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In the 1950s, when Merrill Flood and Melvin Dresher wanted to 
test novel solution concepts of game theory1,2, they asked col-
leagues at the RAND Corporation to play several rounds of vari-

ous two-player games3. One of those games had a peculiar quality: 
by maximizing their own payoffs, players would end up in a situa-
tion that is detrimental for both. Since then, the prisoner’s dilemma 
(PD)4 has become a major paradigm to study strategic behaviour 
in social dilemmas. It is presented as a game in which two players, 
say Alice and Bob, can either cooperate or defect (Fig. 1a). If both 
cooperate, they each get the reward, R, which exceeds the punish-
ment payoff, P, when both defect. But if one player defects while 
the other cooperates, the defector gets the highest payoff T (tempta-
tion), whereas the cooperator ends up with the lowest payoff S (the 
sucker’s payoff). The game is a PD if T >  R >  P >  S. No matter what 
Alice does, Bob maximizes his payoff by defecting. Thus, defection 
is the only Nash equilibrium.

Pure defection, however, was not the outcome Flood and Dresher 
observed in their experiment. Instead, their participants seemed to 
become more cooperative over time. When confronted with those 
results, John Nash argued that the experimental game was not a PD, 
but a repeated PD3. Repeated games allow for reciprocity5–7. Players 
have additional strategic options: they can react to the outcomes of 
previous rounds, they can reward cooperating co-players by coop-
erating in the future and they can punish defecting co-players by 
defecting in the future. Reward and punishment are intrinsic prop-
erties of repeated games.

Direct reciprocity is a mechanism for the evolution of coop-
eration8, based on the concept that my behaviour towards you 
depends on our previous interactions. To study direct reciprocity, 
assume that after each round of the PD, there is another one with 
probability δ. Equivalently, we could assume that there are infi-
nitely many rounds, but future payoffs are discounted by δ. When 
the game is repeated, the set of feasible strategies is huge. Instead 
of merely deciding whether to cooperate or to defect in a single 
interaction, a strategy needs to specify what to do in every round, 
given the previous history of interactions. To do so, Alice might, 
for example condition, her next action on whether Bob has coop-
erated in the previous round. Alternatively, Alice might cooper-
ate if the running average payoffs of the two players fall within a 
certain range9.

Iterated games and the folk theorem
Repeated interactions allow cooperation to be stable10. To see why, 
assume Alice and Bob can choose between two possible strate-
gies, always defect (ALLD) and tit-for-tat (TFT) (Fig. 1b). ALLD 
defects in every round. TFT cooperates in the first round and then 
does whatever the opponent did in the previous round (Fig. 2). 
When both players use TFT, they get payoff R in every round. 
If Alice instead switches to ALLD, she obtains T >  R in the first 
round but P <  R in all subsequent rounds. If future interactions 
are sufficiently likely, Alice’s short-run advantage is not worth her 
long-term loss.

This logic of reciprocity is simple, but it has been effective for 
understanding when individuals cooperate under a ‘shadow of 
the future’. Repeated games have been employed to study topics as 
diverse as collusion11,12, venture capitalism13, arms races14,15, food 
sharing16,17 and predator inspection18. Computer scientists and 
mathematicians have been interested in the computational com-
plexity of finding best responses19,20.

Although the rules of the game are simple to describe, the out-
come is complex to predict. On one hand, the repeated PD allows 
for many different equilibria. The folk theorem21,22 guarantees that 
any feasible average payoff can arise in equilibrium, provided that 
players get at least the mutual defection payoff P (Fig. 1c). On the 
other hand, in evolving populations, none of those equilibria are 
evolutionarily stable23–26. For example, if all members of a popula-
tion apply TFT, individuals using ‘always cooperate’ (ALLC) fare 
just as well. Thus, ALLC may spread through neutral drift, favouring 
the subsequent invasion of ALLD7. But ALLD is not evolutionarily 
stable either; it can be neutrally invaded by suspicious tit-for-tat 
(STFT), which defects in the first round and plays like TFT there-
after. Once STFT is common, more cooperative strategies can take 
over. Such neutral, stepping-stone invasions are always possible27,28, 
unless there is a positive probability of mistakes29,30. Moreover, when 
the dynamics of strategies in a population are modelled as a stochas-
tic process, chance events during mutation and selection may help 
a mutant strategy to invade even if it is initially at a disadvantage 
(Fig. 1d). Cooperation thus comes and goes in cycles31–33. Periods 
of defection alternate with periods of cooperation, and the respec-
tive length of these periods determines how likely we are to observe 
cooperation over time34–39.
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Classical strategies for the repeated PD
In absence of a universally optimal strategy, research has focused 
on identifying cooperative strategies that perform well in a broad 
range of scenarios40–50. The field owes much of its early momentum 
to Robert Axelrod, who invited experts to submit programmes to 
play the repeated PD in a computerized round-robin tournament40. 
The shortest programme, TFT, submitted by Anatol Rapoport4, 
achieved the highest average score, although it did not win any 

