k ! s0,k+1,
we can then couple traces T and T

0 such that, from that point on, T is not to the right of or below T
0

(formally, at any time after that moment, the k-coordinate of T is larger or equal to the k-coordinate of
T
0, and the r-coordinate of T is larger or equal to the r-coordinate of T 0). In particular, if T 0 has reached

s1,N�1 then so did T , and the inequality ⌧1  ⌧
0
1 follows.

It remains to prove that ⌧ 01  N+7. We use Proposition 4. Let x be the expected number of steps to
reach s1,N�1 from s0,N�2 in M

0
1. Then ⌧

0
1 = (N�1) + N�1

N · 0 + 1
N · x. By Eq. [24], x takes the form

x = t2,1 + t1,0. The quantities t2,1 and t1,0 are calculated using Eq. [23]. For the first quantity, we get

t2,1 = N(N � 1)

✓
1

N � 2
+

N � 2

2!(N � 2)2
+

(N � 2)(N � 3)

3!(N � 2)3
+ · · ·+ (N � 2)!

(N � 1)!(N � 2)N�1

◆

 N(N � 1)

N � 2

✓
1 +

1

2!
+

1

3!
+ · · ·+ 1

(N � 1)!

◆
 N(N � 1)

N � 2
· (e� 1),

where we have made use of the definition of Euler’s number, e :=
P1

i=0 1/i!. For the second quantity,
we similarly obtain

t1,0 = N(N � 1)

✓
1

N�1
+

N � 1

(N�1)(N�2)
+

(N � 1)(N � 2)

(N�1)2!(N�2)2
+ · · ·+ (N � 2)!

(N�1)(N�1)!(N�2)N�1

◆

 N(N � 1)

N � 2

✓
1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

(N � 1)!

◆
 N(N � 1)

N � 2
· e
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Hence x = t2,1 + t1,0  N(N�1)
N�2 · (2e�1) and, for N�4,

⌧
0
1 = N � 1 +

1

N
· x  N � 1 +

N � 1

N � 2
· (2e� 1) = N + 2(e� 1) +

2e� 1

N � 2
< N + 7,

as desired.

Recovery analysis for L2 = L5. The Markov chain M2 = M5 is depicted in Fig. A4.

• Recovery probability: As before, since there is a unique absorbing state that can be reached from any
initial state, ⇢2 = 1.

• Recovery time: To show that the expected number of steps ⌧2 is of the order ⇥(N ·logN), we consider
two simpler Markov chains M+

2 (resp. M�
2 ) with expected number of steps ⌧+2 (resp. ⌧�2 ). We then prove

that ⌧+2 � ⌧2 � ⌧
�
2 and that both ⌧

+
2 and ⌧

�
2 are of the order ⇥(N · logN).

Intuitively, M+
2 is obtained by identifying states s1,k and s0,k+1 for each k < N �1 (that is, we

identify all states that have the same number of individuals that are universally considered as good). For
the transitions of M+

2 , we take the transition probabilities as in Fig. A5(a). In doing so, we decrease the
total probability to move either to the left or upwards in each state, while leaving the total probability to
move to the right or downwards unchanged. As a consequence, any trace T+ in M

+
2 can be coupled with

a trace T in M2 such that if T+ is in a state sr+,k+ at time t, and T is in a state sr,k, then r
++k

+  r+k.
Hence, if T

+ has reached s1,N�1 then so did T and the inequality ⌧
+
2 � ⌧2 follows. For M

�
2 we

proceed analogously: we use the same identification of states, but this time the probability to move left
in Fig. A5(b) is larger or equal to the corresponding probability to move left or up in Fig. A4. As a
consequence, ⌧2 � ⌧

�
2 .

Finally, we compute ⌧
+
2 , ⌧�2 . By Eq. [23], we obtain

⌧
+
2 = N(N�1)

✓
1

N�3
+

N � 1

2!(N�3)2
+

1 · 2 · (N�1)(N�2)

3!(N � 3)3
+ · · ·+ 1 · 2 · · · (N�1) · (N�1)(N�2) · · · 1

N !(N � 3)N

◆

=
N(N � 1)

N � 3

✓
1 +

1

2
· N � 1

N � 3
+

1

3
· (N � 1)(N � 2)

(N � 3)2
+ · · ·+ 1

N
· (N � 1)!

(N � 3)N�1

◆

 N(N � 1)2(N � 2)

(N � 3)3

✓
1 +

1

2
+

1

3
+ · · ·+ 1

N

◆
= ⇥(N logN),
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Figure A4: Markov chain M2 = M5. The transition probabilities are normalized by N(N � 1). Self-
loops in non-absorbing states are not shown.
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Figure A5: Markov chains M+
2 and M

�
2 . The transition probabilities are normalized by N(N � 1). By

coupling, ⌧+2 � ⌧2 � ⌧
�
2 .

