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Evolution of cooperation in stochastic games
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Social dilemmas occur when incentives for individuals are 
misaligned with group interests1–7. According to the ‘tragedy of 
the commons’, these misalignments can lead to overexploitation 
and collapse of public resources. The resulting behaviours can 
be analysed with the tools of game theory8. The theory of direct 
reciprocity9–15 suggests that repeated interactions can alleviate 
such dilemmas, but previous work has assumed that the public 
resource remains constant over time. Here we introduce the idea 
that the public resource is instead changeable and depends on 
the strategic choices of individuals. An intuitive scenario is that 
cooperation increases the public resource, whereas defection 
decreases it. Thus, cooperation allows the possibility of playing a 
more valuable game with higher payoffs, whereas defection leads 
to a less valuable game. We analyse this idea using the theory of 
stochastic games16–19 and evolutionary game theory. We find that 
the dependence of the public resource on previous interactions can 
greatly enhance the propensity for cooperation. For these results, 
the interaction between reciprocity and payoff feedback is crucial: 
neither repeated interactions in a constant environment nor single 
interactions in a changing environment yield similar cooperation 
rates. Our framework shows which feedbacks between exploitation 
and environment—either naturally occurring or designed—help to 
overcome social dilemmas.

The tragedy of the commons leads to the question of how to manage 
and conserve public resources1–8. Any solution to this problem requires 
an understanding of which processes drive human cooperation and 
how institutions, norms and other feedback mechanisms can be used 
to reinforce positive behaviours20. These questions are often explored 
by analysing stylized social dilemmas, such as the public goods game21 
or the collective-risk dilemma22, that provide valuable insights into the 
dynamics of cooperation in controlled settings. When subjects interact 
in such games over multiple rounds, it is typically assumed that the 
public good remains constant in time, independent of the outcome of 
previous interactions9–15. Here, we explore the emergence of reciprocity 
when strategic choices in one round affect game payoffs in subsequent 
rounds. We introduce a framework that allows us to capture the idea that 
humans affect and are affected by the value of the public resource, and 
that they are able to anticipate and to adapt to such endogenous changes.

Our approach is based on the theory of stochastic games16,17. A 
group of players can find itself in one of multiple states (Fig. 1). The 
different states capture how the present physical or social environment 
affects the feasible actions of the players and their payoffs. The theory of  
stochastic games16–19 has applications in computer science23,24, industrial  
organization, capital accumulation and resource extraction17.

We consider stochastic games where, in each state, players interact in a 
social dilemma with different payoff values. The decision by the players  
of whether to cooperate or to defect not only affects their current  
payoffs but also the game that will be played in the next round. In 
Fig. 1 we illustrate a scenario that reflects the tragedy of the commons. 
Mutual cooperation improves the quality of the public resource, leading  
the players to interact in game 1 with comparably high payoffs. Partial 
defection leads to a deterioration of the resource; players move to 
game 2 where payoffs are lower. The stochastic game is played for 

many rounds. Transitions between different states can be stochastic or 
deterministic, state-dependent or state-independent. The well-studied 
framework of repeated games is a special case of stochastic games with 
only one state.

The effect of changing environments on evolutionary dynamics has 
been explored previously in one-shot, non-repeated games, not using 
the theory of stochastic games25–29 (see Supplementary Information, 
section 1.1). In some scenarios, the co-evolution of the players’ strategies  
and their environment can lead to oscillations between cooperators 
and defectors27,28. But if cooperators are at a disadvantage in every 
environment, environmental feedback is ineffective to prevent coop-
erators from going extinct (Supplementary Information). One-shot 
models assume that players consider only their present payoff when 
making strategic choices. In stochastic games, players take a long-term 
perspective instead. To find optimal strategies, they need to consider 
how their actions affect the response of their opponents and the future 
state of the environment. As we show, this interplay between reciprocity 
and payoff feedback can be crucial for cooperation.

Traditionally, work on stochastic games considers rational players 
who can employ arbitrarily complex strategies, but does not focus on 
the dynamics of how players adapt their strategies. We introduce an  
evolutionary perspective to stochastic games. Players do not need to act 
rationally, but instead they experiment with available strategies and imitate  
others depending on success30. We use simple strategies that are easy to 
implement and to interpret8. Such an evolutionary set-up has proved 
useful to understand the dynamics of cooperation in repeated games8–13.

We first study a stochastic game with two states (Fig. 2). Individuals 
use pure ‘memory one’ strategies whereby a player’s move depends 
on only the present state and the outcome of the previous round 
(see Methods and Supplementary Information for details). We compare 
the stochastic game with the two associated repeated games where the 
same game occurs every round (Fig. 2). We consider two-player inter-
actions that represent prisoner’s dilemmas, as well as n-player public- 
goods games. In both cases, cooperation entails a cost c > 0. In the 
prisoner’s dilemma, cooperation yields a benefit bi > c to the co-player, 
where bi depends on the state i. In the public goods game, aggregated 
costs are multiplied by a factor ri (with 1 < ri < n depending on state i),  
and redistributed among all players. Game 1 is more profitable than 
game 2 if b1 > b2 or r1 > r2. Players find themselves in game 1 only if 
everyone has cooperated in the previous round. Our simulations show 
that this feedback can boost cooperation markedly. For reasonable  
parameters, the stochastic game populations adapt quickly towards full 
cooperation, although neither of the two repeated games alone yields 
substantial cooperation levels.

In the stochastic game, cooperation evolves because defectors lose 
out twice: once, because they risk receiving less cooperation from recip-
rocal co-players in future and second, because players collectively move 
towards a less beneficial game. The stochastic game is most effective in 
boosting cooperation if the benefit in game 1 is intermediate (Extended 
Data Fig. 1). If b1 is too low, the double loss present in the stochastic 
game is not sufficient to incentivize mutual cooperation, whereas if b1 is 
high, players cooperate in the first game anyway. Stochastic games can 
lead to cooperation even if all individual repeated games fail.
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We derive a condition for the stability of cooperation in stochastic 
games with two states and state-independent transitions. A numerical 
analysis for the two-player case suggests that full cooperation emerges 
when win-stay lose-shift9 (WSLS) becomes stable (Extended Data 
Figs. 2, 3). This strategy prescribes cooperation in the next round if 
and only if both players used the same action in the previous round. In 
a conventional repeated prisoner’s dilemma, WSLS is a Nash equilib-
rium if b ≥ 2c (ref. 8). In the stochastic game, WSLS is an equilibrium if

− + − + ≥q q b q q b c(2 ) (1 2 ) 2 (1)2 0 1 2 0 2

where the parameters qi refer to the conditional probability that the 
players will be in game 1 in the next round given that i of them have 
cooperated in the present round. If mutual cooperation leads to game 
1 and mutual defection to game 2, then q2 = 1 and q0 = 0. Therefore, 
WSLS is stable if 2b1 − b2 ≥ 2c. Because b1 > b2, this condition is 
easier to satisfy than the respective conditions for the two associated 
repeated games.

The condition in equation (1) highlights the fact the that the stability 
of cooperation depends on how the states change given the players’ 
decisions. To explore the effect of this exogenous feedback system-
atically, we perform simulations for all eight deterministic and state- 
independent two-state games (Extended Data Fig. 2). In six of the eight 
cases, players spend more time in the profitable game 1. But only in 

two of them do players actually cooperate. In line with equation (1), 
cooperation evolves only if q2 = 1 and q0 = 0, with q1 being irrelevant. 
Stochastic games are most effective in promoting cooperation if mutual 
cooperation improves the public good while mutual defection deterio-
rates it—a natural scenario. Analogous conclusions hold for multiplayer 
interactions (Extended Data Figs. 4, 5).

Probabilistic transitions can further enhance the evolution of coop-
eration. In Fig. 3a, mutual cooperation in game 2 leads back to game 
1 with probability q. The optimal value of q is intermediate: players 
should have some chance to return to the better state, but it should not 
be too easy (see also Extended Data Fig. 6). In Fig. 3b, the length of the 
game is not exogenously given, but affected by the players’ decisions. 
Individuals start in state 1, in which they play a conventional prisoner’s 
dilemma; if one or both players defect, then there is some probability  
q that players move towards state 2, in which no further profitable 
interactions are possible. This form of environmental feedback pro-
motes cooperation; payoffs become maximal for small but positive q 
(Extended Data Fig. 7). In Fig. 3c we consider a model with timeout. 
Defection leads to a temporal state in which no profitable interactions 
are possible. The return probability to the regular game is q. We derive 
adaptive dynamics for simple reactive strategies (x, y), where x denotes 
the cooperation probability after having been in state 1 previously and 
y is the cooperation probability after having been in timeout. We find 
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Fig. 1 | In stochastic games, the decisions made by players in one round 
determine the game that will be played next round. a, For example, 
if some players defect in a public-goods game, then the environment 
could deteriorate and thereby reduce the value of the public good. If all 
cooperate, then the environment could recover and the original value of 
the public good might be restored. The different states of the environment 
correspond to the different games that can be played. In this illustration, 
we show two public-goods games with r1 > r2. b, A stochastic game 
is deterministic if the players’ actions and the current game uniquely 
determine the game that will be played next round. It is state-independent 
if the game in the next round depends on only the players’ actions, not the 
current game (state). Thus, we distinguish four different types of stochastic 
game, depending on whether transitions are deterministic or probabilistic 
(where p and 1 – p indicate the probability of making the respective 
transition), and whether they are state-independent or state-dependent. 
We note that even a game that involves only deterministic transitions is 
referred to as a ‘stochastic’ game, because it represents a special case of the 
framework.
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Fig. 2 | Stochastic games can promote cooperation even if all individual 
games favour defection. a, b, We study the repeated prisoner’s dilemma, 
which is a two-player game (a), and the repeated public-goods game 
(PGG), which is interpreted here as a four-player game (b). In both cases, 
the first game has a higher benefit from cooperation than the second game. 
Arrows represent the possible transitions, and the arrow labels indicate 
the number of co-operators (‘C’) required for the respective transition. 
The two-player games are represented by their payoff matrices. In the 
stochastic game, if all players cooperate then the next round will be the 
first game, but if some players defect (‘D’) then the next round will be the 
second game. In the standard repeated games, the same game is used in 
every round. An analysis based on evolutionary dynamics reveals that 
each of the standard repeated games fails to support cooperation, whereas 
the stochastic game favours cooperation. The time axis corresponds 
to the number of mutant strategies introduced into the population 
(see Methods). Parameter values: a, b1 = 2, b2 = 1.2, c = 1; b, r1 = 1.6, 
r2 = 1.2, c = 1.
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that the fully cooperative strategy (1, 1) can become stable, although 
unconditional cooperation is never stable in a conventional repeated 
prisoner’s dilemma.

Next we explore the ideal feedback between game payoff and strategic 
choice. We consider a stochastic game with four players and five states. 
Defection by a subgroup of players has an immediate, gradual or delayed 
negative impact on the benefits of cooperation, or no effect (Fig. 4). We 
obtain the highest cooperation rates for immediate negative impact. 
The intuitive explanation is as follows: maximum cooperation arises 
if the players are most incentivized to cooperate in the most valuable  
game. In the immediate scenario, any deviation from cooperation in 

game 1 leads to a game with the lowest payoff. Interestingly, even the 
scenario with a delayed response promotes higher cooperation rates 
than the game in which the public good remains unchanged across all 
states. The lowest cooperation rates are obtained when the benefits of 
cooperation are high in all five games. We obtain similar conclusions for 
a state-dependent game in which it takes several successive rounds of 
mutual defection to end up in the worst state (Extended Data Figs. 8, 9).

Direct reciprocity is a mechanism for the evolution of cooperation 
based on repeated interactions. The standard assumption has been that 
the same game, with the same payoff, is played again and again. We 
have introduced the concept that the game payoff changes in different 
rounds. We explore cases in which cooperation leads to a more valuable 
game next round and defection to a less valuable one. Surprisingly, 
we find that this setting boosts cooperation markedly. In the resulting 
stochastic game, cooperation can prevail even if it is unsuccessful in 
all individual repeated games. Our observations suggest how naturally 
occurring or designed feedback can promote cooperation. A tragedy of 
the commons can be avoided if the environment deteriorates (rapidly) 
as a consequence of defection. Likewise, cooperation is boosted if there 
is the prospect of playing for higher gains should the current coopera-
tion succeed. The evolutionary analysis of stochastic games represents 
a new tool for understanding and influencing human decision-making 
in social dilemmas.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0277-x.
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METHODS
Here we summarize our general framework and the methods that we used. Further 
details are provided in Supplementary Information.
Stochastic games. To describe a stochastic game fully, we need to specify five 
objects: (i) the set of players N , (ii) the set of possible states S, (iii) the set of actions 
A(si) that are available to each player in a given state si, (iv) the transition function 
Q that describes how the current state of the environment and the players’ actions 
in a given round determine the state in the next round, and (v) a payoff function 
u that describes how the payoffs of the players in a given round depend on the 
players’ actions and on the present state. The framework of stochastic games does 
not specify how much time passes between consecutive rounds, nor does it restrict 
the payoffs that are available in each round. The respective model parameters need 
to be chosen with respect to the specific application (see Supplementary 
Information for a detailed description of the framework and how it applies to 
specific examples). Here we have considered scenarios in which players face a strict 
social dilemma in each state, but the framework can easily be adapted to more 
general payoff constellations (Extended Data Fig. 10).

Throughout the main text, we considered simple examples of stochastic games. 
Players can choose between cooperation and defection, and thus their action set 
is {C, D} for each state. Transitions are symmetric: the transition function Q does 
not depend on which of the players has cooperated or defected. The payoffs per 
round are symmetric and in the two-player case given by payoff matrices. The 
payoff of a player in the stochastic game is defined as the player’s discounted payoff 
per round over infinitely many rounds. Initially, players are in state 1. Here we 
focus on stochastic games that take place in discrete time, but continuous-time 
stochastic games have also been considered31 (see Supplementary Information 
for a more detailed discussion).
Memory-one strategies. In general, strategies for stochastic games can be arbi-
trarily complex. A player’s action in a given round may depend on the present state 
and on the whole previous history. To facilitate an evolutionary analysis, we focus 
on comparably simple strategies32–39: players take into account only the present 
state and the outcome of the previous round. For n-player games with m states, 
such ‘memory one’ strategies can be written as a 2nm-dimensional vector =p p( )a j

i
, , 

with i ∈ {1, 2, …, m}, j ∈ {0, 1, …, n − 1} and a ∈ {C, D}. Each entry pa j
i
,  represents 

the player’s probability of cooperating in a given round, given that the present state 
is si and that in the previous round the focal player chose action a ∈ {C, D}, while 
j of the n − 1 other group members cooperated. In Supplementary Table 1, we 
present several examples of memory-one strategies for stochastic games.