pairwise encounter. Axelrod attributed the success of TFT to four 
appealing properties: TFT is never the first to defect, it responds 
to defection by defecting, it returns to cooperation if the co-player 
does so and it is easy for other players to comprehend it. A recent 
mathematical analysis has shown that the simple imitation rule 
employed by TFT makes it ‘unbeatable’ in social dilemmas with 
two actions: against TFT, no opponent can achieve arbitrarily high 
payoff advantages51. But TFT is not as superior as these results  
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Fig. 1 | repeated interactions allow evolution of cooperation. a, In a social dilemma, two cooperators get a higher payoff than two defectors, R >  P, 
but there is a temptation to defect. The temptation can come in three forms: T >  R, P >  S or T >  S. The game is a social dilemma if at least one of those 
inequalities holds. The PD is the most stringent social dilemma; here all three temptations hold. The PD is defined by the payoff ranking T >  R >  P >  S. b, If 
the PD is repeated with probability δ, players can use conditionally cooperative strategies such as TFT. TFT yields the mutual cooperation payoff R against 
itself, and it is stable against ALLD if δ is sufficiently large. c, The folk theorem states that for sufficiently large δ, all payoff pairs in which both players get 
at least P can arise in equilibrium. d, In stochastic evolutionary dynamics, TFT can invade ALLD. A single TFT mutant can have a fixation probability that 
exceeds the neutral probability 1/N, where N is the population size34. Parameters: N =  10, R =  2, S =  − 1, T =  3, P =  0 and δ =  0.9.
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Fig. 2 | eight strategies for the repeated PD. Each strategy is shown as a finite state automaton54. The coloured vertices indicate the player’s next action. 
The arrows represent transitions between states after each round. The black letters C and D represent the co-player’s action. The arrow from the left 
points at the initial state. a, ALLD always defects. b, ALLC always cooperates. c, Grim cooperates until the co-player defects once, then it defects forever. 
d, TFT cooperates in the first round, then repeats what the co-player did in the previous round. e, TF2T is similar to TFT, but it takes two consecutive 
defections of the co-player for TF2T to retaliate. f, GTFT cooperates in the first round and if the co-player has cooperated in the previous round; it 
cooperates with probability q <  q* if the co-player has defected. The threshold q* ensures that no other strategy can invade (Box 2). g, WSLS cooperates 
in the first round, and it repeats its own move if the payoff was T or R; it switches to the other move if the payoff was P or S. h, An extortioner defects in 
the first round; then defects if both players have defected; cooperates with probabilities p1, p2 or p3 if the previous round was CC, CD or DC, respectively. 
These probabilities are chosen such that the two players’ payoffs are on a line (Fig. 3a). TF2T requires the player to remember the outcome of the past two 
rounds; all other depicted strategies are memory-1 strategies.
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suggested: its success in Axelrod’s tournament critically depends on 
the participating strategies and on the methods used to determine 
the winner52. For example, had the strategy tit-for-two-tats (TF2T) 
been submitted, it would have won the first tournament40. TF2T 
only defects if the co-player has defected in the previous two rounds 
(Fig. 2e). Moreover, a strict retaliator like TFT is unable to correct 
errors: if players occasionally make mistakes, cooperation between 
two TFT players breaks down53–55.

An alternative approach to tournaments is to let evolution 
decide which strategies prevail42,43. Consider a population of play-
ers, each one equipped with a specific strategy. Over time, suc-
cessful strategies spread, either because they reproduce faster or 
they are imitated more often56,57. In addition, mutation or random 
exploration introduce novel strategies. When modelling such evo-
lutionary processes for the iterated PD, the enormous number of 
possible strategies makes it often necessary to constrain the avail-
able set of strategies. One assumption is that players are reactive: 
when deciding whether to cooperate in the next round, they only 
consider the opponent’s move in the very last round. Reactive strat-
egies are described as a triplet (y, p, q). Here, y is the probability to 
cooperate in the first round, p is the probability to cooperate if the 
co-player has cooperated in the previous round and q is the prob-
ability to cooperate if the co-player has defected58. Although reac-
tive strategies contain both ALLD and TFT, stochastic simulations 
typically favour a more lenient strategy. Evolutionary trajectories 
often lead from ALLD to TFT and from there to generous tit-for-
tat (GTFT)42. When Alice applies GTFT, she always cooperates in 
the first round and after rounds in which Bob has cooperated. But 
when Bob defects, Alice still cooperates with some probability q >  0 
(Fig. 2f). The probability q can be chosen sufficiently large to avoid 
costly vendettas after an error, but low enough to give ALLD no 
selective advantage41.