⌧
�
2 = N(N�1)

✓
1

N�1
+

N � 1

2!(N�1)2
+

1 · 2 · (N�1)(N�2)

3!(N � 1)3
+ · · ·+ 1 · 2 · · · (N�1) · (N�1)(N�2) · · · 1

N !(N � 1)N

◆

� N

 
1 +

1

2
· N � 1

N � 1
+

1

3
· (N � 1)(N � 2)

(N � 1)2
+ · · ·+ 1p

N
· (N � 1) . . . (N �

p
N)

(N � 1)
p
N

!

� N

 
1 +

1

2

N � 1

N � 1
+

1

3

N � 3

N � 1
+ · · ·+ 1p

N

N � 1
2N

N � 1

!
� N · 1

2
·Hp

N � 1

4
N logN = ⇥(N logN),

where we only took the sum of the first
p
N terms and used that 1 + 2 + · · · +

p
N ⇡ 1

2N and that
log

p
N = 1

2 log(N).

Recovery analysis for L4 = L7. The Markov chain M4 = M7 is depicted in Fig. A6.

• Recovery probability: M4 has two absorbing states, s0,0 and s1,N�1, and both states can be reached
with positive probability from any other state. Nevertheless, we show in the following that ⇢4 quickly
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Figure A6: Markov chain M4 = M7. The transition probabilities are normalized by N(N � 1). Self-
loops in non-absorbing states are not shown.
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Figure A7: Markov chains M?
4 and M

0
4. The transition probabilities are normalized by N(N � 1). By

coupling, ⌧4  ⌧
0
4.

approaches 1 as the population size increases, because ⇢4 � 1� 2/(N � 1)!.

To obtain this lower bound for ⇢4, we consider the Markov chain M
?
4 that is obtained from M4 by

erasing states s1,k for k < N�1, and replacing the corresponding transitions of the form s0,k ! s1,k by
self-loops. Formally, we define M

?
4 to be as in Fig. A7(a). For the coupling, note that any time a trace T

in M4 takes a transition of the form s0,k ! s1,k, the corresponding trace T
? in M

?
4 waits until (if ever)

T reaches state sr,k with r = 0 again. At that point, T is to the left of T ? or in the same state. Hence if
T
? ever reaches s1,N�1 then so did T and we have ⇢4 � ⇢

0
4.

Denoting by x the probability of reaching s0,0 from s0,N�2 (before reaching s1,N�1), we have 1�⇢04 =
N�1
N · 0 + 1

N · x = x/N and by Proposition 4 we compute

x =
1 + 1

1 + 1 + 1! + 2! + 3! + · · ·+ (N � 2)!
 2

(N � 2)!

implying that ⇢4 � ⇢
0
4 = 1� x/N � 1� 2/(N � 1)! as desired.
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• Recovery time: since reaching s1,N�1 requires taking at least one non-self-looping transition, we
immediately get ⌧4 � N(N�1)

N�1+1 = N � 1. In the following, we focus on the upper bound. To that end, we
define a simpler Markov chain M

0
4. Intuitively, M 0

4 is obtained by identifying states s1,k and s0,k+1 for
each k < N�2. Since, for each k = 1, . . . , N�2, the Markov chain M4 has the property that

P[s1,k�1 ! s1,k] = P[s0,k ! s1,k] + P[s0,k ! s0,k+1],

the transition probabilities to the left are equal for each pair of identified states. To get an upper bound for
⌧4, for the transition probabilities to the right we take the larger of P[s1,k ! s0,k] and P[s0,k ! s0,k�1].
Formally, we define M

0
4 as in Fig. A7(b). Note that we have defined P[s0,0 ! s0,1] = N , such that M 0

4

has only one absorbing state.

Next let us show that ⌧4  ⌧
0
4. By construction, this is clear for traces that don’t reach state s0,0.

For those that do, we need to show that the expected number s of steps to reach s1,N�1 from s0,0 in M
0
4

satisfies s � ⌧4. This follows from P[s0,0 ! s0,1] in M
0
4 is equal to P[s1,N�2 ! s1,N�1] + P[s1,N�2 !

s0,N�2] in M4: once the trace in M
0
4 transitioned from s0,0, the coupled trace in M4 that started at s1,N�2

either converged directly or transitioned to s0,N�2 which is to the left of s0,0.