When all players use memory-one strategies, the dynamics of a stochastic game 
can be described by a Markov chain with m2n possible states (s1, C, …, C), …,  
(sm, D, …, D). In this notation, the first entry refers to the state of the public good in 
a given round and the other n entries refer to the players’ actions. Using the theory 
of Markov chains, we compute the players’ expected payoffs (see Supplementary 
Information).
Evolutionary dynamics. To describe how individuals adopt new strategies over 
time, we consider a standard imitation process30. There is a population of size N. 
Each member of the population is equipped with a memory-one strategy that 
prescribes how the individual plays the stochastic game. In each evolutionary time 
step, every player interacts with every other player to derive a payoff from the 
stochastic game. Then, two individuals are drawn randomly from the population, 
a learner and a role model. The payoffs of those two individuals are πL and πR, 
respectively. The learner adopts the strategy of the role model with probability 
ρ = / + β π π− −1 [1 e ]( )R L . The parameter β ≥ 0 corresponds to the intensity of  

selection. For β = 0, we have random drift. For β > 0, imitation events are biased 
in favour of strategies that yield higher payoffs. In addition to imitation events, we 
allow for random strategy exploration, which corresponds to mutations: with prob-
ability µ an individual adopts a randomly chosen memory-one strategy instead of 
imitating a co-player. We analyse the ergodic mutation–selection process using 
computer simulations. We obtain exact numerical results when exploration events 
are rare.
Specific methods used for individual figures. Except for the results in Fig. 3c, 
the main text considers examples in which players use pure memory-one  
strategies, subject to small errors (such that pa j

i
,  is either ε or 1 − ε, with ε = 0.001). 

Further simulations using stochastic memory-one strategies confirm that the 
respective results are robust (Extended Data Fig. 1b). Except for the stochastic 
game in Fig. 3b, we assume that future payoffs are not discounted, δ → 1. For the 
evolutionary trajectories of Fig. 2, we averaged over 100 simulations for the sce-
nario with rare mutations. Our numerical results use population size N = 100, 
intermediate selection (β = 1) for pairwise games and strong selection for  
multiplayer games (β = 100 in Fig. 2b and β = 10 in Fig. 4). Our qualitative 
findings are robust with respect to parameter changes (Extended Data Fig. 1). For 
the results in Fig. 3a, b and 4 we report exact results in the limit of rare muta-
tions40. Figure 3c shows the phase portrait of adaptive dynamics8 for the game 
with timeout; the corresponding differential equation is derived in Supplementary 
Information.
Code availability. All simulations and numerical calculations were performed with 
MATLAB R2014A. In Supplementary Information (see appendix), we provide an 
algorithm that can be used to calculate payoffs in stochastic games with n players 
and two states. All other scripts are available from the authors on request or at 
https://doi.org/10.5281/zenodo.1287718.
Data availability. The raw data generated, which were used to create Figs. 2–4, 
have been uploaded along with the MATLAB code and are available at https://doi.
org/10.5281/zenodo.1287718.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | Our findings are robust with respect to 
parameter changes. To test the robustness of our findings, we consider 
the stochastic game introduced in Fig. 2a and independently vary several 
key parameters. a, b, When we vary the benefit of cooperation in state 
1, we find that the advantage of the stochastic game is most pronounced 
when this benefit is intermediate, 1.5 ≤ b1 ≤ 2.5. This conclusion holds 
independently of whether individuals use pure strategies only (a) or 
stochastic ones (b). c–f, We obtain similar results when we vary the error 
rate ε (c), the strength of selection β (d), the discount factor δ (e) and the 

mutation rate µ (f). In all cases, we observe that stochastic games yield a 
cooperation premium, provided that errors are sufficiently rare, selection 
is sufficiently strong, players give sufficient weight to future payoffs 
and mutations are comparably rare. Solid lines indicate exact results in 
the limit of rare mutations, whereas square symbols and dashed lines 
represent simulation results (see Supplementary Information for details). 
Filled circles highlight the results obtained for the parameters in Fig. 2a. 
As default parameters, we used the same values as in Fig. 2a: N = 100, 
b1 = 2.0, b2 = 1.2, c = 1, β = 1, ε = 0.001, δ → 1 and µ → 0.
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Extended Data Fig. 2 | Whether cooperation evolves in two-player 
games depends critically on the form of the environmental feedback. 
Keeping the game parameters fixed at the values used in Fig. 2a, we 
explored how the evolution of cooperation depends on the underlying 
transition structure of the stochastic game in the limit of rare mutations 
(see Supplementary Information). a–h, We calculated the selection–
mutation equilibrium for all possible stochastic games with two states 
when transitions are state-independent and deterministic. i, Overall, six 
of the eight transition structures lead players to spend more time in the 

more profitable state 1, in which mutual cooperation has a higher benefit. 
j, However, cooperation evolves in only two out of these six transition 
structures. These two structures have in common that mutual cooperation 
always leads to the beneficial state 1, whereas mutual defection leads 
to the detrimental state 2. Thus, cooperation is most likely to evolve if 
the environmental feedback itself incentivizes mutual cooperation and 
disincentivizes mutual defection. The transitions after unilateral defection 
have a less prominent role.
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Extended Data Fig. 3 | Analysis of the evolving strategies suggests that 
the evolution of cooperation hinges on the success of WSLS. Here, 
we consider all state-invariant and deterministic stochastic games with 
two states and two players. a–h, For each of the eight possible cases, we 
recorded the evolving cooperation rate (lower plots) and the relative 
abundance of each pure memory-one strategy (upper plots) for different 
values of b1. For clarity, we depict only two memory-one strategies 
explicitly, All D (the strategy that prescribes to always defect) and WSLS. 
The colour-shaded bars on top of the upper plots show parameter regimes 

in which either All D or WSLS is most abundant among all 16 strategies. 
In four of the eight cases, we observe that full cooperation evolves as the 
benefit to cooperation in state 1 approaches b1 = 3. These are exactly 
the cases in which mutual cooperation leads players towards the more 
beneficial state 1. Moreover, in these four cases the upper plots show 
that cooperation emerges owing to the success of WSLS, which is the 
predominant strategy whenever cooperation prevails. Except for the value 
of b1, all other parameter values are the same as in Extended Data Fig. 2.
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Extended Data Fig. 4 | Effect of transitions on cooperation in four-
player public-goods games. We also explored the effect of different 
transition structures for stochastic games between multiple players (with 
a public-goods game being played in each state). State 1 is again more 
beneficial because r1 > r2, but to be in state 1 there must be a minimum 
number k of cooperators in the previous round. a–f, For a four-player 
public-goods game, there are six possible monotonic configurations of 
the stochastic game because k can be any number from 0 (players always 

move to first state) to 5 (players never move to first state). h, There is a 
non-monotonic relationship between the six transition structures and 
the time spent in the more beneficial state 1. g, The evolving cooperation 
rate becomes maximal when any deviation from mutual cooperation 
leads players to state 2 (e). Parameters are as in Fig. 2b, but with the 
multiplication factor in the first state fixed to r1 = 2 and selection strength 
β = 1; to derive exact results, we considered the limit of rare mutations 
µ → 0 (see Supplementary Information for details).
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Extended Data Fig. 5 | WSLS sustains cooperation in multiplayer 
public-goods games. This figure is analogous to Extended Data Fig. 3 for 
the case of multiplayer interactions. Again, we show evolving cooperation 
rates and the relative abundance of All D and WSLS for the six state-
independent and deterministic games in which transitions are monotonic. 

In five of these games, cooperation emerges once the multiplication factor 
r1 becomes sufficiently large. In all of those, WSLS is the most abundant 
strategy when cooperation evolves. Except for r1, all parameters are the 
same as in Extended Data Fig. 4.
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Extended Data Fig. 6 | Probabilistic transitions can further enhance 
cooperation. a, Here, we explore in more detail the stochastic game 
introduced in Fig. 3a (see Supplementary Information for details), in 
which any defection always leads to state 2. After mutual cooperation in 
state 1, players remain in state 1 with certainty. After mutual cooperation 
in state 2, players move towards state 1 with probability q. b, Calculating 
the cooperation rate in the selection–mutation equilibrium in the limit 
of rare mutations shows that the highest cooperation rate is achieved 
for intermediate values of q. c, We recorded the abundance of all 32 
memory-one strategies in the selection–mutation equilibrium. The most 
abundant strategy is either All D (for small values of q, as indicated by 

the red squares), WSLS (for small but positive values of q, green circles) 
or AWSLS (for all other values of q, yellow triangles; AWSLS is a more 
ambitious variant of WSLS, see Supplementary Information, section 4.1). 
d, To estimate the time that it takes each resident strategy to be invaded, 
we randomly introduced other mutant strategies and recorded how long it 
took until a mutant successfully fixed (that is, the number of independent 
mutant strategies introduced before the mutant strategy was adopted 
by the whole population). To obtain a reliable estimate, we performed 
10,000 runs for each resident strategy. e, f, In addition, we recorded which 
strategy eventually reaches fixation if the resident applies either All D or 
WSLS when q = 1. Parameters: b1 = 1.9, b2 = 1.4, c = 1, β = 1, N = 100.
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Extended Data Fig. 7 | Players benefit from a small endogenous risk 
that the game stops early. a, We consider the stochastic game in Fig. 3b, 
in which players remain in state 1 after cooperation, but move towards 
state 2 with transition probability q if one of the players defects. In state 2, 
no profitable interactions are possible. All results are discussed in detail 
in Supplementary Information; here we provide a summary. b, According 
to our evolutionary simulations, a higher transition probability leads to 
more cooperation. c, However, a higher probability q also makes players 
move to the second state if one of them defected merely owing to an error; 
hence, the dependence of payoffs on q is non-monotonic. d, e, When 

q is small, Grim is the predominant strategy. Players with this strategy 
cooperate until one of the players defects; from then on, they defect 
forever. As q increases, WSLS strategies take over. As q → 1, unconditional 
cooperation becomes most successful. f, For the given parameter values, a 
homogeneous Grim population achieves only one-third of the maximum 
payoff possible, because any error leads to relentless defection. The other 
three strategies result in the maximum payoff b1 − c for q = 0, but this 
payoff decreases with q. Parameters: b1 = 2, c = 1, δ = 0.999, ε = 0.001, 
β = 1, N = 100.
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Extended Data Fig. 8 | Immediate environmental feedback enhances 
cooperation. a, We consider a state-dependent stochastic game with two 
players and three states. Mutual cooperation always leads players to move 
to a superior state (or to remain in the most beneficial state s1). Similarly, 
mutual defection always leads to an inferior state (or players remain in the 
most detrimental state s3). After a unilateral defection, players remain in 
the same state. We consider four different versions of this game, depending 
on how quickly the payoffs decrease as players move towards an inferior 
state. b, Our numerical results show that an immediate negative response 
of the environment to defection is most favourable to the evolution 
of cooperation. c, As a consequence, the scenario with immediate 

consequences also yields the highest average payoffs once the benefit 
in state 1 exceeds a moderate threshold. d–g, On the level of evolving 
strategies, we find that an immediately responding environment is most 
favourable to the evolution of WSLS strategies and strongly selects against 
defecting strategies. Again, the coloured bars on top of each panel indicate 
the strategy that is most favoured by selection for the respective value of 
b1 (see Supplementary Information for all details). Parameters: c = 1; b1 
varies from 1 to 3; b2 is equal to c, (b1 + c)/2 or b1; and b3 is equal to either 
c or b1 depending on the scenario considered (as depicted in a); N = 100, 
β = 1, δ → 1, ε = 0.001.
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Extended Data Fig. 9 | Cooperation in stochastic games requires that 
players take future payoff consequences into account. We repeated the 
numerical computations in Extended Data Fig. 8 for various discount rates 
δ. When players focus entirely on the present (δ = 0), cooperation evolves 
in none of the four treatments. As players increasingly take future payoffs 

into account, cooperation rates increase. Immediate payoff feedback is 
most conducive to cooperation across all values of δ considered. Except for 
the discount rate, parameters are the same as in Extended Data Fig. 8, with 
b1 = 1.8.
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Extended Data Fig. 10 | A systematic analysis of the expected game 
dynamics for different game payoffs. Keeping the two-player game 
in state 2 fixed to the game in Fig. 2a, we varied the game that is played 
in state 1. We assume that payoffs in the first state are 1 (for mutual 
cooperation), S1 (for unilateral cooperation), T1 (for unilateral defection) 
and 0 (for mutual defection). Depending on T1 and S1, game 1 can be 
one of four different types: harmony game (HG), snowdrift game (SD), 
stag-hunt game (SH) or prisoner’s dilemma (PD); see Supplementary 
Information for details. For each of the eight possible state-independent 
transitions q, we systematically varied the temptation payoff T1 (x axis) 
and the sucker’s payoff S1 (y axis) in the first state (see Supplementary 

Information for details). For each combination of T1, S1 and q, we 
computed how often players cooperate in the selection–mutation 
equilibrium (left panels) and in what fraction of rounds they switch  
from one state to the other (right panels). a–c, e, Full cooperation can 
evolve when players find themselves in state 1 after mutual cooperation. 
d, f, Players learn to switch between states only when mutual cooperation 
leads to state 2 and mutual defection leads to state 1. g, h, In the remaining 
cases, players hardly cooperate. The payoffs in game 2 are the same 
as in Fig. 2a—a prisoner’s dilemma with b2 = 1.2 and c = 1. For the 
evolutionary parameters we considered population size N = 100 and 
selection strength β = 1.
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Section 1 gives a brief overview of previous work. Section 2 describes our approach and methods.