The evolutionary dynamics change when players additionally 
take their own previous move into account. Such memory-1 strate-
gies have the form (p0; p1, p2, p3, p4), where p0 again represents a 
player’s probability to cooperate in the first round, and the other 
four numbers are the probabilities to cooperate after the outcomes 
CC, CD, DC, DD, respectively. The first letter represents the previ-
ous action of the focal player, the second letter refers to the action 
of the co-player (where C is cooperate and D is defect). Stochastic 
memory-1 strategies have been extensively used in evolutionary 
game theory7. They are simple enough to be explored with com-
puter simulations39,48, yet sufficiently complex to encode a variety of 
interesting behaviours (Fig. 2). Once individuals can choose among 
all memory-1 strategies, evolution often leads to win-stay, lose-shift 
(WSLS)43,44. When Alice applies WSLS, she starts with cooperation; 
thereafter, she repeats her previous action if it yielded at least payoff 
R in the previous round. If her payoff was less than R, she switches 
to the opposite action (Fig. 2g).

WSLS is the only memory-1 strategy that satisfies three simple 
principles48: it is mutually cooperative, retaliating and error-correct-
ing. That is, WSLS continues to cooperate after mutual cooperation, 
it retaliates to a co-player’s defection by defecting for at least one 
round and two WSLS players restore cooperation after at most one 
round. Due to these principles, WSLS evolves in a wide range of sce-
narios, provided that mutual cooperation is sufficiently profitable 
and that the game is iterated for a sufficient number of rounds43–48.

Zero-determinant strategies
While evolutionary game theory traditionally asks which strategies 
win in evolving populations, Press and Dyson59 recently posed a dif-
ferent question: Are there strategies for Alice with which she wins 
every pairwise encounter with Bob, irrespective of which strategy 
Bob uses? Moreover, can she achieve this goal in a way that makes 
it optimal for Bob to cooperate in every round? Surprisingly, the 
answer to both questions is yes. The argument involves two steps.

First, Press and Dyson described an intriguing subset of mem-
ory-1 strategies, the so-called zero-determinant (ZD) strategies. 
For the derivation of these strategies, a particular matrix plays an 
important role, which depends on the players’ memory-1 strate-
gies. If Alice employs a ZD strategy, the determinant of this matrix 
becomes zero, which explains the curious name of these strategies. 
More importantly, Press and Dyson observed that by using a ZD 
strategy, Alice can enforce a linear relationship between her own 
and Bob’s payoff. The exact shape of this relationship is solely under 
Alice’s control. Second, they showed that among the ZD strategies 
there are so-called extortioners. With an extortionate strategy, Alice 
can guarantee, for example, that she always gets twice the payoff of 
Bob, whereas Bob can do no better than cooperating in every single 
round (see Box 1). For that statement to hold, the payoff has to be 
rescaled such that the payoff for mutual defection is zero.

If Bob is not cooperative from the outset, Alice can employ an 
extortionate strategy to teach him to cooperate59,60. Suppose that 
Alice is committed to a fixed strategy, while Bob is willing to adapt. 
Bob may occasionally change his strategy in response to Alice’s fixed 
behaviour. When Alice uses an extortionate strategy, any attempt 
Bob makes to increase his own payoff automatically also increases 
Alice’s payoff. As Bob adapts, he becomes increasingly cooperative 
over time. As a result, both players’ payoffs increase, but Alice’s pay-
off increases by twice as much (Fig. 3a).