Finally, we compute ⌧
0
4 using Eq. [23] again:

⌧
0
4 = N(N � 1)

0

BBB@
1

N � 1
+

1

2!(N � 2)
+

1

3!(N � 3)
+ · · ·+ 1

(N/2)!(N �N/2)
+X1 +X2 + · · ·+XN/2| {z }

Xi 1
(N/2)!

1

CCCA

 N(N � 1)

N/2

✓
1 +

1

2!
+

1

3!
+ · · ·+ 1

(N/2)!

◆
+N(N � 1) · N

2
· 1

(N/2)!| {z }
o(1)

 2(N � 1) · (e� 1) + o(1) = ⇥(N).

where we used that each of the last N/2 terms in the first line is less than 1/(N/2)! and
P1

i=0 1/i! = e.

Recovery analysis for L6 = L8. The Markov chain M6 = M8 is depicted in Fig. A8.

• Recovery probability: Identifying the states s1,k and s0,k+1 for k < N�1, we obtain an equivalent
Markov chain M

0
6 depicted in Fig. A9. Proposition 4 applied to M

0
6 immediately implies

⇢6 = 1� 1

1 + 1 + · · ·+ 1| {z }
N⇥

= 1� 1

N
.

• Recovery time: For M 0
6 we observe that p+k = p

�
k = k(N�k)

N(N�1) . Thus, up to rescaling, the Markov chain
M

0
6 is equivalent to the Moran process under neutral drift (see e.g. 16, Section 4). Denoting by t

a the
expected time until the process in M

0
6 reaches an absorbing state, and by t

b the conditional time given
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Figure A8: Markov chain M6 = M8. The transition probabilities are normalized by N(N � 1). Self-
loops in non-absorbing states are not shown.

. . .N
�
1

2(N � 2) 3(N � 3) (N � 1) · 1N � 1 2(N � 2) 3(N � 3) 4(N � 4) (N � 1) · 14(N � 4)

Figure A9: Markov chain M
0
6 that is equivalent to M6 = M8. The transition probabilities are normalized

by N(N � 1). We have ⇢6 = ⇢
0
6 and ⌧6 = ⌧

0
6.

that it reaches the non-recovering state s0,0, equations [18] and [19] from (16) rescale to

t
a = (N � 1) ·HN�1 and t

b = (N � 1)2.

The probability of absorbing at s1,N�1 is ⇢6 = 1� 1
N . Therefore, ta = (1� 1

N ) · ⌧6 + 1
N · tb, or

⌧6 =
N · ta � t

b

N � 1
= N ·HN�1 � (N � 1) = N ·HN �N,

as desired.

MATLAB scripts

In the following we provide the MATLAB scripts that have been used to generate the data shown in Figs.
1–4 of the main text, and Figs. S1–S9 in this Supporting Information.

Simulating the reputation dynamics for players with given strategies.

function [X,M,MEnd]=SimReputationDynamics(AssRule,ActRule,PopComp,ep,q,nIt);

% Simulates the reputation dynamics as described in Section 1.2.
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% X, Matrix containing the estimated pairwise cooperation frequencies

% M, Estimated average image matrix

% MEnd, Image Matrix in the end of the simulation run.

% AssRule, Matrix that contains all assessment rules present in population

% ActRule, Matrix that contains all action rules present in the population

% PopComp, Vector that specifies how many players use each strategy

% ep, Constant error probability to commit a perception error

% q, Constant probability to observe a third-party interaction

% nIt, number of iterations of the indirect reciprocity game.

%% Setting up the objects

N=sum(PopComp); % N, Size of population

nS=length(PopComp); % nS, Number of different strategies

X=zeros(nS,nS); M=zeros(N,N); MEnd=zeros(N,N); % Initializing the output

MC=ones(N,N); % Current image matrix; initially everyone is good

CP=zeros(N,N); % Matrix that counts all individual cooperation decisions

IN=zeros(N,N); % Matrix that counts all pairwise interactions

xP=ones(1,PopComp(1)); for j=2:nS, xP=[xP, j*ones(1,PopComp(j))]; end

% N-dim vector. The i-th entry is the strategy index of player i.

