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Crosstalk in concurrent repeated games impedes
direct reciprocity and requires stronger levels of
forgiveness
Johannes G. Reiter 1,5, Christian Hilbe 2, David G. Rand 3, Krishnendu Chatterjee2 & Martin A. Nowak 1,4

Direct reciprocity is a mechanism for cooperation among humans. Many of our daily

interactions are repeated. We interact repeatedly with our family, friends, colleagues,

members of the local and even global community. In the theory of repeated games, it is a tacit

assumption that the various games that a person plays simultaneously have no effect on each

other. Here we introduce a general framework that allows us to analyze “crosstalk” between a

player’s concurrent games. In the presence of crosstalk, the action a person experiences in

one game can alter the person’s decision in another. We find that crosstalk impedes the

maintenance of cooperation and requires stronger levels of forgiveness. The magnitude of the

effect depends on the population structure. In more densely connected social groups,

crosstalk has a stronger effect. A harsh retaliator, such as Tit-for-Tat, is unable to counteract

crosstalk. The crosstalk framework provides a unified interpretation of direct and upstream

reciprocity in the context of repeated games.

DOI: 10.1038/s41467-017-02721-8 OPEN

1 Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA. 2 IST Austria (Institute of Science and Technology Austria),
Klosterneuburg 3400, Austria. 3 Yale Institute for Network Science and Department of Psychology and Department of Economics, Yale University, New
Haven, CT 06520, USA. 4 Department of Organismic and Evolutionary Biology and Department of Mathematics, Harvard University, Cambridge, MA 02138,
USA. 5Present address: Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304,
USA. Johannes G. Reiter and Christian Hilbe contributed equally to this work. Correspondence and requests for materials should be addressed to
M.A.N. (email: martin_nowak@harvard.edu)

NATURE COMMUNICATIONS | �(2018)�9:555� |DOI: 10.1038/s41467-017-02721-8 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;



Social dilemmas are situations where mutual cooperation is
better than mutual defection and yet there is an incentive to
defect1,2. Cooperation is normally opposed by natural

selection unless mechanisms for the evolution of cooperation are
in place3. One such mechanism is direct reciprocity, which is
based on repeated interactions between the same two players4,5.
In repeated social dilemmas, humans often learn to use adaptive
rules, telling them when to cooperate, when to defect, and how to
motivate others to cooperate6–8. Cooperation can be achieved if
people adopt conditional cooperative strategies such as Tit-for-
Tat5, Generous Tit-for-Tat9,10, or Win-stay, Lose-shift11,12.
Conditional cooperation, paired with some amount of generosity,
can maintain a healthy level of cooperation13–21. It can evolve
even if initially rare22–26.

Most previous models of direct reciprocity (with a few notable
exceptions27–30) have either assumed that (i) individuals only
engage in one repeated game at a time or that (ii) an individual’s
action in one game is independent of all its other interactions.
Because humans often engage in many games simultaneously, the
first assumption seems to be violated in most practical scenarios.
Moreover, evidence from experimental studies suggests that also
the second assumption of independence may not always
apply31–38. We say that a player’s decision is subject to “crosstalk”
when an interaction that a player has in one repeated game
influences how the very same player behaves in another repeated
game (Fig. 1a). For example, consider the interactions in a group
of three individuals, “Alice”, “Bob”, and “Charlie” (Fig. 1b). Sup-
pose that after a series of previous encounters, Bob is prompted
for a decision whether to cooperate with Alice in the next round.
In her last interaction with Bob, Alice has cooperated. Therefore,
Bob who uses Tit-for-Tat, would now cooperate with Alice. But
Bob’s last interaction had occurred with Charlie and in that
interaction Charlie had defected. Crosstalk now means there is
some chance that Bob defects with Alice although direct
reciprocity would mandate Bob to cooperate. Bob’s state with
respect to Charlie influences his decision with respect to Alice.

Such crosstalk can result from various psychological processes.
For example, experiments on upstream reciprocity suggest that
subjects who have received help in their previous interaction
often consciously choose to “pay it forward”22,31–33. Alternatively,
crosstalk may also occur when subjects have limited working
memory34–36. In that case, subjects may confuse their co-players’
past actions, which may in turn lead them to reward the wrong
person for past cooperative behaviors. We propose a mathema-
tical framework that allows us to quantify how crosstalk affects
the cooperation dynamics within a population. We show that, in
the presence of crosstalk, a single defector can lead to the com-
plete breakdown of cooperation in an arbitrarily large group of
conditional cooperators. Nevertheless, cooperation can prevail if
the population is structured and if subjects are sufficiently for-
giving. For our model, we do not need to specify the particular
psychological process at work: the resulting behavioral dynamics
are independent of whether crosstalk is the result of a conscious
decision (as in upstream reciprocity), or the consequence of a
subconscious error (as when individuals confuse the past actions
of their co-players). However, the interpretation of our results will
often depend on the specific psychological mechanism that gives
rise to crosstalk. We revisit this matter in the “Discussion” section.

Results
Framework for crosstalk between concurrent repeated games.
We consider a group of N individuals. Each individual plays a
pairwise repeated prisoner’s dilemma (PD) with each interaction
partner. These repeated games occur concurrently. At each time
step, we choose a random pair of players for a single interaction

(Fig. 1b). Each player uses a reactive strategy, defined by two
parameters, p and q, which denote the probability to cooperate if
the same co-player in the previous round has either cooperated or
defected, respectively. The class of reactive strategies includes
many well-known examples, such as always-cooperate (ALLC),
always-defect (ALLD), tit-for-tat (TFT: Supplementary Fig. 1b),
and Generous Tit-for-Tat10 (GTFT: Supplementary Fig. 1d).
Reactive strategies can be implemented by stochastic two-state
automata39–42. The two states are labeled C and D (see
Supplementary Fig. 1a). In the next interaction, a player
cooperates if she is in state C and defects if she is in state
D. Cooperators pay a cost c for their co-player to receive a benefit
b>c. Defectors do not incur a cost and their co-player does not
receive a benefit. The player’s strategy determines how the
player’s state is updated after an interaction has taken place.

In our setup, each player uses a specific strategy for all of her
interactions, but has distinct automata to hold the games with all
of her different co-players in memory (Supplementary Fig. 2). For
example, a player using TFT can be in different states (C or D)
with different co-players, but uses the same strategy to update her
states against all of her co-players. The separate automata enable
players to remember previous interactions and to react in future
rounds according to their respective history with each co-player.

Crosstalk between two repeated games occurs if a player’s state
with respect to one interaction partner displaces the player’s state
with respect to another player (Supplementary Fig. 2). Specifi-
cally, we assume that, before each interaction, there is a
probability γ that the players’ state with respect to the current
co-player is replaced by the state with respect to the previous co-
player (other variants of crosstalk will be discussed below). The
crosstalk rate γ ∈ [0, 1] specifies how often crosstalk occurs. In the
special case of no crosstalk, γ = 0, players perfectly distinguish
between all their opponents, and we recover the scenario
considered in previous studies of direct reciprocity2,5. For positive
crosstalk rates, cooperative and defective behaviors can cascade in
the players’ social network: a player’s action in one game can
affect how the co-player acts in a different game, which in turn
may influence again other games (Fig. 1). Therefore, crosstalk
causes ripples that propagate in social networks. The overall effect
of crosstalk depends on the structure of the population. We
represent this structure by arranging players on a graph43–45,
where edges between players denote interactions (Fig. 2;
“Methods” section). While our framework is applicable to
arbitrary population structures, we illustrate the effects of
crosstalk using four regular networks (Fig. 3a), ranging from a
circle (where each player has exactly two interaction partners) to
the complete graph (where all players interact with everyone else).