Section 3 presents further results for state-independent stochastic games with deterministic transitions.

We show how the success of cooperation depends on the transition structure of the stochastic game. We

give an analytical condition for cooperation to evolve based on the stability of Win-Stay Lose-Shift. We

demonstrate that our results are robust with respect to changes in evolutionary parameters. In Section 4,

we apply our framework to four different scenarios with probabilistic or state-dependent transitions. In

the appendices, we present some of the more technical aspects of our study. In Appendix A, we discuss

the feasibility of cooperation in one-shot social dilemmas. Appendix B provides the proofs of our

mathematical results. Appendix C gives our MATLAB algorithm for calculating payoffs in stochastic

games with two states and n players.

1 Previous work and future directions

We have studied the evolutionary dynamics of strategies in stochastic games. Several papers in evolu-

tionary game theory have explored the effects of changing payoffs. However, none of those papers use

stochastic games; there are no repeated interactions, and the players’ strategies do not allow for a targeted

reaction to the current game. On the other hand, there is a rich literature on stochastic games in general,

but previous studies do not consider evolution of strategies in stochastic games.

1.1 Previous work on evolutionary dynamics in games with variable payoffs

Traditionally, evolutionary game theory studies the dynamics of strategies if players interact in games

with fixed payoffs1–4. In recent years there has been a growing interest in exploring the dynamics of

strategies when the game’s payoffs are allowed to vary in time.

In the simplest case, these studies assume that changes in the game’s payoffs are exogenously driven,

and therefore independent of the composition of the population. For example, Assaf et. al.5 consider

social dilemmas where some parameters, such as the cost-to-benefit ratio of cooperation, are subject to
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extrinsic noise. Keeping the expected value of these model parameters constant, they find that noise

can increase the fixation probability of a rare cooperator. Ashcroft et. al.6 consider a model in which

the players’ environment randomly switches between different states. The states in turn affect which

2× 2 game is played. They show that such transitions between different states can facilitate the invasion

of a rare mutant. Gokhale and Hauert7 explore the impact of seasonal changes. In their model, the

multiplication factor of a public good game and a synergy factor change periodically in time. They find

that the survival of cooperation critically depends on the timescale at which these fluctuations occur. If

environmental changes are slow compared to the strategy dynamics, cooperation typically goes extinct

even if cooperators would be able to survive in an average environment.

Other studies have considered scenarios in which the players’ strategies co-evolve with their envi-

ronment. In these models, cooperators improve an environmental parameter, which in turn affects the

incentives to cooperate. Hauert et. al.8 have used such a setup to explore the coexistence of cooperators

and defectors in public good games. In their model, the total population size depends on the number of

cooperators. When the population is large, defection is more beneficial. As a consequence, the number

of cooperators as well as the total population size decreases. However, in smaller populations individu-

als interact in smaller groups, in which cooperators are at an advantage. Cooperation can re-invade. For

some parameter constellations, demographic feedback can thus lead to persistent oscillations, such that

both the fraction of cooperators as well as the population size fluctuate periodically9.

Weitz et. al.10 consider a more general framework for the coevolution of strategies and the environ-

ment. In their model, members of an infinite population interact in a 2×2 game. The game’s payoff

matrix A(n) depends on some environmental parameter n ∈ [0, 1]. This environmental parameter in

turn depends on how many players cooperate. If defection is a dominated strategy in the payoff matrix

A(0), and if cooperation is dominated in A(1), populations may experience an “oscillating tragedy of

the commons”. In addition, Weitz et. al.10 describe all possible evolutionary scenarios depending on the

payoffs in A(0). Their classification shows that cooperation goes extinct if A(n) is a prisoner’s dilemma

for all n.

Another line of research has explored the evolution of cooperation when members of a community

share a renewable resource. The amount of resource available at any time depends on its intrinsic growth

function, and on the previous extractions by community members. The corresponding models show that

cooperation can be sustained if there is sufficient societal pressure for a responsible use of resources11,

or if groups of defectors are more likely to perish because of resource depletion12.

All of the above models consider one-shot games. While the players’ actions may affect the envi-

ronment, players do not take the long-term consequences of their actions into account. Instead, they

revise their strategies only based on the present payoffs. Players do not anticipate the future state of

the environment, nor are they able to engage in reciprocal interactions. As a consequence, these models

cannot explain which kind of environmental feedback helps to sustain cooperation in strict social dilem-

mas: if cooperators are at a disadvantage in each environmental state, cooperators also go extinct if the

environment co-evolves with the players’ strategies (see Appendix A for a detailed analysis).
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There has also been research on repeated games where players have access to continuous degrees

of cooperation13–19. Depending on the outcome of previous games, players can decide to increase their

contributions to a public good. In contrast to our approach, the game remains the same, irrespective of

the players’ actions. The players have continuous choices, but the game itself does not change.

Novelty of our approach

Our framework differs from previous evolutionary studies with variable game payoffs in the following

aspects:

1. None of the previous papers study repeated interactions.

2. None of the previous papers consider stochastic games.

3. In previous work, players do not tailor their response to the specific environment which they are

currently facing.

4. Previous work has suggested that under changing environments, cooperation can only evolve un-

der restrictive conditions; cooperation is not sustained if players face a social dilemma in each

environmental state6–10. In contrast, the framework of stochastic games shows that cooperation

can evolve even if it is disfavored in each state (Fig. 2).

5. Our framework is general and can be adapted to many new applications.

1.2 Previous work on stochastic games

Discrete-time stochastic games have been introduced in the seminal work of Shapley20 for zero-sum

discounted-sum payoff. They were later extended to limit-average payoff21. The framework of stochas-

tic games has been applied in computer science to model reactive systems22–24, to analyze algorithms

for poker25,26, to industrial organization, accumulation of capital, and resource extraction27. The lit-

erature of stochastic games has a wealth of deep mathematical results, such as determinacy results for

discounted-sum payoff20, and the celebrated result for limit-average payoff28 that uses results on Puiseux

series29 and results of Shapley20. These classical results for stochastic games consider rational players

with arbitrarily complicated strategies. Such a general framework implies that many questions are open.

For example, the existence of Nash equilibrium in multi-player stochastic games is open for limit-average

payoff. Recent results30,31 establish existence of Nash equilibrium in the special case of two-player

nonzero-sum games, but the existence for three of more players remains open (see Section 1.3 for a dis-

cussion of existence of equilibria in related models of stochastic games). The existence of equilibrium

is known for discounted-sum payoff32. While these results consider complex strategies and existence of

equilibrium rather than the dynamics that can lead to equilibrium, we study evolutionary dynamics of

stochastic games with a simpler class of strategies.
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Novelty of our approach

1. We bring the framework of stochastic games to evolutionary biology. We make the framework

applicable to the broad context of human decision making in social dilemmas.

2. While the classical results for stochastic games take an equilibrium perspective, we introduce

evolutionary dynamics and study how strategic behavior evolves.

3. Previous work has considered rational players with arbitrarily complex strategies, for which even

existence of equilibrium is not always known. We study simpler classes of strategies (such as

reactive or memory-1 strategies), which make a computational analysis feasible.

4. While our analysis is motivated by problems in evolutionary biology, our new dynamic perspective

opens up a new research area, with many new exciting questions (e.g., on the dynamical stability of

equilibria). These questions are relevant to biologists, mathematicians, economists and computer

scientists.

1.3 Future directions

We believe that the combination of evolutionary game theory with stochastic games provides an impor-

tant new impetus to the study of social interactions with dynamic incentives. Our framework allows us to

analyze how cooperation emerges when individuals affect their environment, and when they are able to

react to new environmental conditions and to their co-players’ past actions. The framework of stochastic

games opens up many new directions for evolutionary game theory.

1. Future work could explore stochastic games in structured populations33,34, where cooperation with

one player allows the possibility of forming new connections with other players. In such a scenario,

the entire network structure could co-evolve with the players’ actions35. Alternatively, defection

(but not cooperation) could allow the possibility of ostracism or punishment, such that much of

the previous work on the evolution of incentives36,37 may be recast in terms of stochastic games.

2. Herein, we consider discrete-time stochastic games: in each round, players simultaneously choose

an action, and the resulting action profile affects the probability to transition to a different state in

the next round. In contrast, in continuous-time stochastic games38,39 the state update happens at

a certain rate (that again depends on the choice of actions of the players). The evolutionary anal-

ysis of stochastic games where environmental changes happen in continuous time is a promising

direction for future work. Quite interestingly, while the existence of Nash equilibrium is open for

discrete-time stochastic games, recent results resolve this problem for continuous-time stochastic

games39.

3. We focus on the evolutionary dynamics among simple strategies that only depend on the current

state and on the outcome of the last round. Using the terminology of evolutionary game theory,

we refer to such strategies as memory-1 strategies40–43. In contrast, the traditional literature on
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repeated games refers to strategies that remember the actions of the last t rounds as t-finite-recall

strategies44,45. This literature speaks of finite-memory strategies when players make use of finite-

state automata to remember information about the past history of the game. Finite-recall strategies

are a subset of finite-memory strategies, but in addition the latter strategy class also allows player

to ignore recent events and to rather remember information from the distant past. Finite-memory

strategies have been studied in the context of repeated games46–49, as well as in the context of

stochastic games27,50,51. In scenarios like continuous-time stochastic games, finite-memory strate-

gies are well-defined, while finite-recall strategies are not (see Sections 1.2 and 1.6 of Ref. 39 for

a detailed discussion). The analysis of evolutionary games with more general strategy spaces thus

opens up another promising line of research.

2 Model and Methods

In the following, we first give a full description of stochastic games. Then we formally introduce

memory-one strategies, and we show how the assumption of bounded memory can be used to calcu-

late payoffs explicitly. Finally, we also specify the details of the evolutionary process that we have used

to explore the dynamics of cooperation in stochastic games.

2.1 General setup of stochastic games

To define a stochastic game, we need to specify (i) the set of players; (ii) the set of possible states (iii)

the set of possible actions that each player can take in each possible state; (iv) a transition function that

describes how states change over time; (v) the payoff function, which describes how the players’ actions

and the current state affect the players’ payoffs. In the following, we introduce these objects formally.

(i) The set of possible players. As the set of possible players, we take the setN = {1, . . . , n}. Through-

out this work we interpret this set as a group of individuals, interacting in various social dilemmas

subject to environmental feedback.

(ii) The set of possible states. We define S = {s1, . . . , sm} to be the finite set of possible states. Herein,

we interpret these states as the different environmental conditions that the players may face. The

players’ environment is considered to represent the sum of all exogenous factors that may affect

the group of individuals. In particular, the environment includes all ecological and social con-

straints the players are subjected to. The set of states may also include states that merely encode

the previous history of play (for example, by introducing a state that is reached if and only if all

players have cooperated in the last k rounds). We illustrate this possibility in Section 4.4, where

we model a game in which mutual defection has delayed consequences.

Without loss of generality, we will assume that as the stochastic game begins, players find them-

selves in state s1.
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(iii) The set of possible actions. In each state, players independently need to choose which action they

would like to take. Herein, we only explore the case where the game being played in each state

is a social dilemma with two possible actions. Therefore, player j’s action set in any given state

takes the form Aj = {C,D} for all j ∈ N . We interpret these two actions as cooperation and

defection, respectively. The outcome of a given round of the stochastic game is then described by

an n-tuple a= (a1, . . . , an) where aj ∈ {C,D} is the action taken by player j. For example, the

n-tuple a = (C,C, . . . , C) denotes the outcome of a round in which all players cooperated. The

set A = A1 × . . .×An of all such n-tuples is called the set of action profiles.

(iv) The transition function. States can change from one round to the next. The state of the stochastic

game in the next round depends on the present state, on the players’ present actions, and on chance.

Formally, these changes of the states are described by a transition function Q : S × A → ∆S ,

where ∆S is the set of probability distributions over the set of states S,

∆S =
{
x = (x1, . . . , xm) ∈ Rm

∣∣ xi ≥ 0 for all i, and x1 + . . .+ xm = 1
}
. (1)

That is, Q(s,a) = (x1, . . . , xm) gives the probability to be in each of the m states, given that the

previous state is s ∈ S, and the actions in the previous round are a = (a1, . . . , an) ∈ A. As an

example we can take the stochastic game depicted in Fig. 2a of the main text; for that example,

the transition function Q takes the form

Q
(
s1, (C,C)

)
= (1, 0), Q

(
s2, (C,C)

)
= (1, 0),

Q
(
s1, (C,D)

)
= (0, 1), Q

(
s2, (C,D)

)
= (0, 1),

Q
(
s1, (D,C)

)
= (0, 1), Q

(
s2, (D,C)

)
= (0, 1),

Q
(
s1, (D,D)

)
= (0, 1), Q

(
s2, (D,D)

)
= (0, 1).

(2)

That is, if both players cooperated in the present round, the players will find themselves in State 1

in the next round with certainty; after all other outcomes, players will necessarily be in State 2.

In the above example, the entries of Q did only take the values 0 and 1; moreover, Q did only

depend on the players’ actions, but not on the present state of the environment. We call such

transition functions deterministic and state-independent, respectively. We note that even if all

transitions are deterministic, the game is still called a “stochastic game” because of two reasons.

First, games with deterministic transitions represent a special case of the general framework. Sec-

ond, even if transitions are deterministic, the next round’s state may still depend on chance events

if the players’ strategies do (i.e., if players use strategies that randomize between different actions).

If we want to refer to the j-th element in Q(s,a), i.e. the probability to move to state sj after

observing outcome (s,a), we will sometimes use the notation Q(sj |s,a). Herein, we only con-

sider symmetric transitions: the next state may depend on the number of cooperators in the present

round, but it does not depend on who of the players cooperated. Instead of writing Q(sj |s,a) we
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can thus use the notation Q(sj |s, k), where k is the number of C’s in the n-tuple a. Moreover, for

state-independent transition functions Q, we will drop the dependence on the previous state s, and

write Q(sj |k) to denote the probability to move to state sj after k players have cooperated.