nCt=nIt/2; % initial transient time that is ignored for computing averages

%% Simulating the interactions

for t=1:nIt

%% Choosing a donor and a recipient and letting them interact

Do=randi(N); % Selecting a donor

Re=Do; while Re==Do, Re=randi(N); end % Selecting a different receiver

aD=ActRule(xP(Do),:); % Getting the donor’s action rule

stD=MC(Do,Do); stR=MC(Do,Re); % Defining the players’ standings

iA=(stD==0)*2+(stR==0)*1+1; cp=(rand(1)<aD(iA)); % cp=1 if donor cooperates

%% Updating the donor’s reputation

for Obs=1:N % Going through all all individuals as potential observers

if Obs==Do | Obs==Re | rand(1)<q % If individual observes interaction

sO=AssRule(xP(Obs),:); % Getting the observer’s assessment rule

stD=MC(Obs,Do); stR=MC(Obs,Re); % Retrieving the players’ standings

if rand(1)<=1-ep % Image update without perception error

iAs=4*(cp==0)+2*(stD==0)+1*(stR==0)+1; MC(Obs,Do)=sO(iAs);

else % Image update with perception error

iAs=4*(cp==1)+2*(stD==0)+1*(stR==0)+1; MC(Obs,Do)=sO(iAs);

end

end

end
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%% Updating the output matrices

if t>nCt% After the initial transient time has passed

CP(Do,Re)=CP(Do,Re)+cp; IN(Do,Re)=IN(Do,Re)+1; % Updating CP and IN

if t==nCt+1 % Updating M

M=MC;

else

M=(t-nCt-1)/(t-nCt)*M+1/(t-nCt)*MC;

end

end

end

%% Calculating output variables by averaging over all players with same strategy

MEnd=MC; % Image matrix in the end is the last current image matrix

Ms=M; M=-ones(nS,nS); % Storing M in Ms, re-initializing M

for i=1:nS % Going through all possible strategies

for j=1:nS

nD=find(xP==i); nR=find(xP==j); % Identifying the respective players

if i˜=j % Updating when the two strategies differ

M(i,j)=mean(mean(Ms(nD,nR)));

X(i,j)=sum(sum(CP(nD,nR)))/sum(sum(IN(nD,nR)));

elseif PopComp(i)>1 % Updating within one strategy, excluding self-interactions

M(i,j)=(sum(sum(Ms(nD,nR))) - sum(diag(Ms(nD,nR))))/(PopComp(i)*(PopComp(i)-1));

X(i,j)=sum(sum(CP(nD,nR)))/sum(sum(IN(nD,nR)));

end

end

end

end

Calculating the selection-mutation equilibrium of the evolutionary dynamics for k=3 different strategies.

function [SMEq,Coop,AvFr,Pop]=CalcSelMutEquilibrium(b,c,mu,s,nr);

% Calculates the selection-mutation equilibrium as specified in Section 2.2

% Input parameters: b benefit of cooperation, c cost of cooperation,

% mu mutation rate, s strength of selection

% nr is a number in {1,..,8}, specifying which leading-eight strategy is considered.

% Output: SMEq vector that gives frequency of each population state in equilibrium.

% Coop Resulting average cooperation rate over course of the game

% AvFr Abundance of each of the three strategies over course of the game

% Pop List of possible population states

% Considers the competition between ALLC, ALLD and an L8-strategy L nr

% Requires as input how often each of theses strategies would...

% cooperate against each other, as estimated by SimReputationDynamics

20



% This program assumes these estimates are stored in the data file ‘Data L[nr].mat’

% This file contains the matrix Pop and the matrix CP.

% The matrix Pop has (N+2)(N+1)/2 rows and 3 columns; each row (n1,n2,n3)...

% gives a possible composition of the population.

% The matrix CP has (N+2)(N+1)/2 rows and 9 columns. Each row again corresponds...

% to a possible population composition. The first three columns represent how...

% often the L[nr] strategy cooperates against each other strategy; columns 4-6...

% represent the corresponding frequencies for ALLC and columns 7-9 give the...

% corresponding values for ALLD.

%% Preparations

DatName=[‘Data L’,num2str(nr),‘.mat’]; load(DatName); % Loading simulation data.

nS=size(Pop,1); % Number of population states.

N=max(Pop(:,1)); % Population size.

[Pay,Coop]=CalcPay(Pop,CP,b,c,nS,N); % Calculates respective payoffs and...

% cooperation rates in each possible population state.

%% Create the transition matrix W as specified in Section 2.2

W=zeros(nS,nS);

for iP=1:nS % Run over all possible previous states

n=Pop(iP,:); % Previous population composition, n=[nL,nC,nD]

% Going through all reachable population compositions

wmp0= n(1)/N * (mu/2+(1-mu)*n(2)/(N-1)/(1+exp(-s*(Pay(iP,2)-Pay(iP,1)))));

% Minus one L-player, plus one C-player

wm0p= n(1)/N * (mu/2+(1-mu)*n(3)/(N-1)/(1+exp(-s*(Pay(iP,3)-Pay(iP,1)))));

% Minus one L-player, plus one D-player

wpm0= n(2)/N * (mu/2+(1-mu)*n(1)/(N-1)/(1+exp(-s*(Pay(iP,1)-Pay(iP,2)))));