Cooperative and defective behavior spreads across population.
We utilize stochastic computer simulations to study the coop-
eration frequency in a population over time, and derive
mathematical recursions to calculate the long-run payoffs in the
steady state (“Methods” section). To illustrate how crosstalk leads
to the spread of defection in a generally cooperative society, we
place a single ALLD player in a network of N − 1 conditionally
cooperative players (Figs. 2 and 3a). When the conditionally
cooperative players use TFT (which is given by p = 1, q = 0) and
crosstalk occurs, γ> 0, the ALLD player can turn all remaining
players into defectors eventually (Fig. 2a), independent of the
population structure and the crosstalk rate (Supplementary
Fig. 3). The spread of defection can be prevented if the
cooperative players use more generous strategies, with p = 1 and
0< q< 1. We refer to such strategies as GTFT. The impact of
different q values will be discussed below. At first, we choose
q = 1/3. If the single ALLD player is placed among GTFT players,
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cooperation frequencies converge to a positive value (Fig. 2b),
with the eventual equilibrium rates depending on the population
structure and on the crosstalk rate (Supplementary Fig. 3). We
can also observe the opposite effect: a single ALLC player can
increase the cooperation rates in a population of stochastic TFT
players using p = 1 − ϵ and q = ϵ (Supplementary Fig. 4c).

Comparing the effect of different population structures, we find
that a GTFT population can maintain cooperation more easily if
players are arranged on a circle instead of a complete graph
(Fig. 3a, b, Supplementary Fig. 5). For a population size of N = 16,
the cooperators obtain a higher average payoff than the defector
for crosstalk rates up to γ = 0.85 on a circle, and for up to γ = 0.41
on a complete graph. In networks with a low degree, players are
more likely to give the adequate response with respect to their
current co-player, because, if crosstalk occurs, the current co-
player is more likely to coincide with the previous co-player such
that crosstalk becomes inconsequential. For this reason, all other
explored population structures exhibit crosstalk thresholds
between the circle and the complete graph (Fig. 3b).

To investigate the recovery properties after a mistake, we
computed the amount of time that a population of conditional
cooperators with strategy (1, q) and q> 0 needs to return to full
cooperation after a single defection event. We find that crosstalk
leads to a significantly faster recovery (Supplementary Fig. 6).
Intuitively, when the crosstalk rate is high, a player’s automata are
updated more frequently (once before the interaction takes place,
and once after the interaction). Because the players apply
strategies with p = 1 and q> 0, each updating event is biased
towards increasing cooperation: every cooperative act puts the co-
player into a cooperative state, whereas defective acts are forgiven
with probability q. Moreover, we show that the recovery time is
monotonically increasing with the average degree (k) of the
population structure and monotonically decreasing with the
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probability to cooperate after defection (q; see Supplementary
Note 1 for more details).

Crosstalk requires the right level of forgiveness. We calculate
the generosity parameter q of GTFT to optimally cope with
crosstalk. To this end, we consider two different optimality cri-
teria. First, we calculate the most generous strategy that is able to
resist invasion by a single ALLD player. That is, for a fixed
population structure and a given crosstalk rate, we derive the
reactive strategy (1, qM) with maximum qM such that N − 1
players with this strategy get at least the same average payoff as
the single defector. Analytical calculations for the complete graph
and numerical results for all other population structures show
that higher crosstalk rates and higher network degrees (that is a
higher number of neighbors) require the cooperative players to be
less generous (Fig. 3c, “Methods” section). For the second
optimality criterion, we calculate the cooperative strategy with the
most robust level of generosity qR such that N − 1 players with
strategy (1, qR) have the highest relative payoff advantage com-
pared to the single ALLD player. The most robust level of gen-
erosity exhibits a non-monotonic dependence on the crosstalk
rate (Fig. 3d). In the absence of crosstalk, γ = 0, the perfectly
reciprocal TFT strategy is most robust against invasion of ALLD.
As the crosstalk rate increases, the most robust level of generosity
qR first increases, but then decreases again. Intuitively, for the
robustness of a conditionally cooperative population against
ALLD, high values of the generosity parameter q have two
opposing effects. On one hand, high values of q make it less likely
that the defectors’ actions propagate through the network. On the
other hand, high values of q also let the players be more forgiving
against the defector, and hence increase the payoff of the ALLD

player. When crosstalk is rare, conditional cooperators can
prevent the spread of defection by choosing a small value for q.
Once crosstalk is sufficiently frequent, however, players can no
longer fully prevent defection from spreading. Instead, they rather
need to keep the defector’s payoff low, by choosing a smaller q
value. These results confirm that in the presence of crosstalk, γ>
0, subjects should show some amount of generosity (q> 0), but
not too much; we find q< qM, with qM depending on the crosstalk
rate and on the population structure. Only for the circle, coop-
eration can prevail even when crosstalk is abundant (Fig. 3d).

The above analysis is based on a comparison between
conditional cooperators and a specific invader, ALLD. More
generally, we find that conditionally cooperative strategies (1, q)
with q< qM in fact resist invasion by all possible invading
strategies (pʹ, qʹ) for the complete graph. This analysis also reveals
that there are three classes of strategies in total that are stable
against arbitrary invaders (Supplementary Note 1). The first class
consists of the conditionally cooperative strategies just described.
The second class consists of uncooperative strategies (p, 0), with p
sufficiently small (see Supplementary Note 1 for the exact
condition). In particular, this class contains ALLD. When
adopted by all players in a population, strategies of this class
eventually lead to full defection. Finally, the third class consists of
strategies (p, q) analogous to equalizer strategies of direct
reciprocity46–49. When applied by all residents in the population,
equalizer strategies guarantee that the payoff of a single invader is
independent of the invader’s strategy.

Crosstalk impedes the evolution of cooperation. These results
raise the question to which extent subjects themselves would
learn to apply cooperative strategies with a sustainable degree of
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generosity. To explore that question, we implemented a simple
model of cultural evolution where players are allowed to adopt
new strategies over time, based on their current strategy’s success
(“Methods” section). According to this process, strategies that
yield a comparably high payoff are more likely to be imitated by
other players50,51. In addition, players may occasionally also
experiment with new stochastic strategies, which introduces novel
behaviors into the population. These two events, imitation and
exploration, take the role of selection and mutation in models of
biological evolution. We show that a birth-death process as used
in many biological applications yields the same results (Supple-
mentary Note 1). We simulated the evolutionary dynamics for
various population structures and crosstalk rates, assuming that
experimentation events are relatively rare23. In the plane of
reactive strategies, we observe that for most of the time, players
either apply defective strategies with p ≈ q ≈ 0, or cooperative
strategies with p ≈ 1 and 0< q< qM (Fig. 4a–c). None of these
strategies are evolutionarily stable52. Instead, when residents
apply one of these strategies, neutral or nearly neutral mutants
can often invade and pave the way for mutants of another
strategy class42. The relative weight of these two strategy classes
depends on the crosstalk rate and on the population structure
(Fig. 4d). While cooperative strategies readily evolve on the cycle
even for substantial crosstalk rates, they become less abundant as
the population structure changes to a square lattice, or to a
complete graph.

To understand the effect of crosstalk in more detail, we
analyzed how easily other strategies fix in a resident population
that either consists of ALLD players or GTFT players (Supple-
mentary Fig. 7). Without crosstalk, GTFT is much more
successful in resisting mutant invasions. On average, more
mutants need to be introduced until the first mutant fixes.
Moreover, successful mutants typically have a strategy that is very
similar to GTFT (whereas ALLD is typically invaded by TFT-like
strategies rather quickly). However, as the crosstalk rate increases,
the invasion time into GTFT drops considerably, and successful
mutants no longer need to be cooperative themselves.

Interestingly, we find that crosstalk favors the stability of
extortionate strategies. With an extortionate strategy, players can
guarantee that they never get a lower payoff than their co-player,
while simultaneously acting such that it is in the co-player’s best
interest to cooperate unconditionally47. In classical models of
direct reciprocity, extortionate strategies are unstable and they
can only succeed if the population size is small18,19,53. In contrast,
extortionate strategies can thrive even in large populations when

crosstalk is sufficiently abundant (Supplementary Fig. 8). How-
ever, this success comes at a cost. By becoming stable,
extortionate strategies lose one of their most appealing properties:
when crosstalk is abundant, a rare invader in an extortionate
population does no longer benefit from being unconditionally
cooperative. Instead, the best response is to be extortionate as well
(see Supplementary Note 1 for details).