After the discovery of extortionate strategies, several stud-
ies have explored their general existence61–64, their evolutionary 
performance65–70 and their relevance for human interactions71–74.  
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Fig. 3 | Adaptive players versus ZD strategies. a, If Alice applies an 
extortionate ZD strategy, she enforces a linear relationship between her 
and Bob’s payoff (left). Which point on that line will be realized depends 
on Bob’s strategy. But because the red line in the left panel is on or below 
the main diagonal, Alice never gets a lower payoff than Bob. Moreover, 
the slope of the line is positive: if Bob adapts his strategy to improve his 
own payoff, he also improves Alice’s payoff. In the long run, Alice’s payoff 
is not only higher than Bob’s, but also higher than the mutual cooperation 
payoff (right). b, If Alice applies a generous ZD strategy76, she also enforces 
a positive relation between the players’ payoffs, but now Bob’s payoff is 
higher than Alice’s. However, as Bob adapts to improve his payoff, both 
players move towards mutual cooperation.
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This work suggests that extortion is feasible in almost any natural 
setup, even if the social dilemma involves more than two players61,75, 
or if players have access to more than two discrete actions62.

Evolving populations, however, typically do not settle at extor-
tion65–70. But extortionate strategies can still act as catalysts for coop-
eration65–68. As extortioners never lose any direct competition, they 
can subvert ALLD populations through neutral drift. Once they 
are common, they quickly give rise to more cooperative strategies. 
Evolution leads from extortion to generosity76. Eventually, success-
ful players provide incentives for mutual cooperation, but they are 
also willing to accept a lower payoff than their opponent when 
mutual cooperation fails (Fig. 3b).

of partners and rivals
Maybe even more important than the discovery of ZD strategies is 
the new mathematical formalism that comes with them75–83. This 
formalism can be applied more generally to derive relationships 
between the payoffs players can achieve in repeated games. Using 
these relationships, we find a remarkable dichotomy among the 
strategies for the iterated PD. Most of the previously discussed strat-
egies fall into one of two classes: they act as rivals or as partners 
(Fig. 4). Partners aim to share the mutual cooperation payoff R with 
their co-player. Should the co-player not go along, however, they are 
ready to punish their co-player with lower payoffs. Rivals, in con-
trast, aim to have a higher payoff than their respective opponent, no 
matter what the opponent does.

Whether a given strategy qualifies as a partner or rival depends 
on the payoff values and the continuation probability. Among reac-
tive and memory-1 strategies for the iterated PD, the sets of part-
ner and rival strategies can be characterized explicitly (Box 2). For 
high continuation probabilities and a considerable benefit to coop-
eration, the set of partner strategies includes TFT, GTFT, WSLS  

and Grim. The set of rival strategies contains ALLD and the class  
of extortioners.

If the expected number of rounds is finite, subjects cannot be 
rival and partner at the same time. Partners need to be ‘nice’ to 
ensure they yield the mutual cooperation payoff R against like-
minded opponents. They are never the first to defect. In contrast, 
rivals must be ‘cautious’ to guarantee they cannot be outperformed 
by any opponent. They are never the first to cooperate. A world of 
rivals is a world in which everyone defects.

Only in infinitely repeated games without discounting of the 
future does TFT offer a compromise between these two classes. In 
that case, the first round does not matter and TFT is both a partner 
and a rival: it does not lose out in any pairwise encounter, while 
still making sure that it yields the mutual cooperation payoff against 
players of the same kind.

While the two sets of partner and rival strategies comprise many of 
the well-known strategies, they do not contain all of them. For exam-
ple, ALLC and TF2T neither qualify as partner nor rival. Instead, 
these strategies could be deemed submissive83: players using ALLC or 
TF2T avoid ever getting a higher payoff than their opponent.

Partners and rivals in evolution
In general, partners and rivals only comprise a small fraction of 
strategies for the iterated PD. For example, among reactive strate-
gies, partners always need to cooperate if the co-player cooperated 
in the previous round, while rivals need to defect after a co-player’s 
defection. Due to these constraints, the probability that a randomly 
chosen reactive strategy is either a partner or a rival is zero (Fig. 5a). 
Nevertheless, evolutionary trajectories visit the vicinity of these two 
strategy sets disproportionally often (Fig. 5b–d). Partner strategies 
are favoured when cooperation yields a high benefit, when popula-
tions are sufficiently large and when errors are rare. However, the 

Box 1 | How to gain twice as much as your opponent

Assume that Alice and Bob interact in a repeated PD with pay-
offs T >  R >  P >  S. For simplicity, we assume there is always 
another round, δ =  1. Alice uses a memory-1 strategy (p1, p2, 
p3, p4). Bob uses an arbitrary strategy. Suppose that over the 
course of the entire game between Alice and Bob, the four out-
comes CC, CD, DC, DD, occur with relative frequencies v1, 
v2, v3, v4. Alice’s probability to switch from cooperation to de-
fection is − + −p v p v(1 ) (1 )1 1 2 2. Her probability to switch from  
defection to cooperation is +p v p v3 3 4 4. Because Alice can only 
switch from cooperation to defection if she has switched from de-
fection to cooperation before, we obtain Akin’s identity80,81:

− + − = +p v p v p v p v(1 ) (1 ) (2)1 1 2 2 3 3 4 4

Let us assume Alice uses a particular rule to determine the 
four probabilities of her memory-1 strategy. She chooses three 
constants α, β and γ and then takes the four probabilities:

α β γ
α β γ
α β γ
α β γ

= + + +
= + + +
= + +
= + +

p R R
p S T
p T S
p P P

1
1

(3)

1

2

3

4

Such a strategy is called zero-determinant (ZD) strategy59. 
From equations (2) and (3) we obtain:

α β γ+ + + + + + + + =Rv Sv Tv Pv Rv Tv Sv Pv( ) ( ) 0 (4)1 2 3 4 1 2 3 4

The expression + + +Rv Sv Tv Pv1 2 3 4 is exactly Alice’s payoff 
for the repeated game, πA. Similarly, + + +Rv Tv Sv Pv1 2 3 4 is Bob’s 
payoff, πB. Thus, if Alice applies a ZD strategy, the payoffs of the 
two players satisfy:

απ βπ γ+ + = 0 (5)A B

Curiously, the values of α, β and γ are solely determined by Alice. 
In the following, let us assume that the payoffs are normalized such 
that P =  0. Then Alice may set α β= − ∕2 and γ = 0. The remaining 
parameter β she can choose arbitrarily, subject to the restriction 
that β ≠ 0 and that the four probabilities in equation (3) satisfy 

≤ ≤p0 1i
. In that case equation, (5) simplifies to:

π π= 2 (6)A B

Alice earns twice as much as Bob, irrespective of Bob’s strategy. 
Moreover, if Bob tries to increase his own payoff by using another 
strategy, he simultaneously always increases Alice’s payoff, too.

ZD strategies with α χβ= −  and γ β χ= − P( 1)  are called 
extortionate. The parameter χ  with χ< <0 1 determines by how 
much Alice’s payoff exceeds Bob’s. For ≠P 0, extortionate strategies 
enforce π π− = −

χ
P P( ) ( )A

1
B . That is, if the two players get a payoff 

higher than P, Alice gets a disproportionate share of the surplus.
Some ZD strategies have been known before. For example, if 

Alice uses an ‘equalizer’ strategy, she imposes a fixed payoff for 
Bob irrespective of Bob’s strategy100.
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reason why partner strategies are favoured is different between 
these cases. High benefits of cooperation are amenable to the evo-
lution of partners because they increase both the set of partner 
strategies and its basin of attraction42,58, from which evolution leads 
towards partner strategies. In contrast, small population sizes leave 
the set of partner strategies unaffected, but small populations select 
for spite34. When a population contains only a few individuals, suc-
cessful strategies do not need to yield a high payoff. They only need 
to guarantee that their own payoff is higher than the payoff of all 
others. In such cases, rivalry pays.

While the results in Fig. 5 focus on evolution among reac-
tive strategies in games without discounting, the same conclu-
sions hold for memory-1 strategies with discounting, as shown in 
Supplementary Fig. 2. There we additionally show that rivalry is 
favoured when the game is only played for a few rounds, such that 
partner strategies cease to exist.

These simulation results can be understood using the concept 
of evolutionary robustness76–79. If a resident population of size N 
applies a strategy that is evolutionary robust, no mutant strategy can 

reach fixation with probability higher than the neutral probability 
1/N. In the limit of large populations and no discounting, Stewart 
and Plotkin have shown that all partner strategies are evolution-
ary robust, and so is a subset of the rival strategies (called robust 
self-defectors77). The only other robust set of strategies is the set of 
robust self-alternators, according to which Alice and Bob alternate 
between cooperation and defection (such that p2 =  0 and p3 =  1). 
Which behaviour will be favoured over an evolutionary timescale 
is surprisingly well predicted by the dynamics among these three 
strategy sets77.