% Minus one C-player, plus one L-player

w0mp= n(2)/N * (mu/2+(1-mu)*n(3)/(N-1)/(1+exp(-s*(Pay(iP,3)-Pay(iP,2)))));

% Minus one C-player, plus one D-player

wp0m= n(3)/N * (mu/2+(1-mu)*n(1)/(N-1)/(1+exp(-s*(Pay(iP,1)-Pay(iP,3)))));

% Minus one D-player, plus one L-player

w0pm= n(3)/N * (mu/2+(1-mu)*n(2)/(N-1)/(1+exp(-s*(Pay(iP,2)-Pay(iP,3)))));

% Minus one D-player, plus one C-player

% Inserting the values into the transition matrix

if n(1)>0 % if the number of L[nr] individuals can further decrease

np=[n(1)-1,n(2)+1,n(3)]; iN=find(Pop(:,1)==np(1)&Pop(:,2)==np(2)&Pop(:,3)==np(3));

W(iP,iN)=wmp0;

np=[n(1)-1,n(2),n(3)+1]; iN=find(Pop(:,1)==np(1)&Pop(:,2)==np(2)&Pop(:,3)==np(3));

W(iP,iN)=wm0p;

end

if n(2)>0 % if the number of ALLC individuals can further decrease
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np=[n(1)+1,n(2)-1,n(3)]; iN=find(Pop(:,1)==np(1)&Pop(:,2)==np(2)&Pop(:,3)==np(3));

W(iP,iN)=wpm0;

np=[n(1), n(2)-1,n(3)+1]; iN=find(Pop(:,1)==np(1)&Pop(:,2)==np(2)&Pop(:,3)==np(3));

W(iP,iN)=w0mp;

end

if n(3)>0 % if the number of ALLD individuals can further decrease

np=[n(1)+1,n(2),n(3)-1]; iN=find(Pop(:,1)==np(1)&Pop(:,2)==np(2)&Pop(:,3)==np(3));

W(iP,iN)=wp0m;

np=[n(1),n(2)+1,n(3)-1]; iN=find(Pop(:,1)==np(1)&Pop(:,2)==np(2)&Pop(:,3)==np(3));

W(iP,iN)=w0pm;

end

W(iP,iP)=1-wmp0-wm0p-wpm0-w0mp-wp0m-w0pm;

end

v=null(W’-eye(nS,nS)); % Calculating left eigenvector of W with respect to EV 1

SMEq=v/sum(v); % Selection-mutation equilibrium is the normalized vector v

Coop=Coop*SMEq; % Average cooperation rates across all population states

AvFr=Pop’*SMEq/N; % Average abundance of each strategy across all states

end

function [Pay,Coop]=CalcPay(Pop,CP,b,c,nS,N);

% Subroutine that calculates the payoff for each of the three strategies...

% and the average cooperation rate for all possible population compositions.

% Required input: Pop, Matrix of all possible population compositions

% CP, Matrix containing the estimated pairwise cooperation frequencies

% b,c, benefit and cost of cooperation, nS, number of population states

% N, population size.

Pay=zeros(nS,3); Coop=zeros(1,nS);

for st=1:nS % going through all possible population compositions

MC=[CP(st,1:3); CP(st,4:6); CP(st,7:9)]; % Reconstructing the image matrix

for i=1:3, for j=1:3, % Replacing irrelevant NaN’s in image matrix

if MC(i,j)>=0; else MC(i,j)=-1; end, end

end

n=Pop(st,:); cp=0; % n, current population state, cp, current cooperation rate

for iS=1:3

if n(iS)>0

n1=n(1)-(iS==1); n2=n(2)-(iS==2); n3=n(3)-(iS==3);

% Remaining population from perspective of player iS

Pay(st,iS)=(MC(1,iS)*n1+MC(2,iS)*n2+MC(3,iS)*n3)/(N-1)*b - ...

(MC(iS,1)*n1+MC(iS,2)*n2+MC(iS,3)*n3)/(N-1)*c;

% Estimated payoffs according to Eq.[8]

cp=cp+n(iS)/N*(MC(iS,1)*n1+MC(iS,2)*n2+MC(iS,3)*n3)/(N-1);

% Updating the average cooperation rate end
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end

Coop(st)=cp;

end

end

Calculating the selection-mutation equilibrium of the evolutionary dynamics for rare mutations.

function [SMEq,Coop,FXP]=CalcEqRareMutations(b,c,s,N,ep,q,nr,nIt);

% Calculates the selection-mutation equilibrium as specified in Section 2.3

% Input parameters: b benefit of cooperation, c cost of cooperation,

% s strength of selection, nr index of considered leading-eight strategy.