To analytically understand the impact of crosstalk on the
evolutionary dynamics, we explored a deterministic model of
evolution in well-mixed populations54–56. The singular strategies
of these dynamics consist exactly of the three strategy sets that
resist invasion by rare mutants that we described in the previous
section: conditional cooperators, defectors, and equalizers. Which
of these strategy classes is reached in the course of evolution now
depends on the initial population (Supplementary Fig. 9a). As the
crosstalk rate increases, the number of initial populations that
eventually end up in a conditionally cooperative state decreases
(Supplementary Fig. 9b). In this deterministic model, crosstalk
thus acts by reducing the basin of attraction of the cooperative
equilibria.

Alternative models of crosstalk. So far, we have analyzed one
particular model of crosstalk: when prompted for the next deci-
sion, a player instead reacts to her most recent interaction, and
this interaction could have been with someone else. But other
implementations are conceivable.

For example, the memory state that a player holds for her
current co-player could be replaced by the memory state of a
random co-player, who may not coincide with the current or the
most recent co-player. In this case, when deciding what to do for
the next round in a particular game, the player uses with
probability γ the state of a random game that she is holding in
memory. We find that this alternative implementation of
crosstalk differs in its short-term dynamics but converges to the
same steady state as our original model (Supplementary Fig. 10).
Thus, Figs. 3 and 4 immediately apply to this type of crosstalk as
well.

Alternatively, a player’s decision could depend not only on the
previous interaction with one particular opponent. Instead, the
player might consider an average across her recent experiences
with all her co-players. We therefore introduce aggregate reactive
strategies (Supplementary Note 1). Players using these strategies
compute a weighted cooperation score across all their co-players.
This cooperation score incorporates the last action of the current
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co-player with weight 1 − γ and the average cooperation rate
across all co-players’ last actions with weight γ. The obtained
score is then compared to an exogenous cooperation threshold τ.
Players cooperate with probability p if the weighted cooperation
score exceeds τ; otherwise they cooperate with probability q. In
particular, if the crosstalk rate γ is zero, these strategies again
correspond to the classical reactive strategies of direct recipro-
city2,10. We explore the effects of γ and τ by considering a single
defector in a population of conditional cooperators. The
conditional cooperators apply a strategy with p = 1, q = 1/3 and
some value τ, a strategy to which we refer to as Aggregate
Generous Tit-for-Tat (AGTFT). While the cooperation dynamics
of this model are qualitatively different from our previous results,
we again find that higher crosstalk rates impede the stability of
cooperation across all population structures (Supplementary
Figs. 11 and 12).

Discussion
Classical models of direct reciprocity require that players provide
a targeted response to each of their co-players2,5. Experimental
results and everyday experience indicate that players’ decisions
can be affected by unrelated events that occur in their interactions
with others31–38. Crosstalk arises when a player has simultaneous
repeated interactions with several opponents. Importantly,
crosstalk is different from previous approaches that combined
direct and indirect (downstream) reciprocity. In models of
downstream reciprocity, a player’s strategy depends on the co-
player’s reputation, and hence on the co-players’ interactions with
others38,57–64. A combination of direct reciprocity and down-
stream reciprocity can promote cooperation because a single
defection in one game may lead several unaffected co-players to
retaliate against the defector27–29. However, downstream reci-
procity makes stronger assumptions on the information players
have when making their decision. It requires a player to observe
other players’ interactions or reputations to respond accordingly.
In contrast, crosstalk is a much more elementary mechanism. It
occurs “within” each player and does not rely on additional
external information about independent interactions of
unrelated players. Our notion of crosstalk is general: it
captures that a player’s decision in one game can be affected by
the player’s previous experience in another game, but it does not
depend on the psychological process responsible for this
interdependency.

Depending on the specific process at work, crosstalk is
amendable to different interpretations. Our framework can be
taken as a model of upstream reciprocity in the context of
repeated games. Under this interpretation, cooperation or
defection received from one person is sometimes consciously
“paid forward” to another person. Previous analytical models have
either focused on direct reciprocity or on upstream reciprocity
separately2,65,66. The framework of crosstalk allows us to explore
the consequences when both modes of reciprocity act simulta-
neously, and possibly interfere with each other. We recover
previous results65–67 that upstream reciprocity alone is most
likely to yield cooperation when the population is highly struc-
tured. However, our results suggest that cooperation can even be
maintained in well-mixed populations when upstream reciprocity
is sufficiently coupled with direct reciprocity (i.e., when the
crosstalk rate γ is sufficiently small).

Alternatively, crosstalk can serve as a model of individuals with
limited working memory. According to this interpretation,
crosstalk occurs when individuals confuse their various co-play-
ers, which introduces a type of behavioral noise into the coop-
eration dynamics. This noise is different from simple
implementation errors considered in previous

models2,9,18,19,36,68,69. Implementation errors only affect the
repeated game in which they occur (Supplementary Fig. 4a, b).
But crosstalk spreads from one game to another and therefore
through the population (Supplementary Fig. 4). Only in the
presence of crosstalk, a single defector can turn a whole popu-
lation of TFT players into defectors.

We consider upstream reciprocity and confusion as different
psychological processes which independently can give rise to
crosstalk. Although these two processes are subject to different
interpretations, according to the above discussed implementation,
they lead to the same cooperation dynamics within a population.
High degrees of upstream reciprocity, just as high degrees of
confusion, undermine the ability of direct reciprocity to sustain
cooperation.

Crosstalk provides a general framework with applications
beyond the examples studied here. Future models could explore,
for example, crosstalk between independent games that differ in
their payoff structure70, or when subjects engage in simultaneous
games that involve more than two players. Similarly, one may
study interactions in which the crosstalk rate itself depends on
exogenous parameters, such as the number of neighbors, or the
benefit of cooperation. Finally, we explored a model in which
players aggregate across their last experience with all co-players.
Further generalizations are conceivable. For example, players may
defect against all their co-players as long as at least one of their
automata is in the D state, or they may remember more than their
co-player’s last action26,71. Under crosstalk, the players’ indivi-
dual games are no longer considered in isolation, but they are
embedded into the context of all concurrently ongoing interac-
tions. Crosstalk requires stronger mechanisms for forgiveness
especially in a more highly connected world. A harsh retaliator
such as Tit-for-Tat is particularly unable to deal with crosstalk.
This is an interesting message for our current society.

Methods
Computer simulations. To simulate the effect of crosstalk on the cooperation
dynamics among players with fixed strategies, we consider a population of size N
playing a repeated Prisoner’s Dilemma (PD). The population is given by a graph
where the nodes represent the players, and the edges reflect all possible interactions
between players. Only players connected by an edge can be paired to play the PD.
Players use separate two-state automata for each of their neighbors on the inter-
action graph41. The two states of each automaton are labeled C (cooperation) and
D (defection). These states are updated according to the player’s reactive strategy
(p, q), see Supplementary Figs. 1 and 2. The parameter p denotes the probability to
move to state C if the co-player has cooperated in the previous game (whereas the
complementary probability 1 − p gives the likelihood to move to state D). Similarly,
q denotes the probability to move to state C if the co-player has defected (and 1 − q
is the respective probability to move to state D).

In each round, an edge of the interaction graph is chosen uniformly at random.
A single PD is played among the two players adjacent to the chosen edge. With
probability 1 − γ a player acts according to the respective automaton state
associated with this co-player; with probability γ crosstalk occurs and the player
refers to the state of the automaton updated in her last interaction instead. After
the game, the automata states are updated according to the game outcome and the
players’ strategies. This elementary step is then iterated for a large number of
rounds. For the simulation results depicted in Supplementary Fig. 5, we simulated
4000 games per realization (on average 500 games per player) and averaged across
104 realizations to obtain the stationary payoff of GTFT and ALLD players for a
given population structure and crosstalk rate.