When there are only two possible states, we can also represent the transition function by a vector

q = (qik). Each entry qik denotes the probability that the players find themselves in State 1 in the

next round, given that the previous state was si and that k of the players have cooperated. When the

stochastic game is state-independent, we drop the upper index i. As an example, using this notation

we can represent the transition functions of Fig. 2 as q = (qn, qn−1, . . . , q1, q0) = (1, 0, . . . , 0, 0).

That is, players find themselves in state 1 if and only if all n group members have cooperated in

the previous round.

(v) The payoff function. The (stage game) payoff function u : S×A→ Rn describes how the players’

payoffs in a given round depend on the present state and on the players’ joint actions. Symmetric

games between two players can be represented by the respective payoff matrix,

U i =

(
uiCC uiCD
uiDC uiDD

)
. (3)

where uiaã refers to a player’s payoff in state si, given that the focal player chooses the action a

and that the co-player chooses the action ã. For symmetric games between n players, we use uia,j
to denote a player’s payoff in state si if the focal player chooses action a∈{C,D} and if j of the

other players cooperate. Importantly, we point out that herein we focus on stochastic games where

each stage game corresponds to a comparable social dilemma; allowing for arbitrary payoffs in

some of the stage games can give rise to somewhat trivial results (for example, if mutual defection

leads to a state in which payoffs are strongly negative irrespective of the players’ further actions).

As an example for the payoff function in a stochastic game with more than two players, we have

considered a group of players that engages in a public good game in each state si. That is, each

player can decide whether she wants to contribute an amount c > 0 towards a common pool. Total

contributions are multiplied by a factor ri (which may depend on the state of the environment),

and equally shared among all participants. If j is the number of cooperating co-players in a given

round, the payoff of a player is

uia,j =


j + 1

n
ric− c if a = C

j

n
ric if a = D.

(4)

The prisoner’s dilemma that we have considered for 2-player interactions can be considered as a

special case of a public goods game with n= 2. In that case, the effective cost of cooperation is

c(1−ri/2), and the benefit of cooperation to the co-player is cri/2.
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The framework of stochastic games assumes that players interact over infinitely many rounds, but future

payoffs may be discounted by a discount factor δ with 0 < δ < 1 (equivalently, one may interpret δ as

the continuation probability of having a further interaction after the present round). To define the players’

overall payoff for the stochastic game, let s(t) denote the state in which the players find themselves in

round t, and let a(t) denote the action profile played in that round. The payoff π of the stochastic game

is the weighted sum

π = (1− δ)
∞∑
t=0

δt · u
(
s(t),a(t)

)
. (5)

In the main text, we have often focused on the limit of no discounting, δ → 1, in which case payoffs are

given by the limit of the players’ average payoffs per round,

π = lim
T→∞

1

T

T−1∑
t=0

u
(
s(t),a(t)

)
. (6)

In the examples used in the main text, the limit in (6) did always exist, due to our assumption that players

employ simple memory-one strategies with small errors1. If that limit exists, the two definitions (5) and

(6) coincide as δ→1.

Repeated games, which have been extensively studied in evolutionary game theory, can be considered

as a special case of a stochastic game with only one possible state, S = {s1}. Conversely, any stochastic

game between n players may be interpreted as an (asymmetric) repeated game with n + 1 players, in

which the additional player chooses the state of the next round according to the transition function Q.

Despite these connections, stochastic games can be very different from repeated games in terms of the

equilibria that are possible. For infinitely repeated games, the folk theorem applies: any feasible payoff

combination can be supported as an equilibrium, as long as all players yield more than their maxmin

payoff52. In particular, mutual cooperation can always be achieved in the repeated prisoner’s dilemma.

For stochastic games, it is well known that an analogous result does not need to hold. As a simple

counter-example, consider a stochastic game between player 1 and player 2 with three states. Initially,

the players find themselves in State 0, where they interact in a prisoner’s dilemma with payoffs b − c
(for mutual cooperation), −c (for unilateral cooperation), b (for unilateral defection) and 0 (for mutual

defection), with b > c > 0. If both players choose the same action, they stay in State 0. If player i

defects while the other player cooperates, the next state is State i. In this state, player i always gets the

payoff b whereas the co-player always gets the payoff −c. Players remain in State i for the remainder

of the game, irrespective of their subsequent actions. In this stochastic game, there is a strong individual

incentive to be the first to defect. As a consequence, mutual defection is the only outcome consistent

with equilibrium considerations, although mutual cooperation would make both players better off.

In the main text we have highlighted another difference between stochastic games and repeated

games: even if a stochastic game and the corresponding repeated games all allow for stable mutual

cooperation, the likelihood of reaching a cooperative equilibrium through evolutionary processes can be

vastly different.
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To conclude this section, let us comment on a few questions that arise when stochastic games are

applied to specific examples. First, we note that the framework of stochastic games does not specify

how much time passes between two consecutive rounds. In some applications, such as in Hardin’s

example of farmers sharing a joint pasture53, this timespan might be best thought of as a year. In other

applications, like when teams in companies are assigned better tasks the more productive they have been

in the past, this time depends on the length of the specific task. In applications, one may thus wish to

reflect the amount of time that passes between rounds by choosing an appropriate discount factor δ on

future payoffs.

Second, in some applications players may change their actions at a faster rate than the game payoffs

change. For example, when all players of a group defect, the corresponding changes in the players’

environment may not happen immediately, but only with one round delay. Similarly, it may take several

consecutive rounds of mutual defection for the environment to deteriorate. Such scenarios can be studied

when further states are added to the stochastic game’s state space, which keep track of how many con-

secutive rounds of mutual defection have occurred in the past. We illustrate this approach with a simple

example in Section 4.4.

Finally, the framework of stochastic games does not make any restrictions on the payoffs the players

face in any given state of the environment. To apply the framework to a specific example, one only needs

to formulate which payoff consequences the players’ actions have. In some applications, the players’

actions may have drastic consequences on the next round’s payoffs, whereas in other applications the

payoff feedback may be more gradual. We illustrate different ways to introduce payoff feedback in

Section 4.4.

2.2 Calculation of payoffs when players use memory-one strategies

Strategies for stochastic games can be arbitrarily complex; in general they take the whole previous his-

tory of the players’ actions and of the previously visited states as an input, and they return a value in

the interval [0,1] as an output (the player’s cooperation probability in the next round). To make an evo-

lutionary analysis feasible, we will focus here on the subset of memory-one strategies. A player with

such a strategy bases her decision only on the current state, and on the actions played in the previous

round. Formally, a memory-one strategy is a map P : S × Ã → [0, 1], where Ã = A ∪ {∅}. The value

of P (s,a) corresponds to the players’ probability to cooperate in the next round, given that the present

state is s∈S and that the players’ actions in the previous round are represented by a∈A (the empty set is

included in Ã to encode the players’ move in the very first round in which no previous history of actions

is available). In Table S1, we present a few simple examples of memory-one strategies for stochastic

games between n players. In particular, this table includes the strategies AllD, proportional Tit-for-Tat

(pTFT ), and Win-stay Lose-shift (WSLS).

Restricting our attention to memory-one players is useful for two reasons. First, memory-one strate-

gies are comparably simple to interpret, which facilitates an intuitive understanding of the resulting

evolutionary dynamics. At the same time, memory-one strategies are sufficiently general to cover a wide
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Name Definition Description

AllD P (s,a) = 0
for all s and a

Strategy that defects in every round, independently of
the present state and of the actions of the co-players.

AllC P (s,a) = 1
for all s and a

Strategy that always prescribes to cooperate.

Grim
In the first round P (s1, ∅) = 1, then

P (s,a) = 1 if and only if a=(C, . . . , C),
otherwise P (s,a) = 0.

Trigger strategy that prescribes to cooperate as long
as everybody has cooperated in the previous round.

pTFT
In the first round P (s1, ∅) = 1, then
P (s,a) = k/(n−1) with k being the

number of cooperating co-players

Conditionally cooperative strategy; in a game with
only two players, pTFT simplifies to the classical
Tit-for-Tat strategy54.

WSLS
In the first round P (s1, ∅)=1, then

P (s,a)=1 if all players used the same action
in previous round, otherwise P (s,a)=0

Generalization of the corresponding strategy that has
proven to be successful in the repeated prisoner’s
dilemma40.

Only1 P (s,a)=1 for all a if s=s1,
P (s,a)=0 otherwise

Simple example of a state-dependent strategy – coop-
erates if and only if players find themselves in the first
state.

Table S1: Some examples of memory-one strategies for stochastic games.

array of interesting behaviors that have been shown to be important in the context of cooperation in re-

peated games, see for example Refs. 54–61, and Chapter 3 in Ref. 1. Second, if all players make use of

a memory-one strategy, payoffs according to Eqs. (5) and (6) can be calculated explicitly. In that case,

the dynamics of play in the stochastic game can be described as a Markov chain, as we describe below.

The states of the Markov chain are all possible combinations (s,a) of environmental states s∈S and

action profiles a ∈A, which fully describe the outcome of a given round. In particular, if there are m

environmental states and n players who can choose between cooperation and defection, then that Markov

chain has m · 2n possible states. To construct the transition matrix of the Markov chain, let us assume

that the transition function between states is given by Q, and that the players’ memory-one strategies are

given by P1, . . . , Pn. Then the probability that players move from (si,a) in one round to (sj ,a′) in the

next has the form

M(si,a)→(sj ,a′) = Q(sj |si,a) ·
n∏
k=1

yk, (7)

where the yk are defined as

yk =

{
Pk(sj ,a) if a′k = C

1− Pk(sj ,a) if a′k = D.
(8)

That is, the transition probability is a product of n+1 factors; the first factor represents the transition

towards the next environmental state, whereas the other n factors represent the transitions in the players’
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behaviors. Similarly, the probability to be in one of the m · 2n states in the very first round is given by

v0
(s,a) =

{ ∏n
k=1 zk if s = s1

0 else,
(9)

where

zk =

{
Pk(s, ∅) if ak = C

1− Pk(s, ∅) if ak = D.
(10)

To calculate the players’ payoffs, let v0 be the row-vector that contains all the initial probabilities ac-

cording to (9) and let M be the corresponding transition matrix with entries as defined in (7). When

future payoffs are discounted, we compute the vector

v = (1− δ)v0
∞∑
t=0

(δM)t = (1− δ)v0(I − δM)−1. (11)

The entries v(s,a) of this vector can be interpreted as the expected frequencies to observe the outcomes

(s,a) over the course of the stochastic game. The players’ payoffs according to Eq. (5) can then be

computed by

π =
∑

s∈S,a∈A
v(s,a) · u(s,a). (12)

In the limit of no discounting on future payoffs, δ → 1, the vector v according to Eq. (11) approaches a

left eigenvector of the matrix M with respect to the eigenvalue 1. In the main text, we have assumed that

the players use pure memory-one strategies subject to small errors, such that the probability to cooperate

is either ε or 1 − ε. Under this assumption, the limiting distribution v for δ → 1 is unique, and it is

independent of the players’ cooperation probabilities in the very first round.

In the following, due to the assumed symmetries of the stochastic game, we will often restrict our-

selves to symmetric memory-one strategies. If a player applies a symmetric memory-one strategy, her

action only depends on the present state, on her own previous action, and on the number of coopera-

tors among the co-players (but not on the identity of the cooperating co-players). Symmetric memory-1

strategies can be written as a vector p = (p0; pia,j). The entry p0 is the player’s cooperation probability

in the very first round. The entries pia,j represent the player’s cooperation probability in all subsequent

rounds, given that the present state is si and that the player has chosen action a∈{C,D} in the previous

round, while j other players have cooperated. If there are m states and n players, the space of symmetric

memory-1 strategies is (2mn+1)–dimensional; in the limiting case of δ → 1 we can ignore the entry p0

and the space becomes 2mn–dimensional.

2.3 Evolutionary dynamics

Herein, we do not presume that players act rationally from the outset. Rather we consider a population of

players, and we assume that individuals learn to adopt more profitable strategies over time. To model this
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process of strategy adaptation, we use a simple pairwise imitation process2,62. As is typical in models

of direct reciprocity, we thereby assume a separation of timescales: players change their strategies at a

slower rate than they make their decisions in the stochastic game. Equivalently, we may also assume that

strategy updating occurs at a similar timescale, but when computing their own payoff, players take into

account how well their strategies would perform over the entire course of the game.

Specifically, we consider a population of constant size N . Each individual is equipped with a sym-

metric memory-one strategy that tells the individual how to play the stochastic game under consider-

ation. The strategies of the individuals can change over time, due to imitation events and exploration

events (these two events correspond to selection and mutation in biological models). We assume that

in each evolutionary time step, individuals randomly form groups to interact in the stochastic game (in

other words, we assume that the population is well-mixed). Payoffs within each group can be calculated

using Eq. (12). Depending on the players’ own strategy, and on the strategy distribution in the remaining

population, we can thus compute expected payoffs π̄ for all players. To incorporate imitation events, we

assume that after payoffs have been computed, two individuals are randomly drawn from the population,

a learner and a role model. The learner compares her own payoff π̄L with the payoff of the role model

π̄R, and she decides to adopt the role model’s strategy with probability63

ρ =
1

1 + e−β(π̄R−π̄L)
. (13)

The parameter β≥0 is called the strength of selection. In the limiting case β=0, the imitation probability

simplifies to ρ = 1/2, independently of the players’ payoffs. In that case, players imitate each other

essentially at random. As β increases, imitation decisions are increasingly biased towards strategies that

lead to higher payoffs; in the limiting case β→∞, the role model’s strategy has only a positive chance

of being adopted if π̄R≥ π̄L.

To incorporate random strategy exploration, we assume that in each evolutionary time step there is a

probability µ > 0 that the learner decides not to look for a role model; instead, she simply picks a new

strategy from the set of all possible strategies (all memory-one strategies have the same probability to be

picked). These two elementary updating events, imitation and exploration, are then iterated over many

evolutionary time steps. This generates a stochastic process on the space of all population compositions.

Due to our assumptions on the updating events, this process is ergodic. In particular, we can use evolu-

tionary simulations over many time periods to estimate how often the members of the population choose

cooperative strategies in the selection-mutation equilibrium (Fig. 2 of the main text shows sample runs

that illustrate the resulting cooperation dynamics).