% N population size, ep error probability, q observation probability

% nr index of the considered leading-eight strategy % nIt number of rounds used

in SimReputationDynamics

% Output: SMEq vector for frequency of each homogeneous population in equilibrium.

% Coop Resulting average cooperation rate

% AvFr Abundance of each of the three strategies

% FXP Matrix that contains all pairwise fixation probabilities

%% Obtain the pairwise cooperation probabilities using SimReputationDynamics

AssR=[1 1 1 1 0 1 0 0;

1 0 1 1 0 1 0 0; % Consistent Standing

1 1 1 1 0 1 0 1; % Simple Standing

1 1 1 0 0 1 0 1;

1 0 1 1 0 1 0 1;

1 0 1 0 0 1 0 1; % Stern

1 1 1 0 0 1 0 0; % Staying

1 0 1 0 0 1 0 0]; % Judging

% Assessment rules of leading-eight strategies

ActR=[1 0 1 1;

1 0 1 1;

1 0 1 0;

1 0 1 0;

1 0 1 0;

1 0 1 0;

1 0 1 0;

1 0 1 0];

% Action rules of leading-eight strategies

AssC=[1 1 1 1 1 1 1 1]; AssD=[0 0 0 0 0 0 0 0];

ActC=[1 1 1 1]; ActD=[0 0 0 0];

% Assessment and action rules for ALLC and ALLD

[CPC,kvec]=GetPairwiseRepData([AssR(nr,:); AssC],[ActR(nr,:); ActC],N,ep,q,nIt);
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% Getting estimated cooperation probabilities when L[nr] competes with ALLC

% for each combination [N-k k] of L[nr] and ALLC players, with k given by kvec

[CPD,kvec]=GetPairwiseRepData([AssR(nr,:); AssD],[ActR(nr,:); ActD],N,ep,q,nIt);

% Getting estimated cooperation probabilities when L[nr] competes with ALLD

FXP=zeros(3,3); k=kvec’;

%% Calculating pairwise fixation probabilities: L[nr] vs ALLC

PayL=(CPC(:,1).*(N-k-1)+CPC(:,3).*k)/(N-1)*b-(CPC(:,1).*(N-k-1)+CPC(:,2).*k)/(N-1)*c;

PayC=(CPC(:,2).*(N-k)+CPC(:,4).*(k-1))/(N-1)*b-(CPC(:,3).*(N-k)+CPC(:,4).*(k-1))/(N-1)*c;

% Calculating the expected payoffs of the two strategies

RhoC=CalcFixProb(PayC,PayL,s);

RhoL=CalcFixProb(PayL(end:-1:1),PayC(end:-1:1),s);

FXP(1,2)=RhoC; FXP(2,1)=RhoL;

% Calculating and storing fixation probabilities using a subroutine

%% Calculating pairwise fixation probabilities: L[nr] vs ALLD

PayL=(CPD(:,1).*(N-k-1)+CPD(:,3).*k)/(N-1)*b-(CPD(:,1).*(N-k-1)+CPD(:,2).*k)/(N-1)*c;

PayD=(CPD(:,2).*(N-k)+CPD(:,4).*(k-1))/(N-1)*b-(CPD(:,3).*(N-k)+CPD(:,4).*(k-1))/(N-1)*c;

% Calculating the expected payoffs of the two strategies

RhoD=CalcFixProb(PayD,PayL,s);

RhoL=CalcFixProb(PayL(end:-1:1),PayD(end:-1:1),s);

FXP(1,3)=RhoD; FXP(3,1)=RhoL;

% Calculating and storing fixation probabilities using a subroutine

%% Calculating pairwise fixation probabilities: ALLC vs ALLD

PayC=b*(k-1)/(N-1)-c; PayD=b*k/(N-1); % Does not require estimated payoffs

RhoC=CalcFixProb(PayC,PayD,s);

RhoD=CalcFixProb(PayD(end:-1:1),PayC(end:-1:1),s);

FXP(2,3)=RhoD; FXP(3,2)=RhoC;

%% Calculating the output

T=FXP/2; for i=1:3, T(i,i)=1-sum(T(i,:)); end % Constructing the transition matrix

v=null(T’-eye(3)); SMEq=v’/sum(v); % Calculating the selection-mutation equilibrium

CPL=SimReputationDynamics(AssR(nr,:),ActR(nr,:),N,ep,q,nIt); % Cooperation of

Leading-Eight against itself

Coop=SMEq*[CPL;1;0];

end

function pij=CalcFixProb(PayM,PayR,s);