So far, we assumed that every edge in the interaction graph is chosen with the
same probability. However, some interactions can occur with a higher frequency
than others. To investigate the effects of different interaction frequencies, we
studied the spread of defective behavior in a population of GTFT players
populating a 5 × 5 lattice (Supplementary Fig. 13). We increased the interaction
probability of all players on the central horizontal line by 10-fold (see orange edges)
and observe how defective behavior spreads much faster along the horizontal axis
than along the vertical axis. Within the analytical framework, interaction
probabilities wij are given by the connectivity matrix W (see next section for
details).

In the second studied type of crosstalk, again with probability γ crosstalk occurs
and the player refers to the state of a random automaton, chosen from all her
interaction partners with equal probability (Supplementary Figs. 2 and 10).
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Analytical derivation of steady-state payoffs. To derive an explicit repre-
sentation for the payoffs that players receive in the long run, we suppose that each
player i adopts some fixed reactive strategy (pi, qi). The population structure is
given by an N ×N connectivity matrixW = (wij). The entries wij give the probability
that the next interaction in that population occurs between players i and j. In
particular, the connectivity matrixW is symmetric wij =wji, and satisfies wii = 0 andP

i<j wij ¼ 1. As in the computer simulations, we focus on networks in which each
link is played with equal probability. That is, if player i and j are connected, then
wij = w for some constant w> 0 that depends on the network structure, but is
independent of the players i and j. For example, because there are N(N − 1) / 2
different links in a complete graph, well-mixed populations can be represented by a
connectivity matrix with wij = 2 / (N(N − 1)) for all i ≠ j. As another example,
populations on a cycle are represented by wij = 1/N if i and j occupy neighboring
sites, and wij = 0 for all other i, j.

Let wi ¼
PN

j¼1 wij denote the probability that the next interaction in the
population involves player i. Moreover, let ytij be the probability that player i is in
state C against player j at time t, and let yti be the probability that player i is in state
C with respect to her previous co-player. We can calculate ytþ1

i;j using the following
recursion

ytþ1
ij ¼ 1# wij

! "
ytij|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

If player i did not interact with player j in previous round

þ ð1# γÞwij & ytjipi þ 1# ytji
$ %

qi
$ %

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Players i and j interacted; and player j′s actionwas not subject to crosstalk

þ γwij & ytj pi þ 1# ytj
$ %

qi
$ %

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Players i and j interacted; and player j′s actionwas subject to crosstalk

:

ð1Þ

To calculate the player’s long run cooperation frequencies, we note that in the
steady state, cooperation rates are independent of the time period, and hence
ytþ1
ij ¼ ytij ¼: yij . Moreover, because interactions are fully random, the stationary
probability yi that player i is in state C with respect to her previous co-player
simplifies to yi ¼

PN
k¼1

wik
wi
yik , which is the weighted average that player i is in state

C with respect to a random co-player. In that case, we can rewrite Eq. (1) as

yij # ð1# γÞ pi # qið Þyji # γ pi # qið Þyj ¼ qi: ð2Þ

The Eqs. (2) represent a system of N(N − 1) linear equations in the unknowns yij
with i ≠ j. By solving this inhomogeneous system, we can calculate the stationary
frequency ŷij to find player i in state C with respect to player j. Given the stationary
frequencies ŷij , we can calculate the payoff πi of player i by averaging over all co-
players,

πi ¼
XN

j¼1

wij

wi
& ð1# γÞŷji þ γŷj
! "

& b# ŷij & c
& '

: ð3Þ

We note that this method applies to general crosstalk rates γ, general population
structures, and general population compositions (e.g., populations with more than
two different strategies present). As shown in Supplementary Fig. 5, these
analytically derived payoffs are in excellent agreement with the computer
simulations. In the Supplementary Note 1, we show how Eqs. (2) and (3) can be
further simplified for well-mixed populations. In that case, we can also provide
explicit expressions for how generous cooperative strategies of the form (1, q) are
allowed to be to resist invasion of ALLD (as depicted in Fig. 3c, d).

Setup of the evolutionary simulations. To explore the evolution of strategies
under crosstalk, we consider a simple model of cultural evolution, the pairwise
comparison process50,51. As common in studies on the evolution of strategies in
repeated games10–25,40,41, we assume a separation of time scales: the time it takes
individuals to play their repeated games is short compared to the evolutionary
timescale at which individuals adopt new strategies. This assumption allows us to
use the players’ stationary payoffs, as given by Eq. (3), when simulating the evo-
lutionary trajectory of a population.

For the evolutionary simulations, we consider a population with fixed
population structure and fixed crosstalk rate γ. In each evolutionary time step, there
are two possible events, imitation or random strategy exploration. To model
imitation events, we assume that two individuals are randomly drawn from the
population. We refer to these two individuals as the “learner” and the “role model”,
respectively. Herein, we aim to compare the effect of crosstalk across different
population structures. To allow for a fair comparison, we assume that, while
payoffs are calculated for the given population structure, strategy updating occurs
globally. As a consequence, the learner and the role model do not need to be
neighbors in the direct interaction network. With this assumption, we rule out the
formation of cooperative clusters, which would additionally favor the evolution of
cooperation in networks with a low degree44. After selecting the learner and the
role model, their payoffs πL and πR are calculated according to Eq. (3). We assume
that the learner adopts the role model’s strategy with probability ρ = [1 + exp(−s(πR
− πL))]−1. The parameter s ≥ 0 measures the strength of selection. When selection is

weak, s ' 1, payoffs are largely irrelevant for imitation and the imitation
probability approaches 1/2, irrespective of the players’ strategies. When selection is
strong, s ( 1, players tend to adopt only those strategies that yield a higher payoff
than their own strategy. In addition to these imitation events, we allow for random
strategy exploration. When such an exploration event occurs, one player is
randomly drawn from the population. This player then adopts a new strategy (p, q),
which is uniformly drawn from all reactive strategies. Following the approach of
Imhof and Nowak23, we assume that these exploration events are rare. As a
consequence, the population is homogeneous most of the time. Only occasionally, a
mutant strategy enters the population due to random strategy exploration. This
mutant strategy than either goes extinct or fixes before the next exploration event
occurs. By simulating this process over a long timespan, we can record how often
the population applies certain strategies (p, q), and we can compute the resulting
average cooperation rate over an evolutionary timescale. In Fig. 4, we show
corresponding results for the cycle, the square lattice, and for the complete graph,
assuming parameter values of population size N = 16, benefit b = 10, cost c = 1, and
selection strength s = 1. Other parameter values lead to qualitatively similar results,
provided that selection is sufficiently strong and that the benefit of cooperation is
sufficiently high to allow for the evolution of cooperation. In the Supplementary
Note 1, we show that analogous results apply when we consider a birth-death
process instead of the pairwise imitation process considered herein.