When the considered strategy set is finite, and when mutations are sufficiently rare, the abundance

of each strategy in the selection-mutation equilibrium can be computed exactly64,65. The assumption

of rare mutations implies that most of the time, populations are homogeneous. Only occasionally a

new mutant strategy arises, and this mutant strategy either fixes or goes extinct before there is a new

mutation. As a consequence, the evolutionary process can be described as a Markov chain, where the
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states correspond to all possible homogeneous populations. By calculating the invariant distribution of

this Markov chain, we can compute how often each strategy is played in the long run, as described by

Fudenberg and Imhof.64.

If there are infinitely many strategies (for example, when considering all stochastic memory-one

strategies), the above method is not directly applicable any longer. Nevertheless, the assumption of rare

mutations can still be useful to simulate the evolutionary process more efficiently, using the approach

of Imhof and Nowak66. If mutations are sufficiently rare, we can assume that at any point in time

there are at most two different strategies present in the population, the resident strategy and a mutant

strategy. For such a competition between two strategies only, analytical expressions for a strategy’s

fixation probability are available67–69. Hence, we can explicitly calculate the probability that a randomly

chosen mutant strategy fixes (in which case the mutant strategy becomes the new resident strategy), or

that it goes extinct (in which case the resident strategy remains). Overall, simulating this process leads

to a sequence of subsequent resident strategies. Based on this sequence, we can calculate the average

cooperation rate and the average payoff of the population over time.

3 Stochastic games with state-independent and deterministic transitions

3.1 A useful result to reduce the dimension of the strategy space

In the following section, we will discuss a few results that apply to the case when the players’ actions

uniquely determine the next state of the stochastic game. To this end, let us recall some definitions. We

say a stochastic game is deterministic if transitions are independent of chance,

Q(sj |s,a)∈{0, 1} for all states sj , s and action profiles a. (14)

The stochastic game is state-independent if the next state only depends on the players’ previous actions,

but not on the previous state,

Q(sj |s,a)=Q(sj |s′,a) for all states sj , s, s′ and all action profiles a. (15)

Finally, we call a memory-1 strategy P state-independent if

P (si,a) = P (sj ,a) for all states si, sj and all action profiles a. (16)

There is the following relationship between state-independent memory-1 strategies and stochastic games

with state-independent and deterministic transitions.

Proposition 1. Consider a stochastic game between players with memory-one strategies P1, . . . , Pn.

1. Suppose that for a given action profile a we have Q(sj |s,a) = 0 for all states s ∈ S (i.e., if the

players have chosen action profile a, it is impossible to reach state sj in the next round). Then the
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transition matrixM , and hence the players’ payoffs, are independent of the values of Pk(sj ,a) for

all players k.

2. In particular, if the stochastic game has state-independent and deterministic transitions, then for

any memory-1 strategy Pi there is an associated state-independent memory-1 strategy P ′i such that

the payoffs of all players are unchanged if Pi is replaced by P ′i .

All proofs are provided in the appendix of this SI. For state-independent and deterministic games,

Proposition 1 is useful for two reasons. First, Proposition 1 allows us to reduce the dimension of the

strategy space: without loss of generality we can restrict our attention to players with state-independent

memory-1 strategies. In case of symmetric memory-1 strategies p = (pia,j), we can thus drop the

dependence on the previous state si, and write p = (pa,j). If m is the number of states and n the

number of group members, the new strategy space is only 2n-dimensional (instead of 2mn-dimensional).

Second, Proposition 1 allows us to better compare a stochastic game with an associated repeated game

in which players always remain in the same state si. In each case, the relevant set of symmetric memory-

one strategies has the same dimension 2n. Thus if cooperation evolves for the stochastic game (but not

in the repeated games), this difference cannot be attributed to differences in the complexity of the two

strategy sets.

3.2 Comparing the evolutionary dynamics of stochastic games and repeated games

In Fig. 2 of the main text, we have considered the evolutionary dynamics of a state-independent stochas-

tic game with two states for either 2 players (Fig. 2a) or n players (Fig. 2b). The transition function

for this stochastic game can be represented by the vector q = (qn, qn−1, . . . , q0) = (1, 0, . . . , 0). We

have compared this game with the two associated repeated games in which players always remain in

the same state. Using our framework, these repeated games can be represented by the transition func-

tions q = (1, 1, . . . , 1) (players always remain in state 1, independent of the number of cooperators)

and q = (0, 0, . . . , 0) (players never visit state 1). Due to Proposition 1, we have used symmetric

and state-independent memory-1 strategies, p = (pC,n−1, . . . , pC,0; pD,n−1, . . . , pD,0). Extended Data
Fig. 1a shows simulation results of the process described in Section 2.3, assuming that players only ap-

ply pure strategies with errors, such that each entry pa,j is either ε or 1 − ε. This assumption leads to

a finite strategy space of size 22n. For finite strategy spaces we can use the method of Fudenberg and

Imhof64 to calculate exact strategy frequencies in the limit of rare mutations. Extended Data Fig. 1a
shows the corresponding cooperation frequencies in the selection-mutation equilibrium for n = 2 as a

function of the benefit parameter b1. The stochastic game always yields higher cooperation rates than

the two repeated games, but the difference is most pronounced for intermediate benefits to cooperation

in State 1. If b1 is too small, cooperation evolves in none of the scenarios; if b1 is sufficiently large,

cooperation can already be achieved through repeated interactions in State 1 alone.

To show that our results are robust when players have access to stochastic memory-one strategies, we

have run additional simulations using the method of Imhof and Nowak66. The corresponding simulation
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results shown in Extended Data Fig. 1b are qualitatively similar to our results for pure memory-one

strategies. Again, cooperation rates increase as the benefit b1 of cooperation in State 1 increases, but for

the stochastic game smaller values of b1 are necessary to sustain substantial cooperation.

3.3 Robustness with respect to changes in evolutionary parameters

For the results shown so far, we have kept several model parameters at a fixed value. In the following,

we aim to demonstrate that our results are robust with respect to changes in these parameters. To this

end, we have re-calculated the evolving cooperation rates for the example discussed in Fig. 2a, and

independently varied the following four parameters:

1. The error rate ε, which determines how often players misimplement their intended move (in the

examples shown in the main text, we have used ε=0.001).

2. The discount rate δ, which measures how relevant future rounds are for calculating a player’s

overall payoff (in the main text we have considered the limiting case of no discounting, δ→1).

3. The strength of selection parameter β, which determines how strongly players take a strategy’s

payoff into account when updating their strategies (in the main text we have used an intermediate

value β=1).

4. The mutation rate µ, which gives the rate at which players randomly explore new strategies.

Results for the error rate ε are shown in Extended Data Fig. 1c, suggesting there are three parameter

regimes. For large error rates ε→ 1, cooperation decisions occur essentially at random, and the overall

cooperation rate approaches 50%, independent of the specific game being played. For smaller error

rates, 0.1≤ ε≤ 1, mistakes occur too often to allow a targeted punishment of AllD players, and hence

defectors prevail in the stochastic game and in the two associated repeated games. Once ε ≤ 0.1, we

recover the results from the main text, showing that stochastic games can generate cooperation although

the associated repeated games cannot.

The effect of the discount factor on evolving cooperation rates is depicted in Extended Data Fig. 1e.

Also here, we can identify three parameter regions. When δ is small, cooperation cannot be sustained

at all because there is a too high discount on future payoffs to incentivize cooperation in the present

round. When δ is intermediate (0.9 ≤ δ ≤ 0.99), substantial cooperation can be achieved in all three

games. In this parameter region, we observe that the most abundant strategy is Grim, which can sustain

cooperation as long as the expected number of rounds 1/(1−δ) is small compared to the time 1/ε at

which one of the players can be expected to defect by mistake. If δ is beyond that threshold, cooperation

can only be sustained in the stochastic game for the given parameter values.

The effects of the selection parameter β and the mutation rate µ are similar (Extended Data Fig. 1d,f).
When β is small or when µ is comparably large, the evolutionary process is mainly governed by noise,

such that the evolving cooperation rates approach 50%. As β increases and µ decreases, a strategy’s

performance becomes increasingly important for the strategy’s survival, eventually favoring cooperation
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in the stochastic game and defection in the two repeated games. Overall, Extended Data Fig. 1 suggests

that the results presented in the main text are reasonably robust. When the transition structure of the

stochastic game itself incentivizes cooperation, then the stochastic game leads to higher evolving coop-

eration rates than the associated repeated games, irrespective of the exact value of the other parameters.

3.4 Effect of transition structure on the evolution of cooperation

In the previous figures, we have compared evolving cooperation rates for three different transition struc-

tures, q = (1, 0, 0) (the “stochastic game”), q = (1, 1, 1) (“Only game 1”) and q = (0, 0, 0) (“Only

game 2”). To explore the role of transitions more systematically, we have calculated the cooperation

rate in the mutation-selection equilibrium for all 23 = 8 games with state-independent and deterministic

transitions q = (q2, q1, q0), with qi ∈ {0, 1}. The results are shown in Extended Data Fig. 2. We find

that in 6 out of the 8 cases, players succeed in predominantly being in the first state, in which cooperation

is more beneficial as b1>b2 (Extended Data Fig. 2i). However, only in two out of these cases, players

actually achieve substantial cooperation rates (Extended Data Fig. 2j). These two stochastic games,

depicted in Extended Data Fig. 2b,c, have in common that mutual cooperation leads to the beneficial

State 1, whereas mutual defection leads to the inferior State 2 (that is, q2 =1 and q0 =0). When these two

conditions are satisfied, cooperation can evolve independent of the transition after unilateral cooperation

(that is, independent of q1).

Similarly, we have also explored how the evolving cooperation rates depend on the exact shape of the

evolutionary feedback when a group of n > 2 players is engaged in a public good game. In Extended
Data Fig. 4, we consider all “monotonic” transition functions, for which players find themselves in the

more beneficial State 1 if at least k of the players have cooperated in the previous round, with k ∈
{0, . . . , n + 1}. Formally, these are exactly the state-independent and deterministic transition functions

q = (qn, . . . q0) for which i < j implies qi ≤ qj . As expected, cooperation is most prevalent when the

stochastic game exhibits the most strict response to single players defecting. Evolving cooperation rates

are highest if already one defector is sufficient to let the group move towards the less beneficial State 2

(Extended Data Fig. 4f). Interestingly, all stochastic games in which players can find themselves in both

states (Extended Data Fig. 4b–e) lead to higher cooperation rates than the two repeated games in which

players always remain in the same state (Extended Data Fig. 4a,f).

3.5 Numerical analysis of the evolving strategies

So far we have seen that for natural transition structures, stochastic games can favor the evolution of

cooperation. In this section, we aim to understand this process on the level of the evolving strategies.

To this end, we have again considered all eight state-independent and deterministic stochastic games

between two players. For these games, we have recorded how often the 16 memory-one strategies

p= (pC,1, pC,0, pD,1, pD,0) with pa,j ∈ {ε, 1−ε} are played in the selection-mutation equilibrium. We

let the benefit of cooperation in the first state vary between 1≤ b1≤3. To be able to make comparisons

across strategy sets of different size, we have normalized these frequencies. To this end, let λβ(p) be
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the frequency of strategy p in the selection-mutation equilibrium when the strength of selection is β.

We define the strategy’s relative abundance by λβ(p)/λ0(p), where λ0(p) is the abundance of p under

neutral selection. We call a strategy favored by selection if λβ(p)/λ0(p) > 1, i.e., if the strategy is more

abundant than expected under neutrality.70,71

Extended Data Fig. 3 shows the relative abundance for the two most important strategies AllD

and WSLS across the eight different stochastic games (together with the strategy Grim, which plays

similar to AllD in an infinitely repeated game with errors, these three strategies are typically played for

more than 80% of the evolutionary time). We note that only in four out of the eight stochastic games in

Extended Data Fig. 3, almost full cooperation can be achieved as the benefit of cooperation in State 1

approaches b1 =3 (this observation remains true if the value of b1 was further increased). The four cases

in which cooperation can evolve are exactly those cases in which mutual cooperation leads the players

to remain in the more profitable State 1. Interestingly, the evolution of cooperation is strongly tied to the

success of WSLS; in all four stochastic games, cooperation evolves exactly when WSLS is favored by

selection.

In Extended Data Fig. 5, we demonstrate that a similar result also applies in groups of more than

two players. Again, the most abundant strategy is either AllD (when the multiplication factor r1 is too

low for cooperation to evolve) or WSLS (when r1 is sufficiently large).

3.6 Analytical conditions for the stability of cooperation

The previous numerical results suggest that we can predict when full cooperation can evolve based on

the stability properties of WSLS. In this subsection, we therefore aim to explore when WSLS is an

equilibrium, depending on the game’s transition function and on the payoffs of the stage game. The

following Proposition considers arbitrary state-independent games with m states and n players.

Proposition 2. Consider a state-independent stochastic game between n players with discount rate

0 < δ < 1. Let Q(sj |k) ∈ [0, 1] denote the probability to move to state sj ∈ {s1, . . . , sm} after a

round in which k players have cooperated. The strategy WSLS is a subgame perfect equilibrium if and

only if the following conditions are met in all states si,

uiC,n−1−uiD,n−1+δ

m∑
j=1

(
Q(sj |n)ujC,n−1−Q(sj |n−1)ujD,0

)
+δ2

m∑
j=1

(
Q(sj |n)−Q(sj |0)

)
ujC,n−1 ≥ 0.

uiD,0−uiC,0+δ

m∑
j=1

(
Q(sj |0)ujC,n−1−Q(sj |1)ujD,0

)
+δ2

m∑
j=1

(
Q(sj |n)−Q(sj |0)

)
ujC,n−1 ≥ 0.