Direct reciprocity in the laboratory
Instead of exploring the performance of partners and rivals in vir-
tual populations, one may ask which behaviours human subjects 
would adopt, using the controlled setting of laboratory experiments. 
While it is notoriously difficult to infer from the subjects' revealed 
actions which strategies they apply, experiments provide some evi-
dence for the above evolutionary results. For example, the recent 
finding that subjects become less cooperative when they focus on 
the payoffs of their co-players84 can be interpreted as an illustration 
of the negative effects of rivalry. Experimental results also seem to 
be in line with the qualitative trends of Fig. 5 and Supplementary 
Fig. 2: subjects become more cooperative if they can expect to inter-
act in more rounds85,86, or when the benefit-to-cost ratio of coopera-
tion is high, or when errors are rare87.

Two experiments have aimed to quantify the success of ZD 
strategies more directly, by matching human participants either 
with an extortionate or a generous ZD strategy71,72. The ZD strategy 
was implemented by a computer programme, but subjects did not 
obtain any information about the nature of their opponent. While 
the extortionate programme indeed outperformed each human 
opponent in the direct encounter, it was the generous programme 
that reached on average higher payoffs than the extortioner. For this 
result, fairness considerations are essential: when being matched 
with an extortioner, there is a trade-off between gaining high pay-
offs, which would require the human participants to cooperate, and 
gaining equal payoffs, which would require them to defect in every 
round. This trade-off is absent in the generosity treatment: against 
generous opponents, full cooperation guarantees both, high and 
equal payoffs. In line with this argument, the concern for fairness 
vanished when participants were explicitly informed that they are 
interacting with an abstract computer programme, in which case 
participants were equally cooperative across all treatments72.

However, extortion may still succeed under appropriate cir-
cumstances. A stylized behavioural experiment on climate change 
negotiations suggests that even if subjects themselves are not extor-
tionate, they may vote for representatives who are73. In this way, sub-
jects may reap the benefits of extortion without a need to feel guilty.

Power asymmetries also seem to trigger extortionate behaviour: 
in another experiment, a randomly determined subject was given 
the option to replace one of her co-players by a currently inac-
tive player every ten rounds of a repeated PD. The replaced player 
would then become the inactive player, without any opportunity to 
earn payoffs during that period. Under these rules, subjects with 
the replacement option learned to take advantage of their superior 
position. They subtly enforced their opponents’ cooperation while 
being substantially less cooperative themselves74. It seems that with 
great power comes rivalry, instead of responsibility.

Beyond the iterated PD
While the iterated PD has been the most common model to study 
direct reciprocity, the repeated games of our daily lives can have 
slightly different manifestations. Alice and Bob may face differ-
ent one-shot payoffs88,89, they may have to make their decisions 
asynchronously90–92 or they may have access to richer strategy sets, 
instead of just having the binary choice between cooperation and 

Box 2 | Of partners and rivals

When Alice and Bob play a repeated PD with T +  S <  2R, Alice 
applies a ‘partner strategy’ (called ‘good strategy’ by Akin80,81) if 
the following two conditions hold:
 (1) If Bob applies the same strategy as Alice, both get the mu-

tual cooperation payoff, π π= = RA B .
 (2) By applying a different strategy, Bob can get at most R, in 

which case Alice gets the same payoff. That is, if π ≥ RB  then 
π π= = RB A .

In contrast, Alice applies a ‘rival strategy’ (or ‘competitive 
strategy’83) if she always gets at least the payoff of Bob, π π≥A B. 
The two definitions make no restriction on Bob’s strategy. Bob 
may remember arbitrarily many rounds.

We can characterize all partners and rivals among reactive 
strategies (y, p, q). Without discounting, δ =  1, a reactive 
strategy is a partner if and only if =p 1 and <q q* with 

= − − ∕ − − ∕ −q T R R S R P T Pmin{1 ( ) ( ), ( ) ( )}* . It is a rival if and 
only if =q 0. In both cases, the initial cooperation probability y 
can be chosen arbitrarily; the only exception are strategies with 
p =  1 and q =  0. Such strategies are always rivals, but TFT with 
y =  1 is the only such strategy that is also a partner.