Data availability. No data sets were generated during this study.
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Supplementary Figure 1: Reactive strategies implemented by two-state automata. The blue circle depicts
the state where the player cooperates (c) and the red circle depicts the state where the player defects (d) in the
next game. After a game, depending on the action (c or d) of the co-player, the state changes according to the
given probabilities. a | A stochastic reactive strategy is encoded by the tuple (p, q) denoting the probability to
cooperate if the co-player in the previous round either cooperated or defected, respectively. b-d | The well-known
strategies Tit-for-Tat (TFT), Stochastic Tit-for-Tat (STFT), and Generous Tit-for-Tat (GTFT; 0 < q < 1)
implemented by stochastic two-state automata.
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Supplementary Figure 2: Crosstalk in concurrent repeated games. Players (large circles) use reactive
strategies implemented by a separate two-state automata for each interaction partner. The current state is
emphasized in bold font (panel 1). Two random players (here players 1 and 2) are selected to play a PD
(Prisoner’s Dilemma; panel 2). Crosstalk between independent automata within the involved players 1 and 2
happens with a small probability �. Crosstalk might change the action in the following interaction. By chance,
state D of the automaton implementing the interaction of player 1 with player 3 is copied to the automaton
implementing the interaction of player 1 with player 2 (indicated by a blue arrow). Here player 1 defects (due to
crosstalk) and player 2 cooperates (panel 3). The states of the automata are updated according to the player’s
strategy (panel 4). Player 1 plays TFT (Tit-for-Tat) and moves to state C. Player 2 plays TFT and moves to
state D.
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Supplementary Figure 3: Generous Tit-for-Tat (GTFT) maintains high levels of cooperation in the
presence of crosstalk over time. The level of cooperation is determined by the frequency that players are in the
cooperative state, averaged over all players in the population. Full lines correspond to a crosstalk rate of � = 0.05
and dotted lines correspond to a crosstalk rate of � = 0.5. a-d | Since TFT (Tit-for-Tat) is not an error-correcting
strategy, its cooperation frequency converges to zero for any � > 0. Stochastic Tit-for-Tat (STFT) can secure a
basic level of cooperation as it sometimes forgives defection. Across all population structures GTFT (Generous
Tit-for-Tat) maintains a high level of cooperation. High crosstalk rates lead to a faster spreading of defective
behavior for both TFT and STFT whereas population structures with a low connectivity delay the spreading of
defection (e.g., cycle or square lattice). All players use a given conditional cooperative strategy except one random
player always defects (ALLD). Number of players is N = 16 (one of those is the ALLD player). Simulation results
are averages over 104 realizations.
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Supplementary Figure 4: Cooperative and defective behavior can spread with crosstalk but not without.
Twenty-four erroneous conditional cooperators (STFT p = 0.999, q = 0.001; blue framed nodes) and one ALLD
(red framed node, placed in the center) or ALLC (yellow framed node) player populate a 5x5 lattice. The fill color
of the nodes depicts the expected payo↵ of the players after 100, 1,000 and 2,000 games. a-b | In the absence
of crosstalk (� = 0.0) cooperative and defective behavior can not spread. The erroneous ALLC (p = 0.999,
q = 0.999) or ALLD (p = 0.001, q = 0.001) player only a↵ect the payo↵ of its STFT neighbors. c | In the
presence of crosstalk (� = 0.5) cooperation spreads from the ALLC player via crosstalk to all STFT players.
We assume that in the first round, the STFT players are equally likely to cooperate or to defect, which is their
stationary cooperation frequency in a homogeneous population of STFT players. Parameter values: benefit b = 3,
and cost c = 1.
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Supplementary Figure 5: Stationary payo↵ varies across population structures and crosstalk rates.
Stationary payo↵ of GTFT (p = 1, q = 1/3) and ALLD (0, 0) players versus the crosstalk rate in di↵erent
population structures. One ALLD player is randomly placed on the graph, among N � 1 GTFT players. Full lines
show numerically exact results for the average payo↵ of all GTFT players (blue) and of the ALLD player (red)
in the steady state. Dotted lines show the steady state payo↵ of individual players with a given distance to the
ALLD player. Circles and crosses show the respective simulation results. The larger the distance of a GTFT player
to an ALLD player, the less likely a player’s payo↵ is a↵ected by the ALLD player. Players with distance 1 are
adjacent to the ALLD player. a–d | On the cycle, the average payo↵ of the GTFT players exceeds the defector’s
payo↵ up to a crosstalk rate of � ⇡ 0.85, whereas for well-mixed populations the critical crosstalk rate is much
lower, � ⇡ 0.41. The other two population structures exhibit crosstalk thresholds in between these two extremes.
Parameter values: number of players N = 16 (one ALLD player), benefit b = 3, and costs c = 1. Simulation
results are averages over 104 realizations.
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Supplementary Figure 6: Mean time until a population of conditional cooperators returns to full coop-
eration after a single error. Higher crosstalk rates (�) as well as probabilities to cooperate after defection (q)
decrease the number of games to recover from an error such that the whole population returns to full cooperation.
For the case of � = 0, analytical results are denoted by blue circles for the cycle, purple squares for the square
lattice, red triangles for the 6-regular graph, and yellow crosses for the complete graph (see Section 2.1 for further
details). Parameter values: number of GTFT players N = 16, all GTFT players (p = 1; full lines: q = 1/3,
dotted lines: q = 0.1; dashed lines: q = 2/3), benefit b = 3, and costs c = 1. Simulation results are averages
over 105 realizations.
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Supplementary Figure 7: Higher crosstalk rates simplify the invasion of selfish strategies into GTFT.
For two di↵erent resident strategies, ALLD and GTFT, we have calculated how easily mutants can invade. To
this end, we have considered a fine grid of mutant strategies (p, q) with p, q 2 {0, 0.005, 0.010, . . . , 1}. For each
of these mutant strategies, we have calculated its fixation probability into the respective resident strategy. The
value of the fixation probability is represented by the color of the respective square at (p, q). In addition, we
have simulated how many mutant invasions the resident strategies can resist if mutants are randomly drawn from
that grid (reported in the upper left of each panel). We have also recorded the average trait values of successful
mutants (indicated by the arrow). We find that ALLD is typically invaded by conditionally cooperative strategies,
and that the invasion time increases with the crosstalk rate. For GTFT, we find that in the absence of crosstalk, it
takes a considerable number of mutants until the first mutant reaches fixation. Moreover, the successful mutant
is typically a cooperative strategy itself. As the crosstalk rate increases, however, the invasion time into GTFT
decreases, and successful mutants do no longer need to be cooperative. Parameters: population size N = 16,
benefit b = 10, cost, c = 1, selection strength s = 1. The strategies are subject to small amounts of noise,
ALLD = (0.001, 0.001) and GTFT = (0.999, 0.333).
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Supplementary Figure 8: Higher crosstalk rates can stabilize extortion. a,b | Similar to the invasion
analysis for ALLD and GTFT reported in Supplementary Fig. 7, we explored how many mutant invasions it
takes until an extortionate resident population is successfully replaced. Without crosstalk, extortionate strategies
are quickly replaced by more cooperative strategies. This result is in line with previous observations that extortion
is unstable in typical models of direct reciprocity [1]. However, once there is substantial crosstalk, it takes more
mutant strategies until an extortionate resident population is invaded, and successful mutants are similar to the
extortionate strategy. c | To quantify the overall success of extortion in well-mixed populations, we have recorded
how often the evolutionary process visits a �-neighborhood of the set of all extortionate strategies (see also Refs.
[1, 2]). For comparison, the dashed line indicates how often this neighborhood is visited in the case of neutral
evolution (when the selection strength s is zero). As the crosstalk rate approaches � = 1, the set of extortionate
strategies is visited more than 10 times more often than expected under neutrality. Thus, when crosstalk is
common, selection favors extortionate strategies. Parameters: population size N = 16, b = 10, c = 1, s = 1.
For the invasion analysis, we have used the extortionate resident strategy (0.4,0), and for the �-neighborhood, we
have used � = 0.02.
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Supplementary Figure 9: Deterministic adaptive dynamics of crosstalk. Blue curves represent numerically
computed solutions of the adaptive dynamics, Eq (S13), for two di↵erent crosstalk scenarios. The state space
consists of all pairs (p, q) in the unit square. The four corners of the square correspond to ALLD (0,0), Tit-For-
Tat (1,0), ALLC (1,1) and Anti-Tit-for-Tat (0,1). The black-dotted line is the set of singular points, as given by
Eq. (S11); the grey area below that line is the cooperation-rewarding zone. As the crosstalk rate � increases from
0 to 0.75, this cooperation-rewarding zone shrinks considerably; most initial population configurations lead to a
state in which everyone defects. Parameter values: population size N = 16, benefit b = 10, cost c = 1.
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Supplementary Figure 10: Dynamics of cooperation for two di↵erent types of crosstalk. For the original
model used in the main text, we have assumed that crosstalk leads a player to refer to the automaton of the
previous interaction. Here, we compare the cooperation dynamics of this original model (see also Fig. 3) to an
alternative implementation of crosstalk, according to which players refer to a random automaton. While the
behavioral dynamics can be di↵erent under the two types of crosstalk, the stationary distributions are identical.
Higher crosstalk rates, densely connected populations and previous interaction crosstalk (full lines) accelerate
spread of defective behavior. The number of players is N = 16 (one of those is the ALLD player), and the
crosstalk rate is � = 0.5. Simulation results are averages over 104 realizations.
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Supplementary Figure 11: Stationary payo↵ of Aggregate Generous Tit-for-Tat (AGTFT) and ALLD
players over the crosstalk rate across di↵erent population structures. Generalizing the strategy space of
reactive strategies to aggregate reactive strategies allowed us to condition the next action on the aggregate
received cooperation in the previous round (see Sec. 2.2 for details). Simulation results accurately match our
analytical results (see Supplementary Fig. 12 and Sec. 2.2). One ALLD player is randomly placed on the graph,
among N � 1 GTFT players. Parameter values: number of players N = 16, all AGTFT players (p = 1, q = 1/3;
full lines: ⌧ = 0.5, dotted lines: ⌧ = 0.2; dashed lines: ⌧ = 0.8), benefit b = 3, and costs c = 1. Simulation
results are averages over 104 realizations.
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Supplementary Figure 12: Aggregate Generous Tit-for-Tat (AGTFT) requires intermediate cooperation
thresholds ⌧ to be most robust against invasion of defectors. We consider four di↵erent population structures,
and as in Supplementary Fig. 11, we assume there is one ALLD players and N�1 players with strategy AGTFT.
Depending on the region in the (�, ⌧) parameter space, there are three di↵erent qualitative outcomes. (i) FC/FC:
In this case, the AGTFT players cooperate with everyone. As a consequence, the defector gets a higher payo↵ than
all residents. (ii) FC/PC: The AGTFT players fully cooperate among each other, but they only partially cooperate
with the ALLD player. In this case AGTFT is stable against ALLD if the conditional cooperation probability q is
su�ciently low. (iii) PC/PC: Here, the AGTFT do no longer fully cooperate among themselves. The analytically
derived boundaries of the three parameter regions match the numerically found results in Supplementary Fig. 11.
Parameter values: number of players N = 16.
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Supplementary Figure 13: Increased interaction frequencies boost e↵ect of crosstalk. Twenty-four con-
ditional cooperators (blue framed nodes, panels) and one ALLD (Always-Defect) player (red framed node, placed
in the center) populate a 5x5 lattice. Players connected by an orange line have a 10-fold increased interaction
probability. Defection spreads faster due to the increased interaction probability along the central, horizontal line
of players. The fill color of the nodes depicts the expected payo↵ of the players after 100, 1,000 and 2,000 games.
Parameter values: crosstalk rate � = 0.5, benefit b = 3, and cost c = 1. For GTFT (defined by p = 1 and
0< q< 1), we used q = 1/3.