(17)

It is worth to note that the above result neither requires the stochastic game to be deterministic, nor

that deviating players choose among the memory-1 strategies. In particular, it implies that if conditions

(17) are satisfied, thenWSLS is a Nash equilibrium, and no single mutant can have a higher payoff than

the residents. Due to continuity, this result remains true in the limiting case of no discounting, δ → 1,

provided that the payoff of the mutant and of WSLS is well-defined (which always holds when the

mutant applies a memory-k strategy for some finite k).
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For the special case of a pairwise game where a prisoner’s dilemma is played in each state, n= 2,

uiC,1 = bi−c, uiC,0 = −c, uiD,1 = bi, uiD,0 = 0, condition (17) simplifies to

δ(1 + δ)
m∑
j=1

Q(sj |n) · bj − δ2
m∑
j=1

Q(sj |0) · bj ≥ (1 + δ)c (18)

In particular, if we assume without loss of generality that states are ordered such that b1>b2>. . .>bm,

condition (18) is most easily satisfied if Q(s1|n) = 1 and Q(sm|0) = 1. Thus, we recover the result

that cooperation is most likely to evolve if the stochastic game itself reflects the players’ behavior, with

mutual cooperation always leading to the best state and mutual defection leading to the worst. Moreover,

it follows from (18) that all intermediate transition probabilities Q(sj |k) with 0<k<n are irrelevant for

the stability of WSLS. Even for general games, condition (17) suggests that only the four transitions

Q(sj |n), Q(sj |n−1), Q(sj |1) and Q(sj |0) affect the stability of WSLS. In the limiting case δ → 1,

condition (18) becomes
m∑
j=1

(
2Q(sj |n)−Q(sj |0)

)
· bj ≥ 2c. (19)

In the case of only two states,m = 2, we can write the transitions asQ(s1|k) = qk andQ(s2|k) = 1−qk.

In that case, condition (19) further simplifies to

(
2q2−q0) · b1 +

(
1−(2q2−q0)

)
· b2 ≥ 2c. (20)

This is condition (1) in the main text.

Similarly, we can analyze the stability of WSLS if the game played in each state is an n-player

public goods game with decreasing multiplication factors r1>r2> . . . >rm. In that case, condition (17)

translates into

δ(1 + δ)

m∑
j=1

Q(sj |n) · rj − δ2
m∑
j=1

Q(sj |0) · rj ≥ 1−rm/n+δ, (21)

which for δ→1 becomes

m∑
j=1

(
2Q(sj |n)−Q(sj |0)

)
· rj ≥ 2− rm/n. (22)

In the case of games with two states only, this condition reads

(
2qn−q0

)
· r1 +

(
1− (2qn−q0)

)
· r2 ≥ 2−r2/n, (23)

For the parameter values used in Extended Data Fig. 5b–e (n = 4, r2 = 1.2, qn = 1, q0 = 0), this

condition becomes r1 ≥ 1.45, which is roughly the value where we observe WSLS to become favored

by selection.
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3.7 An example with many states

In Fig. 4 of the main text, we have introduced a stochastic game with n=4 players and m=5 states. In

each state si players interact in a public goods game with multiplication factor ri and cost c= 1. States

are ordered such that r1≥ . . .≥ rm. Transitions are deterministic and state-independent. Players move

towards State 1 if all four players have cooperated in the previous round, they move towards State 2 if

three players have cooperated, etc. That is, for all previous states si we have

Q(si, 4) = (1, 0, 0, 0, 0), Q(si, 3) = (0, 1, 0, 0, 0), Q(si, 2) = (0, 0, 1, 0, 0),

Q(si, 1) = (0, 0, 0, 1, 0), Q(si, 0) = (0, 0, 0, 0, 1).
(24)

Due to Proposition 1, we can thus restrict ourselves to state-independent memory-1 strategies of the form

p = (pC,3, pC,2, pC,1, pC,0; pD,3, pD,2, pD,1, pD,0), (25)

where pa,j is a player’s cooperation probability if in the previous round the focal player used action a

and j of the co-players have cooperated. Players are assumed to apply pure strategies with errors, such

that pa,j ∈ {ε, 1−ε}. In total, there are 28 = 256 such strategies. For the payoffs in each state we have

considered four scenarios. These scenarios differ in how the multiplication factors depend on the number

of previous defectors. Specifically, the multiplication factors ri for each scenario are defined as follows

(see also Fig. 4c) :

State 1 State 2 State 3 State 4 State 5

Scenario with immediate
consequences

1.6 1 1 1 1

Scenario with gradual
consequences

1.6 1.45 1.3 1.15 1

Scenario with delayed
consequences

1.6 1.6 1.6 1.6 1

Scenario with no
consequences

1.6 1.6 1.6 1.6 1.6.

We have assumed there is no discounting on the future, δ → 1. The model was analyzed by calculat-

ing exact strategy frequencies and cooperation rates in the selection-mutation equilibrium as mutations

become rare64.

We observe that only the first three scenarios yield substantial cooperation rates (Fig. 4), among

which the scenario with immediate consequences yields the highest cooperation rate. This can be un-

derstood on the level of evolving strategies. Applying condition (22) to this example, we find that

WSLS = (1, 0, 0, 0; 0, 0, 0, 1) is stable in the first three scenarios, whereas it is unstable in the last
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scenario. This stability result is reflected in strategy abundances in the selection-mutation equilibrium.

WSLS is most abundant in the first three scenarios, whereasALLD is the most abundant strategy in the

last scenario. As a consequence, although in each state the multiplication factor in the scenario with im-

mediate consequences is the lowest across all scenarios, players in this scenario earn the highest payoffs

(the payoffs are 0.537, 0.459, 0.401, and 0.089, respectively). Intuitively, although WSLS is an equi-

librium in all of the first three scenarios, the payoff of a single ALLD mutant in a WSLS population

is lowest when consequences are immediate. It follows that also the fixation probability of ALLD in a

WSLS population becomes minimal in this scenario.

3.8 Exploring the impact of different payoff constellations on the game dynamics

In most of our analysis so far we have explored whether stochastic games allow for cooperation even if

cooperation yields lower payoffs in each stage game. In the case of pairwise games with two states, we

have thus assumed that players interact in a prisoner’s dilemma in any given round. In the following, we

weaken this assumption.

We consider a stochastic game with two players and two states. As in the main text, players employ

pure memory-1 strategies subject to rare errors (with the error rate again being ε = 0.001). For the game

in State 2, we suppose players face the same prisoner’s dilemma game as in Fig. 2a. However, for the

game in State 1, we allow more general payoff configurations. Specifically, we assume that the payoffs

in game 1 are given by the following matrix,

U1 =

(
1 S1

T 1 0

)
, (26)

where S1 and T 1 are the sucker’s payoff and the temptation payoff in the first state, respectively. De-

pending on the values of T 1 and S1, we can distinguish four possible cases:

(PD) If T 1 > 1 and S1 < 0, game 1 is a prisoner’s dilemma. Mutual defection is the only equilibrium

in the corresponding one-shot game.

(SH) If T 1 < 1 and S1 < 0, game 1 corresponds to a stag-hunt game. In that case, the one-shot game

corresponds to a coordination game with three equilibria, both cooperate, both defect, and a mixed

equilibrium.

(SD) If T 1 > 1 and S1 > 0, game 1 corresponds to a snowdrift game. In the one-shot case, this game

has one symmetric equilibrium according to which players randomize between cooperation and

defection.

(HG) If T 1 < 1 and S1 > 0, mutual cooperation is the only equilibrium. This game is thus sometimes

called harmony game.

We are interested in how the evolution of cooperation and the dynamics of play is affected by the

payoff values and the game’s transition structure. To this end, we have systematically varied the two
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payoff parameters S1 and T 1, and we have considered all eight state-independent and deterministic

transitions q = (q2, q1, q0) with qi ∈ {0, 1}. For each combination of S1, T 1 and q, we calculate exact

strategy frequencies in the selection-mutation equilibrium as the mutation rate becomes rare64. Based

on these strategy frequencies, we compute (i) how often players cooperate on average and (ii) how often

they switch between states over the course of a game (i.e., in which fraction of rounds players move from

State 1 to State 2 or vice versa). The corresponding results are shown in Extended Data Fig. 10.

We observe the following regularities:

1. High cooperation rates are only feasible in those stochastic games in which mutual cooperation

leads to the first state (i.e., for which q2 = 1, as in Extended Data Fig. 10a,b,c,e). In those

four cases, players tend to be fully cooperative in the harmony game and in the stag-hunt game.

In the prisoner’s dilemma, players are most likely to establish cooperation if the sucker’s payoff

S1 is large and the temptation T 1 is small. Moreover, cooperation in the prisoner’s dilemma is

more likely to evolve when mutual defection leads players to the second state (as in Extended
Data Fig. 10b,c). In this regime, the most abundant strategy is Win-Stay Lose Shift, which is

in line with the results reported in Section 3.6. Finally, for the snowdrift game we observe that

players may learn to cooperate alternatingly, provided that unilateral cooperation leads to the more

profitable State 1 (Extended Data Fig. 10a,b). Otherwise, if unilateral cooperation leads to the

second state, players are either fully cooperative or fully defective (Extended Data Fig. 10c,e).

Interestingly, in the four cases in which mutual cooperation leads to the first state, players rarely

switch between the two states, independent of the particular game being played in State 1. That

is, players either adopt strategies that make them stay in the first state, or they adopt strategies that

make them stay in the second state.

2. The only cases when players learn to alternate between the two states occur when mutual coop-

eration leads to the second state whereas mutual defection leads to the first state (Extended Data
Fig. 10d,f). In those two cases there are regions in the (T 1, S1)–plane where players cooperate

in the first game and defect in the second. These switches between states resemble the oscillating

tragedy of the commons reported by Weitz et al10. In their analysis of one-shot games with envi-

ronmental feedback, they have observed persistent oscillations as the game payoffs switch between

a harmony game and a prisoner’s dilemma (see also Appendix A). In contrast, Extended Data
Fig. 10d,f suggests that similar oscillations can occur in stochastic games even if the first game is

a stag-hunt game, provided that the sucker’s payoff S1 is sufficiently large.

3. Finally, if mutual cooperation and mutual defection both lead to the unprofitable second state,

cooperation rarely evolves (Extended Data Fig. 10g,h). Only if the game under consideration is

a snowdrift game and if unilateral cooperation leads to the first state, players may sometimes learn

to cooperate asynchronously (Extended Data Fig. 10g).
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4 Further applications

In the following, we discuss several further examples where the framework of stochastic games can be

used to shed light on cooperation in specific scenarios. All examples have in common that they are

state-dependent: transitions do not only depend on the players’ previous actions but also on the present

state. Examples 1–3 explore the impact of probabilistic transitions on cooperation; the fourth example

illustrates the dynamics in a state-dependent stochastic game with more than two states.

4.1 A stochastic game with probabilistic return to State 1

Here we consider the stochastic game illustrated in Fig. 3a of the main text. There are two players,

N = {1, 2} and the game has two states S = {s1, s2}. Players remain in the first state after mutual

cooperation, but they move to the second state if at least one player defects. Once players are in the

second state, they return to the first state after mutual cooperation with probability q; otherwise they

remain in the second state. That is, the transition function is given by

q = (q1
2, q

1
1, q

1
0; q2

2, q
2
1, q

2
0) := (1, 0, 0; q, 0, 0), (27)

where qik is the probability to move to the first state, given that the present state is si and that k players

have cooperated. In each state i, players interact in a prisoner’s dilemma; the payoffs are uiCC = bi−c,
uiCD =−c, uiDC = bi, and uiDD =0. Cooperation in State 1 is more profitable, since b1>b2>c. Players

are assumed to use memory-one strategies; that is, admissible strategies are 5-tuples of the form

p = (p1
CC ; p2

CC , p
2
CD, p

2
DC , p

2
DD). (28)

The entries piaã represent a player’s cooperation probability in state si, given that the focal player’s

previous action was a and that the co-player’s action was ã. Note that we can omit the cooperation

probabilities p1
CD, p1

DC and p1
DD due to Proposition 1 (players never find themselves in the first state if

a player has defected in the previous round). Moreover, since we consider the limit of no discounting on

future payoffs, δ→ 1, we can also omit a player’s initial cooperation probability p0. In the following,

we assume that players use pure strategies with errors. That is, the entries are taken from the set piaã ∈
{ε, 1−ε}. Hence, the strategy space contains 25 = 32 different strategies. For given parameter values

b1, b2, c, q, we use the method of Fudenberg and Imhof64 to calculate the abundance of each strategy in

the selection-mutation equilibrium. As we have illustrated in Fig. 3a, there are parameter combinations

in which it takes an intermediate value of q to achieve maximum payoffs in the population.

Here, we discuss this result in terms of the strategies that evolve. For the most abundant strategy,

we find there are three different regimes depending on the transition probability q (see Extended Data
Fig. 6c). When q is close to zero, the most abundant strategy is AllD = (0; 0, 0, 0, 0); as q increases,

the most abundant strategy becomes WSLS = (1; 1, 0, 0, 1); and for sufficiently large values of q, the

most abundant strategies is a more ambitious version of win-stay lose-shift, which we call AWSLS =
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(1; 0, 0, 0, 1). An AWSLS player continues with her previous action if and only if the previous payoff

was at least b1−c; otherwise she takes the opposite action in the next round (an ordinary WSLS player

follows the same principle, but uses the more modest threshold b2−c).
To explore why the highest cooperation rate evolves for intermediate values of q (Extended Data

Fig. 6b), we have simulated how long it takes other mutant strategies to invade one of these three resident

populations. For a resident population consisting of AllD players, we find that it takes approximately

200 mutant invasions until the first mutant successfully reaches fixation, with little dependence on q

(Extended Data Fig. 6d). WSLS and AWSLS are less robust for small values of q. For q = 0,

AWSLS is on average invaded after 17 mutants, and WSLS fares only slightly better, surviving on

average 24 mutants. This is intuitive – for q = 0 the second state of the stochastic game becomes

absorbing. Hence, the stochastic game degenerates to a repeated game in the second state, in which the

benefit b2 is too low for WSLS or AWSLS to be stable. As q increases, both strategies become stable,

which is also reflected by a considerably longer invasion time. In the limiting case q = 1, the stochastic

game becomes state-independent, and the two strategiesWSLS andAWSLS are equivalent (since they

only differ in their value of p2
CC which now is irrelevant). For q = 1, we hence find for both strategies

that it takes approximately 930 mutant invasions until a mutant takes over the population.