A similar characterization is possible for discounted games 
and for memory-1 strategies83. In that case, Alice’s strategy (p0; 
p1, p2, p3, p4) is a partner if and only if:

δ δ δ
δ δ δ

= =
− − − − + − − <
− − − − + − − <

p p
T R p R P p T R
T R p R S p T R

1
( ) ( )(1 ) (1 )( ) 0
( ) ( )(1 ) (1 )( ) 0

(7)
0 1

4 2

3 2

A partner strategy is never the first to defect. TFT is a partner 
strategy if δ > − ∕ −T R T P( ) ( ) and δ > − ∕ −T R R S( ) ( ). WSLS is a 
partner strategy if δ > − ∕ −T R R P( ) ( ) and δ > − ∕ −T R T S( ) ( ), 
which is a sharper condition. Alice uses a rival strategy if:

δ
= =
+ ≤

p
p p
p p

arbitrary
0

( ) 1
(8)

1

0 4

2 3

ALLD is always a rival strategy. Extortion is a rival strategy if 
< +P T S2 .
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defection93–95. In other applications, the social dilemma may not 
only involve Alice and Bob but also Caroline, Dave and others37,96. 
How do the above results extend to these cases?

None of the results depend on the specific payoff ordering 
T >  R >  P >  S of the PD. Instead, they readily extend to arbitrary 
social dilemmas that only satisfy R >  P, which means mutual coop-
eration is preferred over mutual defection, and T >  S, implying that 
players prefer to be the defector in mixed groups. In that case, the 
existence of ZD strategies is guaranteed75, and also the characteriza-
tion of rival strategies (Box 2, equation (8)) carries over83. In partic-
ular, these concepts immediately apply to other well-known social 
dilemmas, such as the snowdrift game (with T >  R >  S >  P) and the 
stag-hunt game (with R >  T >  P >  S). Only the characterization of 
partner strategies (Box 2, equation (7)) requires T +  S <  2R. Without 
this condition, alternating cooperation and defection would be the 
social optimum necessitating a different definition of partner. A 
numerical analysis for evolutionary games among pure memory-1 
strategies supports this view38: in social dilemmas, rival and part-
ner strategies are predominant if mutual cooperation is optimal, 
whereas alternating strategies succeed when T +  S >  2R.

Similarly, the results also extend to social dilemmas with two 
actions but multiple players. For example, most of the strategies in 
Fig. 2 have direct analogues in the multiplayer case, including TFT75, 
WSLS47,48 and extortioners61. Also, the definitions of partner and 
rival strategies can be extended appropriately. However, in arbitrary  

multiplayer games, the partners among the memory-1 players have 
only been characterized among deterministic and ZD strategies75. 
For a public goods game among memory-k players, Stewart and 
Plotkin have shown that a strategy only needs to resist four ‘extre-
mal’ mutant strategies to qualify as a partner78. Their analysis also 
revealed that the relative size of the set of partner strategies increases 
with the player’s memory, but decreases with group size. In line with 
these analytical results, their simulations confirm that small groups 
and long memories promote cooperation, and that players learn to 
expand their memory capacity when given the option78. An analo-
gous characterization of rival strategies in multiplayer games is still 
pending, although such an extension seems feasible using the meth-
ods sketched herein (see Box 2).

Finally, there has also been substantial progress on social dilem-
mas with two players but multiple actions. ZD strategies can be 
characterized for continuous action sets62. Moreover, it has been 
shown that full cooperation can often be stabilized with partner 
strategies that only make use of two of the n possible actions79. At 
the same time, however, simulations suggest that evolution does not 
need to converge to the most efficient outcome. Instead, players may 
be trapped in local optima of the fitness landscape, in which players 
only partly invest into the public good79. These simulations suggest 
that players sometimes confine themselves to be partial partners: in 
equilibrium, they contribute a considerable amount of their endow-
ment to the public good, but they may not contribute everything. 
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Fig. 4 | Partners and rivals. In each panel, the grey diamond depicts the space of possible payoffs for the two players. The coloured areas or lines in the 
periphery show the feasible payoffs when Alice uses ALLD, extortion, TFT, GTFT, WSLS, Grim, TF2T or ALLC. The coloured dot denotes the payoff when 
Bob uses the same strategy as Alice. Most of these strategies either qualify as rival (red) or partner (blue). With a rival strategy, Alice can outperform her 
opponent; irrespective of Bob’s strategy, she always obtains at least the payoff of Bob. With a partner strategy, Alice aims to reach the mutual cooperation 
payoff without tolerating exploitation. In that case, Bob may be able to get a larger payoff than Alice, but he cannot get a larger payoff than R. The payoff 
relations correspond to the infinitely repeated game without discounting. In that case, TFT is both a rival and a partner. Payoffs are R =  b −  c, S =  − c, T =  b 
and P =  0 with c =  1 and b =  3.
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To obtain a general understanding when full partnerships evolve, 
a complete characterization of all partner and rival strategies for 
games with multiple actions would be desirable.