13



Supplementary Note 1

In Section 1, we provide further analytical results for our model of crosstalk in the special case

of well-mixed populations. Specifically, we describe a more e�cient algorithm to calculate steady-

state payo↵s when only two di↵erent strategies are present. Using this algorithm, we can calculate

explicitly which strategies (p, q) are able to resist invasion by any other mutant strategy (p0, q0).

Moreover, the algorithm allows us to explore the adaptive dynamics of the system for any crosstalk

rate.

In Section 2, we present additional results that hold for any population structure. We compute

the time that a cooperative population needs to recover from an isolated defection event. Moreover,

we introduce a model of crosstalk that allows players to react to the aggregate cooperation received

across all their co-players. Finally, we argue that the evolutionary results presented in the main

text remain unchanged if we consider a birth-death process instead of an imitation process.

1 Analytical results for well-mixed populations

1.1 E�cient calculation of payo↵s in the special case of two strategies

In the main text, we have derived the following linear system to capture the players’ cooperation

frequencies in the steady state,

yij � (1� �)(pi � qi)yji � �(pi � qi)yj = qi. (S1)

In this equation, the unknowns yij represent the probability that player i cooperates against player j

in the steady state, and (pi, qi) is the reactive strategy of player i. By solving this linear system,

we can calculate payo↵s in small and intermediate-sized populations. However, as populations

become large, the computational e↵ort increases quadratically in the population size N . We thus

derive a more e�cient algorithm for the complete graph, assuming that there are only two di↵erent

strategies present in the population. Suppose that k individuals use strategy (p1, q1), whereas

the remaining N�k individuals use strategy (p2, q2). Because the population structure is fully

symmetric, we can assume that players with the same strategy receive the same payo↵. Hence, we

set yij = yi0j0 in Eq. (S1) whenever the strategies of player i and i

0 and the strategies of player j

and j

0 coincide. This implies a drastic simplification: instead of having to consider all N · (N�1)

possible combinations of players, we only need to consider all 4 possible combinations of strategies

present in the population. That is, the linear system (S1) simplifies to the linear system My = x,
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where M is the 4⇥4 matrix

M =

0

B

B

B

B

B

B

@

1�
⇣

1� N�k
N�1�

⌘

r1 �N�k
N�1�r1 0 0

0 1 �
⇣

1� N�k�1
N�1 �

⌘

r1 �N�k�1
N�1 �r1

� k�1
N�1�r2 �

⇣

1� k�1
N�1�

⌘

r2 1 0

0 0 � k
N�1�r2 1�

⇣

1� k
N�1�

⌘

r2

1

C

C

C

C

C

C

A

, (S2)

with ri := pi�qi, and x = (q1, q1, q2, q2)
T . The solution vector ŷ = (ŷ11, ŷ12, ŷ21, ŷ22)T contains the

respective steady-state frequencies ŷij for a player with strategy i to be in state C with respect to

a co-player with strategy j. Using this vector, we can again calculate the expected payo↵s of the

two strategies as

⇡1 =
⇣

(1��)
⇣

k�1
N�1 ŷ11+
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(S3)

We note that the computation time for the payo↵s is now independent of the population size.

1.2 The optimal level of generosity

Based on the above method to calculate payo↵s in well-mixed populations with two strategies, we

can also analytically derive the most generous strategy (1, qM ) and the most robust strategy (1, qR),

as defined in the main text. To this end, we consider a population in which N�1 individuals adopt

a cooperative strategy, whereas the remaining individual plays ALLD. If we set (p1, q1) := (0, 0),

(p2, q2) :=(1, q), and k=1, we can use Eq. (S3) to calculate the payo↵ of the single ALLD player as

⇡D = bq · (N � 1)
q(1� �) + �

q(N � 1� �) + �

. (S4)

In contrast, the payo↵ of each cooperative player becomes

⇡C = b� c�
�

b� c(1� q)
�

q(1� �) + �

q(N � 1� �) + �

. (S5)

To calculate the most generous strategy that can resist invasion by ALLD we solve ⇡D=⇡C , yielding

qM = 1� b+ c(N � 1)

c+ b(N � 1)
· 1

1� �

. (S6)
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In particular, for no crosstalk and large populations (�=0 and N!1), we recover the well-known

probability qM = 1�c/b [3, 4]. Because

@qM

@�

= �b+ c(N � 1)

c+ b(N � 1)
· 1

(1� �)2
< 0, (S7)

the maximum level of generosity is monotonically decreasing in �. Thus, the more crosstalk, the

less generous cooperative players need to be to still prevent the invasion of ALLD. The value of qM

becomes zero when

�

⇤ =
(b� c)(N � 2)

c+ b(N � 1)
 1� c/b < 1 . (S8)

In particular, only if the crosstalk rate satisfies �<�

⇤, we can hope for full cooperation to evolve

in the complete graph.

Similarly, we can also calculate the most robust cooperative strategy, defined as the strategy

(1, q) that has the highest relative payo↵ advantage compared to a single ALLD mutant. By setting
@
@q (⇡C�⇡D) = 0, we yield

qR = � �

N � 1� �

+

s

(N � 2)�
�

(b� c)(N � 1)� bN�

�

�

c+ b(N � 1)
�

(1� �)(N � 1� �)2
. (S9)

We note that qR is zero for � = 0 and for � = �

⇤, with �

⇤ as defined by Eq. (S8). In between,

for 0 < � < �

⇤, the value of qR is positive. This means that as the crosstalk goes to zero, �! 0,

we get qR ! 0 and the strategy most robust against invasion by ALLD approaches TFT = (1, 0).