To explore further why the value for the optimal transition probability is smaller than one, we have

also recorded which strategies typically succeed in invading AllD (Extended Data Fig. 6e) and WSLS

(Extended Data Fig. 6f) when q = 1. AllD is typically invaded by TFT -like strategies. Successful

mutants defect if the co-player has defected, and they cooperate if the co-player has cooperated. In this

way, TFT can be shown to have a selective advantage among AllD players; its invasion probability is

above the neutral probability 1/N for all values of q. On the other hand, forWSLS we find that the most

successful mutant usually applies AWSLS, and vice versa AWSLS is typically invaded by WSLS

(since they both are neutral to each other when q = 1). However, the second most successful mutant

strategy turns out not to be AllD, but rather the slightly more cooperative strategy p = (0; x, 0, 0, 1)

with x ∈ {0, 1} arbitrary (Extended Data Fig. 6f). For x = 0, the payoff of such a strategy in a WSLS

population can be calculated as

π =
b2 − c+ qb1 + (1−q)b2

3
+O(ε) (29)

Hence, for q = 1, this strategy achieves the higher benefit b1 in every third round (while it receives

the mutual defection payoff 0 and the mutual cooperation payoff b2 − c in the other two rounds). By

decreasing the value of q, the mutant’s payoff π is reduced, which explains why smaller values of q

enhance the stability of WSLS and AWSLS.

For q close to one, we observe that WSLS is slightly less abundant than AWSLS (Extended Data
Fig. 6c). When the population consists of a mixture of these two strategies, everyone gets the mutual

cooperation payoff b1−c as the error rate goes to zero ε → 0. However, for positive error rates, the

competition between WSLS and AWSLS becomes a coordination game, in which AWSLS is risk-
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dominant67.

Overall, this example illustrates how probabilistic transitions can further enhance the prospects of

cooperation. When the transition towards State 1 depends on exogenous chance events, it takes on

average more time to reach the more beneficial state after one player has defected. This renders deviations

from mutual cooperation more costly.

4.2 A repeated game with endogenous stopping time

As another example, we have considered a scenario in which defections of a player may lead a repeated

game to end earlier (as introduced in Fig. 3b of the main text). Again there are two players N = {1, 2}
and two states S = {s1, s2}. After mutual cooperation, players remain in the first state. However, if one

of the players defects, players move to the second state with probability q. State 2 is absorbing. Hence,

the transition function is represented by the vector

q = (q1
2, q

1
1, q

1
0; q2

2, q
2
1, q

2
0) := (1, 1−q, 1−q; 0, 0, 0), (30)

While in State 1, players interact in a prisoner’s dilemma with payoffs u1
CC =b1−c, u1

CD=−c, u1
DC =b1,

and u1
DD = 0. In State 2, there are no profitable interactions and u2

aã = 0, irrespective of the players’

actions. As the second state is absorbing, this stochastic game is only meaningful for discount factors

δ < 1 (otherwise the payoff of any strategy with errors will eventually approach 0). Thus, memory-one

strategies for this example have the following form,

p = (p0; p1
CC , p

1
CD, p

1
DC , p

1
DD). (31)

Again, we focus on pure memory-one strategies with errors, yielding 25 = 32 different strategies in total.

In the main text (Fig. 3b) we have shown that evolving payoffs reach an optimum for intermediate

values of the transition probability q. Herein, we aim to explain this finding on the level of evolving

strategies. To this end, we again consider the limit of small mutation rates and we use the method of

Fudenberg and Imhof64 to calculate, for each value of q, how abundant each strategy is in the selection-

mutation equilibrium. For small values of q, we find thatGrim = (1; 1, 0, 0, 0) is the memory-1 strategy

most favored by selection (Extended Data Fig. 7d). However, in Grim populations, cooperation is

unstable: once a player defects by error, cooperation breaks down and from then on both players receive

a payoff of zero (independent of whether they remain in State 1 or move towards State 2). We can use

Eq. (12) to calculate payoffs in a homogeneous Grim population. For q=0 we obtain

πG =
1− δ(1− ε)(1 + δε(1− 2ε))

1− δ(1− 2ε)
(b1 − c), (32)

which for our parameter values yields πG ≈ 0.334 · (b1 − c) (see also Extended Data Fig. 7f). That is,

homogeneousGrim populations only achieve an average cooperation rate of 33%. The predominance of

Grim for q ≈ 0 thus explains the relatively low cooperation rates (Extended Data Fig. 7b) and payoffs
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(Extended Data Fig. 7c) in the selection-mutation equilibrium.

As q increases, the two strategiesWSLS=(1; 1, 0, 0, 1) and its more suspicious counterpart SWSLS=

(0; 1, 0, 0, 1) become favored by selection. To get some intuitive insight into why these strategies emerge,

we use Eq. (12) to calculate when WSLS becomes stable. The respective condition reads

q ≥ 1−

√
δb1 − c
δ2(b1 − c)

+O(ε). (33)

For our parameter values, the expression under the square root is approximately one, and hence the

critical q value is of the order of ε, which explains the rise of WSLS in Extended Data Fig. 7d as the

transition probability approaches q=0.001. For such q, the payoff of homogeneous WSLS populations

is close to the optimal b1−c (Extended Data Fig. 7e), and hence we also see sharp increase of population

payoffs (Extended Data Fig. 7c).

As the transition probability q increases even further, cooperative strategies become increasingly

successful. Using Eq. (12) we find that AllC can resist invasion of AllD if

q ≥ 1− δ
δ

c

b1 − c
+O(ε). (34)

However, despite the success of cooperative strategies, average payoffs begin to diminish once q passes

a critical threshold (Extended Data Fig. 7c). Even if all players are unconditional cooperators, occa-

sional failures to cooperate will often terminate the interaction prematurely, with negative effects on the

expected payoffs (Extended Data Fig. 7f).
Overall, this example illustrates the mechanisms that promote cooperation if the length of a game is

not exogenously given, but endogenously determined by the players. If defective relationships have a

higher risk to be terminated, even unconditional cooperation can become a stable outcome, provided that

future interactions are sufficiently valuable.

4.3 A model with time-out

As our next application, we consider a model with time-out (illustrated in Fig. 3c of the main text).

There are again two players, N = {1, 2}, and two states, S = {s1, s2}. Players remain in State 1 after

mutual cooperation and they move towards State 2 otherwise. Once in State 2, they return to State 1 with

probability q, independent of the players’ actions. The transition function is thus

q = (q1
2, q

1
1, q

1
0; q2

2, q
2
1, q

2
0) := (1, 0, 0; q, q, q), (35)

In State 1, players interact in a conventional prisoner’s dilemma with payoffs u1
CC = b1−c, u1

CD =−c,
u1
DC = b1, and u1

DD = 0. In the time-out State 2, payoffs are zero u2
aã = 0 for all a, ã ∈ {C,D}. We

can obtain analytical results for the dynamics when we focus on games without discounting (δ → 1) and

when we consider players that only base their action in State 1 on the previous state. They use the regular
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cooperation probability x if the previous state was s1, and they use the cooperation probability y after

returning to state 1 from the time-out state 2. We can represent such strategies (x, y) in our framework by

assuming without loss of generality that players always defect when in State 2. in that case, the strategy

(x, y) can be encoded as the memory-one strategy

p = (p1
CC , p

1
CD, p

1
DC , p

1
DD; p2

CC , p
2
CD, p

2
DC , p

2
DD) = (x, 0, 0, y; 0, 0, 0, 0). (36)

When an (x1, y1)-mutant interacts with an (x2, y2)-resident, we can thus use Eq. (12) to calculate player

1’s expected payoff,

π1 = q · (1−x1x2+x2y1)y2b1 − (1−x1x2+x1y2)y1c

(1 + q)(1− x1x2)− qy1y2
. (37)

To model the evolution of strategies in the population, we assume that the population is of infinite size,

and that emerging mutant strategies are close to the respective resident strategy. Considering the adaptive

dynamics72 of the system, we assume that the direction of evolution points towards the mutant with

highest invasion fitness. That is, the time evolution of some resident population (x, y) is given by the

dynamical system

ẋ =
∂π1

∂x1

∣∣∣
x1=x2=x, y1=y2=y

and ẏ =
∂π1

∂y1

∣∣∣
x1=x2=x, y1=y2=y

(38)

Plugging Eq.(37) into (38), we obtain the system

ẋ = qy2 · x(x+ qx− qy)b1 − (1 + q − qxy + qy2)c(
(1 + q)(x2 − 1)− qy2

)2 ,

ẏ = q(1− x2) · ((1 + q)xy − qy2)b1 − (1 + q)(1− x2 + xy)c(
(1 + q)(x2 − 1)− qy2

)2 ,

(39)

which is defined on the unit square [0, 1]2. In Fig. 3c, we show a phase portrait of this system for b1 = 3,

c = 1 and q = 1/2. By solving for ẋ = 0 and ẏ = 0, we find a unique interior fixed point which is

always on the main diagonal,

Q =

√(1 + q)c

b1
,

√
(1 + q)c

b1

 . (40)

In Fig. 3c, the fixed point Q is represented by a purple dot. By linearizing the system around Q, we find

that the trace of the Jacobian matrix is positive, and hence Q is unstable.73 A numerical analysis shows

that the global dynamics is bistable. Some orbits converge to the line segment (x, 0) with 0 ≤ x < 1;

this line comprises all strategies that defect against themselves. Otherwise orbits converge towards the
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line segment (1, y) with 0 < y ≤ min{1, ŷ}, where

ŷ =
−q(b1 − c) +

√
q(b1 − c)(4c+ 3qc+ qb1)

2cq
. (41)

In particular, if q < (b1 − c)/c we find that AllC = (1, 1) is a stable fixed point of the dynamics. Thus,

the longer players stay in the time-out state in expectation, the more likely it becomes thatAllC becomes

a stable equilibrium. As in the previous example, however, the average payoff in an AllC population

with rare errors is a decreasing function of q. Hence, for the evolution of high payoffs in the population it

is again optimal that q is sufficiently small (increasing the size of the basin of attraction of cooperation),

but positive (preventing the second state with no payoffs to be absorbing).

4.4 A stochastic game with delayed payoff feedback

So far we have considered examples in which players revise their actions at the same timescale at which

payoff changes occur. However, in many natural applications it may be more realistic to assume there is

some delay in the payoff consequences of an action. For example, when farmers overgraze a shared pas-

ture, the consequences may not be visible after a day but only after a week. Such delayed consequences

can be captured by introducing additional states to the stochastic game. In the following, we illustrate

this technique with a simple example.

We consider a state-dependent stochastic game with two players N = {1, 2} and three states, S =

{s1, s2, s3}, see Extended Data Fig. 8a. Mutual cooperation always leads to the neighboring state with

lower index (unless players are already in state s1, in which case they stay there after mutual cooperation).

Mutual defection always leads to a state with higher index (unless players already find themselves in the

third state). If only one player defects, players remain in the same state. Hence, the transition function

Q takes the following values

Q
(
s1, (C,C)

)
= (1, 0, 0), Q

(
s2, (C,C)

)
= (1, 0, 0), Q

(
s3, (C,C)

)
= (0, 1, 0)

Q
(
s1, (C,D)

)
= (1, 0, 0), Q

(
s2, (C,D)

)
= (0, 1, 0), Q

(
s3, (C,D)

)
= (0, 0, 1)

Q
(
s1, (D,C)

)
= (1, 0, 0), Q

(
s2, (D,C)

)
= (0, 1, 0), Q

(
s3, (D,C)

)
= (0, 0, 1)

Q
(
s1, (D,D)

)
= (0, 1, 0), Q

(
s2, (D,D)

)
= (0, 0, 1), Q

(
s3, (D,D)

)
= (0, 0, 1).

(42)

Given these transitions, it is impossible that players find themselves in s1 after mutual defection, or

that they find themselves in s3 after mutual cooperation. Due to Proposition 1, memory-1 strategies are

therefore given by 10-tuples,

p = (p1
CC , p

1
CD, p

1
DC ; p2

CC , p
2
CD, p

2
DC , p

2
DD; p3

CD, p
3
DC , p

3
DD). (43)

As in the first two examples, we consider pure strategies with errors, such that piaã ∈ {ε, 1−ε}. In total,

there are 210 = 1, 024 such strategies. For the payoffs in each state we consider four scenarios that are

similar to the scenarios in Section 3.7. In all scenarios and all states, cooperation leads to a cost c for
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the cooperator. The benefits of cooperation depend on the scenario and on the state as follows (see also

Extended Data Fig. 8a):

State 1 State 2 State 3

Scenario with immediate
consequences

b1 c c

Scenario with gradual
consequences

b1
b1+c

2 c

Scenario with delayed
consequences

b1 b1 c

Scenario with no
consequences

b1 b1 b1.

Again, we analyze this model by calculating exact strategy frequencies and cooperation rates in the

selection-mutation equilibrium as the mutation rate becomes rare64.

As shown in Extended Data Fig. 8b, immediate payoff consequences are most favorable to cooper-

ation for all considered benefit values c<b1≤3c. As a consequence, this scenario also yields the highest

payoffs, given that benefits exceed a moderate threshold, b1 ≥ 1.4 (Extended Data Fig. 8c). However,

even when payoff consequences are delayed, cooperation rates and payoffs are still higher than in the

case when there are no payoff consequences at all. On the level of evolving strategies, we observe that

across all scenarios and all benefit values, five different strategies are most abundant:

p72 = (0, 0, 0; 1, 0, 0, 1; 0, 0, 0),

p577 = (1, 0, 0; 1, 0, 0, 0; 0, 0, 1),

p585 = (1, 0, 0; 1, 0, 0, 1; 0, 0, 1)

p586 = (1, 0, 0; 1, 0, 0, 1; 0, 1, 0)

p588 = (1, 0, 0; 1, 0, 0, 1; 1, 0, 0)

(44)

The index of each memory-one strategy indicates the decimal representation of the binary strategy en-

tries. The strategy p72 is self-defective; if applied by everyone in the population, players find themselves

in the third state most of the time, in which they mutually defect on each other. In contrast, the four other

strategies are self-cooperative. Strategy p585 isWSLS; the other three strategies representWSLS with

minor adaptations. In Extended Data Fig. 8d–g, we show how well these strategies fare in the four dif-

ferent scenarios considered. When the benefit b1 is relatively low, we note that theWSLS-like strategies

evolve most readily in the scenario with immediate consequences of defection.