% Calculates fixation probability according to Eq.[21]

z=exp(-s*(PayM-PayR));

pij=1/(sum(cumprod(z))+1);

end
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function [CP,kvec]=GetPairwiseRepData(AssRule,ActRule,N,ep,q,nIt);

% Considers population with 2 strategies only, AssRule and ActRule have two rows

% kvec=1:N-1 counts how many players with strategy 2 are in population

% CP is an (N-1)x4 dim matrix. Each row corresponds to a population composition

% as defined through the vector k. Each entry cp ij of a row specifies

% how often an i player would cooperate with a j player, in the following

% format: cp11, cp12, cp21, cp22.

kvec=1:N-1; CP=zeros(N-1,4);

for i=1:N-1

k=kvec(i);

PopComp=[N-k k];

X=SimReputationDynamics(AssRule,ActRule,PopComp,ep,q,nIt);

CP(i,:)=[X(1,1), X(1,2), X(2,1), X(2,2)];

end

end

25



References

[1] Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005).
[2] Sigmund, K. The Calculus of Selfishness (Princeton Univ. Press, 2010).
[3] Sigmund, K. Moral assessment in indirect reciprocity. Journal of Theoretical Biology 299, 25–30

(2012).
[4] Ohtsuki, H. & Iwasa, Y. The leading eight: Social norms that can maintain cooperation by indirect

reciprocity. Journal of Theoretical Biology 239, 435–444 (2006).
[5] Ohtsuki, H. & Iwasa, Y. How should we define goodness? – Reputation dynamics in indirect

reciprocity. Journal of Theoretical Biology 231, 107–20 (2004).
[6] Traulsen, A., Nowak, M. A. & Pacheco, J. M. Stochastic dynamics of invasion and fixation. Phys-

ical Review E 74, 011909 (2006).
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Figure S1: The average images players have of each other converge over time. While Fig. 2 provides
a snapshot of the reputation dynamics at a particular point in time, here we show how often players
consider any other player as good on average. While ALLC players deem everyone as good and ALLD
players deem everyone as bad, independent of the error rate, the leading-eight strategies differ in their
assessments. Typically, a leading-eight player is most likely to consider ALLC players as good, followed
by other leading-eight players and by ALLD. Whether the leading-eight strategy can resist invasion
by ALLC or ALLD depends on the differences in the average image, and on the cost and benefit of
cooperation. This figure uses the same parameters as in Fig. 2. The depicted numbers represent average
values over the second half of 2 · 106 rounds of the game. Results for all strategies but L7 are robust with
respect to starting from a different initial image matrix.
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Figure S2: The emergence of apparent misjudgments among leading-eight players. As the game
proceeds, it may occur that an ALLD player is considered as good by all leading-eight players (A), or
that a leading-eight player is considered as bad by all other leading-eight players (B). Here we present
stylized situations in which these cases occur. (A) For half of the leading-eight strategies (L3 – L6),
an ALLD player can acquire a good reputation by defecting against another ALLD player. (B) When
information is private and noisy, leading-eight strategies may disagree on the current reputation of a
co-player. Here we show a case in which initially, player 3 is the only leading-eight player who deems
player 5 as bad. If these two players are chosen for the next interaction, with player 3 as the donor,
player 3 defects and acquires a bad reputation among her fellow leading-eight strategists.
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Figure S3: The leading-eight strategies differ in their ability to recover from a single disagree-

ments. (A) We consider a homogeneous population in which everyone applies the same leading-eight
strategy. Initially, all players are assumed to have a good reputation; only player 1 considers player 2
as bad. We derive analytical results for the reputation dynamics under the assumption that no more per-
ception errors occur. We say the population recovers from a single disagreement, if it reaches the state
where all players have a good reputation again. This is an absorbing state for all leading-eight strategies.
We are interested in how likely the population recovers, and how long it takes until recovery. We find
that only for four of the eight strategies, recovery is guaranteed (see SI Section 1.3). (B) With respect
to the time until recovery, there are three cases. For four of the leading-eight strategies, recovery occurs
quickly, and the recovery time is approximately linear. For all other strategies, including L2, we show
that recovery may take substantially more time, being of order N logN . (C) Also with respect to the
expected number of defections until recovery, we observe three different qualitative behaviors. For four
of the leading-eight strategies, a single perception error typically triggers no further defections, provided
the population is sufficiently large. On the other extreme, for L6 and L8 we observe that any initial
disagreement triggers on average one further defection.
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Figure S4: Even rare perception errors render full cooperation impossible under “Stern” (L6) or