For positive �, the most robust level of generosity is non-monotononic (as shown in Fig. 3d). For

small crosstalk rates, the most robust response to an increase in � is to slightly increase q. A

small increase of q is often su�cient to prevent the spread of defection across the network without

being too generous towards the single defector. But once the crosstalk rate has passed a certain

threshold, robustness requires players to become less generous with increasing �. In that case, a

certain spread of defection can no longer be prevented, and players instead have to minimize the

payo↵ of the defector by decreasing q.

1.3 A general invasion analysis

When a cooperative resident strategy (1, q) satisfies q < qM , the above results only guarantee that

residents can resist invasion by ALLD. However, in the following we show that if q < qM holds,

residents are in fact able to resist all possible mutants with a reactive strategy. To this end, suppose

a single mutant employs the strategy (p1, q1) whereas the remaining residents use strategy (p2, q2).

Again, we can use Eq. (S3) to calculate the payo↵ ⇡1 of the mutant, as well as the payo↵ ⇡2 of each
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resident. This yields the following payo↵ di↵erence

⇡1 � ⇡2 =
(1� �)

�

c+ b(N � 1)
�

·
�

q1(1�p2)� q2(1�p1)
�

· (r2 � rM )

(N�1)(1�r2)(1� r1r2) + �

⇣

(1�r1)r2 + (N�1)r1(1�r2)r2
⌘ . (S10)

Here, r1 :=p1�q1 and r2 :=p2�q2, whereas

rM :=
b+ c(N � 1)

c+ b(N � 1)
· 1

1� �

. (S11)

For the resident strategy (p2, q2) to be resistant against invasion, we require ⇡1�⇡2  0 for all

mutant strategies (p1, q1). We can distinguish three cases:

Case 1: r2>rM . In this case, Eq. (S10) implies for every p2<1 that the mutant strategy ALLC

with (p1, q1) = (1, 1) can invade. Hence, resident strategies can only resist invasion if p2=1.

Conversely, if p2=1, it follows from Eq. (S10) that ⇡1�⇡20 for all mutants, as required.

Case 2: r2<rM . Analogously to before, Eq. (S10) implies for every q2>0 that the mutant strategy

ALLD with (p1, q1)= (0, 0) can invade. Hence, resident strategies resist invasion if and only

if q2=0.

Case 3: r2=rM . In that case, Eq. (S10) immediately implies ⇡1=⇡2, irrespective of the mutant

strategy.

This analysis suggests there are three di↵erent sets of strategies that can resist invasion by

single mutants. The first case corresponds to the case of cooperative strategies (1, q) such that

1�q > rM (or, equivalently, q < qM as defined by Eq. (S6)). The second case corresponds to the

case of defective strategies (p, 0) such that p<rM . Finally, the last case corresponds to all strategies

(p, q) that satisfy the linear relationship p�q=rM .

1.4 Adaptive dynamics for well-mixed populations

Based on the above static results, we can also derive a simple deterministic model to describe

how the players’ strategies evolve over time, the so-called adaptive dynamics of the system [5].

We consider a well-mixed population of size N . The population is monomorphic and applies the

resident strategy (p2, q2). This population is then invaded by a single mutant with strategy (p1, q1).

We define the mutant’s invasion fitness as F := ⇡1�⇡2, as given by Eq. (S10). Adaptive dynamics

posits that evolutionary trajectories point towards the mutant with the highest invasion fitness,

ṗ =
@F

@p1

�

�

�

�

p1=p2=:p, q1=q2=:q

and q̇ =
@F

@q1

�

�

�

�

p1=p2=:p, q1=q2=:q

. (S12)
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Plugging Eq. (S10) into Eq. (S12) yields the following two-dimensional dynamical system,

ṗ =
q

1� r

· h(r) and q̇ =
1� p

1� r

· h(r), (S13)

where

h(r) =
(1� �)r

�

c+ b(N � 1)
�

�
�

b+ c(N � 1)
�

(N � 1)(1� r

2) + r

�

1 + (N�1)r
�

�

. (S14)

Eq. (S13) implies that ṗ and q̇ always have the same sign. Since h(r) = 0 if and only if r = rM ,

with rM as defined in Eq. (S11), we obtain the analogous three cases as in the previous section. For

initial populations (p, q) with p�q > rM , both ṗ and q̇ are positive, and populations evolve towards

higher cooperation probabilities. The 2-dimensional area in the (p, q)-space for which p� q > rM is

thus called the cooperation rewarding zone [6]. In contrast, for initial populations with p� q < rM ,

both ṗ and q̇ are negative, and we speak of the defection rewarding zone.

Provided that rM < 1, the system is thus bistable (Supplementary Fig. 9 shows phase

portraits for two di↵erent crosstalk rates). Orbits either converge to a fully cooperative population

(1, q) with q < 1 � rM , to a fully defective population (p, 0) with p< rM , or to the line of interior

singular points p � q = rM . In the limiting case of no crosstalk (Supplementary Fig. 9a) this

recovers previous results on the adaptive dynamics of reciprocity in finite populations [7]. However,

as the crosstalk rate � increases, it follows from Eq. (S11) that rM increases. Geometrically, this

means that the line of fixed points is shifted to the right and the cooperation rewarding zone shrinks

(Supplementary Fig. 9b). As � exceeds the value of �⇤ as defined by Eq. (S8), this zone vanishes

altogether. Higher rates of crosstalk thus impede the evolution of cooperation, as they diminish

the set of initial population that converge towards fully cooperative states.

The above results consider evolution as a deterministic process: if the initial population is in the

defection rewarding zone, then the population will not employ a cooperative strategy (1, q) in sub-

sequent generations. In the main text, we have thus contrasted this deterministic model of adaptive

dynamics with a stochastic imitation process. According to the imitation process, an ALLD pop-

ulation may be invaded by a cooperative mutant, even if this mutant is initially at a disadvantage

in a population of defectors. To explore which mutants are particularly likely to invade, Supple-

mentary Fig. 7 represents the success of all possible mutant strategies if the resident population

either employs a noisy variant of ALLD, (0.001, 0.001), or a noisy variant of GTFT, (0.999, 0.333).

When crosstalk is rare, ALLD populations are less robust against mutant invasions. On average, it

only takes 41 successive mutant invasions until the first mutant fixes. Moreover, successful mutants

typically exhibit TFT-like behavior, and are thus often in the cooperation-rewarding zone. In con-

trast, if residents employ GTFT, it takes 697 mutants until the first mutant fixes, and successful

mutants are highly cooperative themselves. However, ALLD outperforms GTFT when crosstalk is

frequent. For � = 0.5, we observe that it typically takes 116 mutants until an ALLD population

is successfully replaced (again, TFT-like strategies are most likely to fix in an ALLD population).
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In contrast, GTFT is already invaded after 105 mutant strategies, and successful mutants are no

longer similar to GTFT. These simulation results again highlight that high crosstalk rates un-

dermine the evolutionary robustness of cooperation. For large values of �, cooperative strategies

become unstable, and defective strategies prevail.

1.5 The evolutionary relevance of extortionate strategies under crosstalk

When the population only consists of N = 2 individuals with respective strategies (p1, q1) and

(p2, q2), their respective payo↵s according to Eq. (S3) become

⇡1 =
(q2 + q1r2)b� (q1 + q2r1)c

1� r1r2
,

⇡2 =
(q1 + q2r1)b� (q2 + q1r2)c

1� r1r2
.