To check whether our results are sensitive to the assumption that the benefit in the third state was

set to c, we have computed the resulting cooperation rates for an alternative scenario. In this alternative

scenario, we again set b1 = 1.8 as in Extended Data Fig. 8, but the benefit in the third state is b3 = 1.4

for the three scenarios in which payoffs change (again, b2 is either equal to 1.8, 1.6, or 1.4). In that
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case we obtain the cooperation rates 62.8% (immediate consequences), 57.0% (gradual consequences),

52.6% (delayed consequences) and 45.3% (no consequences, which is the same as before). Again, an

immediate feedback proves best for cooperation, but even some delayed feedback can prove beneficial.

The question of delayed payoff feedback may become more consequential if players heavily discount

the future. While the numerical results shown in Extended Data Fig. 8 assume the limiting case of no

discounting, Extended Data Fig. 9 systematically explores how the evolving cooperation rates depend

on the discount rate and on the exact shape of the payoff feedback. As one may expect, none of the four

treatments allows for the evolution of cooperation when players only value their present payoffs, such that

δ→ 0. As we increase the extent to which players take future payoffs into account, all four treatments

exhibit more cooperation. The relative ranking of the treatments is the same as before: immediate

payoff consequences lead to the highest cooperation rates and no payoff consequences exhibit the lowest

cooperation rates. However, the differences between the four treatments are more distinct, as compared

to Extended Data Fig. 8. We conclude that stochastic games are most conducive to cooperation if

players put sufficient weight on future payoffs, and if the time lag between the players’ actions and the

resulting payoff feedback is sufficiently short.

On a more technical level, this example highlights that our framework is not restricted to simple state-

dependent games with two states only. Instead, it is often possible to calculate exact strategy frequencies

in games with multiple states, especially if transitions are deterministic (such that one can often use

Proposition 1 to reduce the size of the strategy space).

29



Appendix A: On the feasibility of cooperation in one-shot social dilemmas

With our study we aim to highlight that the interplay of reciprocity and payoff feedback can be crucial

to sustain cooperation. To this end, Fig. 2 of the main text has illustrated the critical role of payoff

feedback: in these examples, players learn to cooperate in the stochastic game (where payoff feedback

is present), whereas they predominantly defect in the two associated repeated games (without payoff

feedback). In this appendix we wish to illustrate the critical role of repeated interactions: cooperation

cannot be sustained if there is only payoff feedback but players lack a long term perspective. Players

need to take the future consequences of their actions into account for cooperation to evolve.

To make this point more rigorous, we revisit the model of Weitz et al10 (to allow for an easy com-

parison, we adopt their notation in the following). They consider an infinite and well-mixed population.

Players interact in a pairwise game with two possible actions, C and D. In contrast to our setup, the

game is not repeated; if a player is a cooperator, this player is assumed to play C independent of the

other players’ previous decisions and independent of any environmental cues. The frequency of coop-

erators in the population is denoted by x∈ [0, 1]. The players’ payoffs depend on their own actions, on

the frequency of cooperators x, and on their current environment. The current state of the environment

is represented by the continuous variable n∈ [0, 1]. The payoff matrix A(n) for a given environment n

is assumed to be a linear combination of two borderline cases (see their Eq. [18]),

A(n) =

(
R(n) S(n)

T (n) P (n)

)
:= (1− n)

(
R0 S0

T0 P0

)
+ n

(
R1 S1

T1 P1

)
. (45)

Using the above payoff matrix, the payoffs of the two player types are defined as

r1

(
x,A(n)

)
= xR(n) + (1−x)S(n),

r2

(
x,A(n)

)
= xT (n) + (1−x)P (n).

(46)

To model how cooperation and the environment co-evolve, they consider the following two-dimensional

version of the replicator equation (see their Eq. [20]),

ẋ = x(1−x)
[
r1

(
x,A(n)

)
− r2

(
x,A(n)

)]
,

ṅ = εn(1−n)
[
− 1 + (1 + θ)x

]
.

(47)

The parameter ε > 0 reflects the relative speed at which the environment changes, as compared to the

strategy dynamics. The parameter θ > 0 reflects the recovery of the environment when cooperators are

common (i.e., when x ≈ 1). According to the first equation, the fraction of cooperators increases if

and only if cooperators receive a higher payoff than defectors, such that r1

(
x,A(n)

)
> r2

(
x,A(n)

)
.

According to the second equation, the environmental parameter increases if and only if there are suffi-

ciently many cooperators, such that x > 1/(1+θ). Weitz et al10 observe that if cooperation is a dominant

strategy for n= 0 and if defection is a dominant strategy for n= 1, the dynamics according to (47) can
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exhibit persistent oscillations.

We note that the replicator equation (47) considers players who maximize their current payoff. When

cooperators yield a one-shot payoff below average, they tend to switch to the other strategy. This switch

of actions may then in turn affect the dynamics of the environmental parameter n and the strategy choices

of other players. However, whether such a switch is profitable is exclusively evaluated based on its

immediate payoff effects. The subsequent strategy and environmental dynamics is not taken into account

when players decide whether to switch to a different strategy.

Due to these differences, the framework of Weitz et al10 is not immediately applicable to the ex-

amples we have studied. But to illustrate the differences between the two frameworks, we can naively

use their model to analyze the two-player example depicted in Fig. 2a of the main text, by studying the

solutions of (47) for the payoff values used in Fig. 2a,

R0 =b1−c, S0 = −c, T0 = b1, P0 = 0,

R1 =b2−c, S1 = −c, T1 = b2, P1 = 0.
(48)

For this special case, the replicator equation (47) simplifies to

ẋ = −cx(1−x),

ṅ = εn(1−n)
[
− 1 + (1 + θ)x

]
.

(49)

For the special payoff values considered, the first equation becomes independent of n (because defectors

always have the constant payoff advantage c over cooperators, independent of the current environment).

Since c>0, it follows for 0<x<1 that ẋ<0. As a consequence, x(t)→ 0 for any solution of (49) with

0≤ x(0) < 1 and 0≤ n(0)≤ 1. We conclude that for any initial population in the interior of the state

space, cooperators eventually go extinct. This extinction result is not restricted to the specific payoff

values in (48). Instead, Weitz et al10 show that when both games constitute a prisoner’s dilemma, with

Ti > Ri and Pi > Si for i∈{0, 1}, then cooperation always goes extinct.

We can slightly generalize this extinction result in the following way. Instead, of Eq. (47), suppose

the evolutionary dynamics of x and n is governed by the following system of equations,

ẋ = x(1−x)
[
r1(x, n)− r2(x, n)

]
,

ṅ = εn(1−n)ϕ(x, n),
(50)

where r1(x, n), r2(x, n) and ϕ(x, n) are differentiable functions in x and n. The ordinary differential

equation (50) generalizes Eq. (47) in two ways. First, it does not specify the exact form of the payoff

functions r1(x, n) and r2(x, n). In particular, a player’s payoff may be a nonlinear function of the frac-

tion of cooperators in a population, or of the environmental state. In this way, the replicator equation (50)

can be used to capture the dynamics of multiplayer games69. Second, we do no longer assume a specific

functional form to describe the dynamics of the environment; the function ϕ(x, n) is only assumed to be

differentiable, which is merely needed to guarantee existence and uniqueness of solutions of (50). We
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obtain the following result for the case that players are always engaged in a social dilemma.

Claim. Suppose one-shot payoffs are such that r1(x, n)≤ r2(x, n) for all x and n, and let
(
x(t), n(t)

)
be a solution of the replicator equation (50). Then x(t) is monotonically decreasing. Moreover, if

r1(x, n)<r2(x, n) for all x and n, then x(t)→0 for all initial populations with x(0)<1.

Proof. The statement follows directly because ẋ = x(1−x)
[
r1(x, n)− r2(x, n)

]
≤0 by assumption. If

r1(x, n)<r2(x, n), then V (x) :=x is a Lyapunov function for 0≤x<1.

In all of our examples in the main text we have assumed that players face a social dilemma when-

ever they are prompted to make a decision, such that the one-shot payoff of cooperation is at most the

one-shot payoff of defection. We thus interpret the above result as an indication that for our findings,

the interaction of reciprocity and payoff feedback has been essential: in none of the examples we would

have observed the emergence of cooperation if players updated their strategies based on their one-shot

payoffs only.

Appendix B: Proofs of the Propositions

Proof of Proposition 1.

1. According to Eqs. (7) and (8), the values of Pk(sj ,a) can only affect the transition matrix when

calculating entries of the form M(s,a)→(sj ,a′). However, as Q(sj |s,a) = 0 for all s∈S, it follows

from Eq. (7) that M(s,a)→(sj ,a′) = 0, no matter what Pk(sj ,a) is.

2. When the transition function Q is state-independent and deterministic, then for any action profile

a there is a state sa such that Q(sj |s,a) = 0 for all states sj 6= sa, for all previous states s ∈ S.

By the first part of the Proposition, the transition matrix M is thus independent of the values of

Pi(sj ,a) for all states sj 6=sa. In particular, if we define P ′i
(
sj ,a

)
:=Pi(sa,a) for all sj , then P ′

is state-independent and neither the transition matrix M nor the players’ payoffs change if Pi is

replaced by P ′i .

Proof of Proposition 2.

For the proof, we make use of the one-shot deviation principle74: to show that there is no profitable

deviation in a group in which everyone uses WSLS, we only need to check all one-shot deviations

(where a mutant plays a different action for one round, and returns to WSLS for all subsequent rounds).

Due to the definition of WSLS, it is useful to distinguish two possible cases, depending on whether or

not all players have chosen the same action in the previous round. In the following, we calculate the

continuation payoffs for each of these cases, assuming that all players apply WSLS .
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1. If the present state is si ∈ S and all players have used the same action in the previous round

(or players find themselves in the very first round of the game), then all players cooperate in all

subsequent rounds, and the continuation payoff πisame becomes

πisame = (1− δ)uiC,n−1 + δ
m∑
j=1

Q(sj |n) · ujC,n−1. (51)

2. If players have used different actions, then all players defect in the next round. Hence, after the

next round players find themselves in the case in which everybody has chosen the same action.

The respective continuation payoff πidiff thus becomes

πidiff = (1− δ)uiD,0 + δ
m∑
j=1

Q(sj |0) · πjsame. (52)

If a player instead decides to make a one-shot deviation in one of these two cases, we can calculate her

continuation payoff as follows:

1. If all players have used the same action in the previous round (or if players find themselves in the

very first round), a one-shot deviation requires the mutant to defect in the next round, and to play

according to WSLS thereafter. The corresponding continuation payoff is

π̃isame = (1− δ)uiD,n−1 + δ
m∑
j=1

Q(sj |n−1) · πjdiff. (53)

2. Alternatively, if players have used different actions in the previous round, a one-shot deviation

from WSLS requires the mutant to cooperate in the next round. Her continuation payoff becomes

π̃idiff = (1− δ)uiC,0 + δ
m∑
j=1

Q(sj |1) · πjdiff. (54)

WSLS is a subgame perfect equilibrium if and only if πisame ≥ π̃isame and πidiff ≥ π̃idiff. Plugging the

definitions (51)–(54) into these inequalities and basic algebraic manipulations yield (17).
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Appendix C: Matlab code for the calculation of payoffs

In the following we provide the code that we have used to calculate the players’ payoffs in stochastic

games with n players and two states.

function [pivec,cvec]=calcPay(Str,QVec,r1,r2,c);

% Calculates the payoff and cooperation rates in a stochastic game with

% deterministic transitions, playing a PGG in each state

% Str ... Matrix with n rows, each row contains the strategy of a player

% Strategies have the form (pC,n-1,...pC,0,pD,n-1,...pD,0) where the letter

% refers to the player’s own action and number refers to cooperators among

% co-players.

% QVec = (qn,...,q0) vector that contains the transition

% probabilities qi to go to state 1 in the next round, depending on

% the number of cooperators

% r1,r2 ... multiplication factors of PGG in each state

% c ... cost of cooperation

% PART I -- PREPARING A LIST OF ALL POSSIBLE STATES OF THE MARKOV CHAIN,

% PREPARING A LIST OF ALL POSSIBLE PAYOFFS IN A GIVEN ROUND

% A state has the form (s,a1,...an) where s is the state of the

% stochastic game and a1,...,an are the player’s actions.

% Hence there are 2 (̂n+1) states.

n=size(Str,1);

PossState=zeros(2 (̂n+1),n+1); % Matrix where each row corresponds to a possible

state

for i=1:2 (̂n+1)

PossState(i,:)=sscanf( dec2bin(i-1,n+1), ’%1d’ )’;

end

piRound=zeros(2 (̂n+1),n); % Matrix where each row gives the payoff of all players

in a given state

for i=1:2 (̂n+1)

State=PossState(i,:); nrCoop=sum(State(2:end)); Mult=State(1)*r2+(1-State(1))*r1;

for j=1:n

piRound(i,j)=nrCoop*Mult/n-State(j+1)*c;

end

end

% PART II -- CREATING THE TRANSITION MATRIX BETWEEN STATES

M=zeros(2 (̂n+1),2 (̂n+1));

ep=0.001; Str=(1-ep)*Str+ep*(1-Str);
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for row=1:2 (̂n+1);

StOld=PossState(row,:); % PreviousState

nrCoop=sum(StOld(2:end)); EnvNext=QVec(n+1-nrCoop);

for col=1:2 (̂n+1);

StNew=PossState(col,:); %NextState

if StNew(1)==1-EnvNext;

trpr=1; % TransitionProbability

for i=1:n

iCoopOld=StOld(1+i);

pval=Str(i,2*n-nrCoop-(n-1)*iCoopOld);

iCoopNext=StNew(1+i);

trpr=trpr*(pval*iCoopNext+(1-pval)*(1-iCoopNext));

end

else

trpr=0;

end

M(row,col)=trpr;

end

end

v=null(M’-eye(2 (̂n+1))); freq=v’/sum(v);

pivec=freq*piRound;

cvec=sum(freq*PossState(:,2:end))/n;

end
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