Conclusion
Direct reciprocity is a mechanism for the evolution of cooperation. 
It is based on repeated interactions between the same individu-
als. The new mathematical formalism of ZD strategies has led to a 
characterization of evolutionarily successful strategies into partners 
and rivals. Partners aim for mutual cooperation, but are ready to 
defend themselves when being exploited. Rivals focus on their own 
relative advantage and on winning. Only partner strategies stabi-
lize cooperation. The rivals’ aim to put themselves first, which is a 
widespread motivation of current populist politics, ensures a path 
towards destruction.

Methods
For the simulation results shown in Fig. 5 and Supplementary Fig. 2, we have used 
the method proposed by Imhof and Nowak33. We consider a population of size N, 
which initially consists of ALLD players only. At each time step, one individual 
is chosen to experiment with a new strategy. This mutant strategy is generated 
by randomly drawing the cooperation probabilities from the interval [0,1]. If the 
mutant strategy yields a payoff of π j( )M , where j is the number of mutants in the 
population, and if residents get a payoff of π j( )R , then the fixation probability ρ of 
the mutant strategy is97:

∑ ∏ρ π π= + − −
=

−

=

−










exp s j j1 [ ( ( ) ( ))] (1)

i

N

j

i

1

1

1
M R

1

The parameter s ≥  0 measures the strength of selection. If s =  0, payoffs are 
irrelevant and the fixation probability simplifies to ρ =  1/N. For larger values of s, 
the evolutionary process increasingly favours the fixation of strategies that yield 
high payoffs. Once the mutant strategy has either reached fixation, or gone to 
extinction, another mutant strategy is introduced.

We have iterated this process for 107 mutant strategies per simulation run. 
The process approximates the evolutionary dynamics of finite populations when 
mutations are sufficiently rare98,99. It generates a sequence …p p( , , )0 1

, where pt is 
the strategy the residents apply at time t. Using this sequence, we can compute 
how often players cooperate on average, and how often they apply an approximate 
partner or rival strategy. We compare the abundance of these strategies with their 
abundance under neutral evolution, s =  0, in which case the abundance coincides 
with the volume of these strategy sets.
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Figure S1: Partners and rivals in games with discounted payoffs. We have calculated which payoffs
are feasible for the eight strategies in Fig. 4 when the game only has a finite expected number of rounds.
The payoff relationships for ALLC and ALLD remain unchanged. For the depicted parameter value
� = 0.7, we can redefine the memory-1 strategies for GTFT and for the extortionate strategy, such that
they enforce the same payoff relationship as in Fig. 4. For the other four strategies, TFT, Grim, WSLS,
TF2T, the feasible payoffs change. In particular, when the expected number of rounds is finite, TFT is a
partner strategy but not a rival strategy (since TFT cooperates in the very first round). Parameters are the
same as in Fig. 4, except for �.
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Figure S2: Evolution of partners and rivals among memory-1 strategies. We have explored the
evolution of partner and rival strategies when players use memory-1 strategies (p0; p1, p2, p3, p4). a, In
repeated games with discounting, � < 1, partner strategies are required to set p0 = p1 = 1 to allow for
mutual cooperation. The other three elements p2, p3, p4 need to obey the two inequalities in (7). Rivals
are required to set p0=p4=0 to ensure that no opponent can outperform them in a pairwise encounter.
The value of p1 can be chosen arbitrarily, while the values of p2 and p3 need to satisfy �(p2+p3)  1, see
Eq. (8). Both sets have measure zero within the set of all memory-1 strategies. b–e We have simulated
a pairwise imitation process on the space of memory-1 strategies, and we have recorded the average
cooperation rate (upper panel) as well as the frequency with which players use an approximate partner
or rival strategy. Here, we define a memory-1 strategy to be an approximate partner strategy if it yields
a payoff of at least R(1 � ") against itself, and if the inequalities in (7) are satisfied. We speak of an
approximate rival strategy if it yields a payoff of at most P (1 + ") against itself, and if the inequality in
(8) is satisfied. We use " = 0.2, for which approximate partners and rivals make up roughly 5% of the
volume of all memory-1 strategies. Approximate partners are favored when cooperation yields a high
benefit, when the population is large, when there is a substantial number of round, and when actions are
implemented reliably. Parameters: For the simulations we use payoffs R=b�c, S=�c, T =b and P =0
with b=3 and c=1, population size N =50, � = 0.995 (corresponding to an expected number of 200
rounds), error rate "=0, and selection strength s=10. In a, we use � = 0.9 for better clarity.
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