“Judging” (L8). We have simulated how often individuals cooperate if everyone in the population ap-
plies the same leading-eight strategy. The emerging cooperation rates depend on which leading-eight
strategy is chosen and how often perception errors occur. For L6 and L8 we find that even rare percep-
tion errors undermine cooperation. Among the other six strategies, L2 and L5 are more susceptible to
the noise introduced by perception errors than the other four strategies. Simulations were run with a
population size of N=50, assuming complete observation, q=1.
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Figure S5: Stability of each leading-eight strategy against invasion by ALLC and ALLD. We con-
sider a population of N�1 players adopting one of the leading-eight strategies, and we explore whether
either a single ALLD mutant or an ALLC mutant gains at least the payoff of the residents. To this end,
we vary the benefit of cooperation (x-axis) and the probability of perception errors (y-axis). Parameter
regions in which ALLD can invade are depicted in dark grey, whereas parameter regions in which ALLC
can invade are shown as light grey. Only in the colored region, the respective leading-eight strategy is
stable against invasion by either ALLC or ALLD. Except for L2 and L5, we find that most leading-eight
strategies are either unstable (F and H), or they only resist invasion in a small subset of the parameter
space (A,C,D,G). Parameters: N=50, c=1, q=0.9.
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Figure S6: Stability against ALLC and ALLD does not imply stability against all mutant invasions.

We consider a resident population that either applies the leading-eight strategy L1 (A), L2 (B), or L7 (C).
For each resident population, we consider 14 possible mutant strategies, including ALLD (black), ALLC
(dark grey) and the twelve strategies that differ from the resident in only one bit (light grey). For different
benefit values, we plot the payoff advantage ⇡M�⇡R of a single mutant among N�1 residents. If for
a given b-value there is a line in the upper half of the panel, the resident strategy can be invaded by the
respective mutant. We find that even in the parameter region where a leading-eight strategy can resist
invasion by ALLC and ALLD, other mutant strategies may be able to invade. For example, L2 can resist
invasion by ALLD for b & 1.5, and invasion by ALLC if b . 5. In between, for 1.5  b  5 there is a
different mutant strategy that can invade. This mutant coincides with L2, except that it assesses a good
donor who defects against a bad recipient as bad. Similar cases of successful mutants different from
ALLC and ALLD also exist for L1 and L7. Parameters: N=50, c=1, q=0.9, " = 0.05.
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Figure S7: When mutations are sufficiently frequent, three of the leading-eight strategies can main-

tain cooperation in coexistence with ALLC. In the main text we have presented evolutionary results in
the limit of rare mutations. In this limit, populations are homogeneous most of the time, rendering stable
coexistences of multiple strategies impossible. Here, we present results for non-vanishing mutation rates
when players can choose between a leading-eight strategy, ALLC, and ALLD. The possible population
compositions are represented by a triangle. The corners of the triangle correspond to homogeneous pop-
ulations, whereas interior points yield the corresponding mixed populations. The colors indicate how
often the respective region of the state space is visited by the evolutionary process. (A,B,G) For the
considered parameter values, we find that in three cases, a stable coexistence between a leading-eight
strategy and ALLC can maintain cooperation for a considerable fraction of time. (C–F) In four cases,
we find that populations typically find themselves in the vicinity of ALLD. (H) In the presence of noise,
there is neutral drift between L8 and ALLD. Along that edge, no player cooperates. Parameters are the
same as in Fig. 3, but with a strictly positive mutation rate µ=0.01.
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Figure S8: Cooperation is most likely to evolve for high benefit-to-cost ratios and when mutations

are sufficiently frequent. To explore the robustness of our findings, we have systematically varied three
key parameters of our model, the benefit b, the selection strength s, and the mutation rate µ. For each
combination of parameter values, we have simulated the evolutionary process between ALLC, ALLD,
and Li, for each of the leading-eight strategies Li. The figure shows the resulting cooperation rates.
We recover that for usual b/c-ratios, sufficiently strong selection, and rare mutations, there are only
three leading-eight strategies that can maintain some cooperation. Surprisingly, the maximum amount
of cooperation is achieved for intermediate mutation rates, 0.01  µ  0.1. Here we observe relatively
stable coexistences between ALLC and either L1 or L7. Baseline parameters: b=5, s=1 and µ=0.01;
all other parameters are the same as in Fig. S7.
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Figure S9: Evolutionary abundance of the leading-eight strategies across different parameter

regimes. This figure considers the same scenario as Fig. S8, but it depicts the abundance of each strategy
in the selection-mutation equilibrium. The abundance of ALLC is depicted in light grey, ALLD is shown
in dark grey, and for the leading-eight strategy we use the respective color. In three cases (for L1, L2,
L7) we observe that ALLC is played with positive frequency even as the selection strength s increases.
In these cases, ALLC typically coexists with a majority of players who apply the leading-eight strategy.
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