(S15)

These two payo↵s satisfy the linear relationship

⇡1 =
br2 � c

b� cr2
· ⇡2 +

(b� c)(b+ c)q2
b� cr2

. (S16)

In particular, by choosing a strategy of the form (p2, 0), player 2 can enforce the relation

⇡1 =
bp2 � c

b� cp2
· ⇡2 . (S17)

Since c < b and 0 p2  1, it follows that ⇡2 � ⇡1, irrespective of player 1’s strategy (for p2 < 1,

equality only holds if both players get the mutual defection payo↵ 0). Moreover, by choosing

p2>c/b, player 2 makes sure that the two payo↵s ⇡1 and ⇡2 are positively related. In that case, if

the co-player 1 aims to maximize her own payo↵, she automatically maximizes player 2’s payo↵ as

well. Strategies of the set

E =
n

(p, q) 2 [0, 1]2
�

�

�

c/b<p<1, q=0
o

(S18)

have thus been termed extortionate [8]. With an extortionate strategy, players can ensure that they

almost always outperform the opponent. At the same time, it is in the opponent’s best interest to

be unconditionally cooperative.

Here, we aim to explore when such extortionate strategies are stable in populations of size N in

the presence of crosstalk. Case 2 in Section 1.3 implies that extortionate strategies need to satisfy

c

b

< p <

b+ c(N � 1)

c+ b(N � 1)
· 1

1� �

. (S19)

to resist invasion by all mutant strategies. We note that this condition is automatically satisfied
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if N = 2, recovering previous results that extortion can succeed in small populations [1, 2]. But

while generic models of direct reciprocity (with �=0) predict that extortionate strategies become

unstable in large populations, condition (S19) suggests that crosstalk can stabilize extortion. In

particular, once � > �

⇤ (as defined in Eq. (S8)), every extortionate strategy (p, 0) is resistant

against mutant invasions. At the same time, however, it should be noted that by becoming stable,

extortionate strategies lose their most appealing property when crosstalk rates are high. For high

values of �, the best response in a population of extortioners is no longer to give in and to cooperate

unconditionally. The best response is to be extortionate as well.

In Supplementary Fig. 8, we show simulations using the stochastic imitation process con-

sidered in the main text. We consider a resident population that employs a given extortionate

strategy (p, 0)2E. For this resident population, we calculate the fixation probability for all possi-

ble reactive mutant strategies, as well as the average time it takes until a random mutant replaces

the resident. These simulations support the above analytical findings. For moderate population

sizes and no crosstalk, the extortionate strategy is quickly invaded by more cooperative strategies

(Supplementary Fig. 8a). As the crosstalk rate � increases, the extortionate strategy become

more robust against mutant invasions, and successful mutants typically show the characteristics of

extortionate strategies themselves (Supplementary Fig. 8b). We have also explored the evolu-

tionary relevance of extortionate strategies by measuring how often the evolving population visits

a �-neighborhood of E. The respective fraction of time increases substantially as the crosstalk rate

� increases (Supplementary Fig. 8c). We conclude that under crosstalk, extortionate strategies

are able to persist even in larger populations.

1.6 Stochastic evolutionary dynamics for a birth-death process

In the main text, we have considered a cultural evolution setup to describe how strategies in a

population change over time. We have assumed that strategies that perform well are more likely

to be imitated by other players. Similarly, we can also study the dynamics when strategies spread

by inheritance, and not by imitation. To this end, let us consider a Moran process. As in the main

text, we consider a population of individuals that engage in repeated games subject to crosstalk.

Each individual i acts according to a fixed strategy (pi, qi) that is now genetically determined. The

payo↵ ⇡i of individual i again is determined by Eq. (3) of the main text. This payo↵ translates

into an individual fitness fi = exp(s⇡i), with s � 0 being again the strength of selection (the

exponential fitness mapping ensures that the players’ fitness is always positive). We assume that in

each evolutionary time step one individual is chosen for reproduction (proportional to its fitness),

and that its o↵spring replaces a randomly chosen individual. The o↵spring inherits the parent’s

strategy with probability 1 � µ, and it adopts a new reactive strategy with probability µ, where

µ is the mutation rate. For this Moran process, the fixation probability of a single mutant in a
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well-mixed population of N�1 residents is given by Ref. [9]:

⇢F =

0

@1 +
N�1
X

i=1

i
Y

j=1

exp
⇥

�s

�

⇡M (j)� ⇡R(j)
�⇤

1

A

�1

. (S20)

Here, ⇡M (j) and ⇡R(j) are the mutant’s and the resident’s payo↵ in a population with j mutants,

respectively. This fixation probability coincides with the respective fixation probability for the pair-

wise imitation process [10]. In particular, all corresponding evolutionary results for the imitation

process (Fig. 4c,d) considered in the main text equally apply to the Moran process discussed here.

2 Further results for arbitrary population structures

2.1 Expected recovery time after errors

So far we have been concerned with the e↵ects of crosstalk on the stationary cooperation rates

and payo↵s in a population. In particular, we have seen that crosstalk can lead to a spread of

defection across a network. Herein we are interested in the respective timescale. How long does it

take until an isolated defection event (e.g. due to an error) is “forgotten” in a generally cooperative

population?

To this end, we consider a population of size N on a regular network with degree k. All players

apply the strategy (1, q), and all players are in state C initially. Suppose that due to an error in

the very first game, one of the players defects and that in all subsequent rounds no more errors

occur and players act according to their strategies. We are interested in the recovery time, in other

words, the time it takes until all players are in state C again.

In the limiting case of no crosstalk, this recovery time can be calculated analytically. Since

� = 0, an error only a↵ects the edge between the pair of players that has interacted in the very first

game. Moreover, within this pair there is always at most one player who is in the D state (because

in each round, at least one of the players cooperates and players have p = 1). As the probability

that a specific edge of the regular graph is chosen is 2/(N ·k), we can calculate the probability that

the population recovers after exactly t rounds as follows:
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Probability Explanation

Recovery

after 1 round

q Player 2 immediately forgives defecting player 1.

Recovery

after 2 rounds

(1� q) 2q
N ·k

Player 2 does not forgive immediately, but the same

edge is chosen in the second round, player 2 defects

and player 1 forgives player 2.

...
...

...

Recovery

after t rounds

(1� q)
⇣

1� 2q
N ·k

⌘t�2
2q
N ·k

No recovery in first t�1 rounds, but in the t-th

round the respective edge is chosen and the co-

player of the defector forgives.

Therefore, the expected recovery time T� for �=0 is

T0 = q + (1� q)
2q

Nk

1
X

t=2

t

✓

1� 2q

Nk

◆t�2

= 1 +
Nk(1� q)

2q
. (S21)

In particular q=1 implies T0=1. The expected recovery time T0 has the following two properties:

1. For any given q, the recovery time is monotonically increasing in k (i.e., recovery always takes

longer in the complete graph than in the circle).

2. For any given k, the recovery time is monotonically decreasing in q (i.e., recovery always

occurs faster when players are more forgiving).

These two properties hold in fact for any crosstalk rate, as further simulations show (Supplementary

Fig. 6). Moreover, these simulations also show the recovery time is a decreasing function of �.

Intuitively, under crosstalk each player’s automaton is more likely to be updated during a single

interaction. Given that the residents have p=1 and q>0, these updating events on average increase

the cooperation level in a population: a player’s D state is more likely to be overridden by a C

than the other way around.

2.2 Crosstalk based on aggregate experience

In the so far explored models of crosstalk, a player who needs to decide whether to cooperate or

not only considered single experiences (either with the present co-player, or with the previous co-

player). Instead one may also consider a model where decisions are based on a player’s aggregate

experience in previous games. In the following, we sketch a simple model for that case.
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Again, we consider a population of size N , and each player holds a two-state automaton for each

of her co-players. This automaton is in state C if the respective co-player has cooperated in the

previous round, and it is in state D otherwise. To encode the present state of a player’s automaton

at time t, we use the variable x

t
ij . The value of this variable is x

t
ij = 1 if in the last interaction

between i and j prior to round t, player j cooperated. Otherwise, we set x

t
ij = 0. Suppose now

that in round t, players i and j interact. We assume that prior to her decision which action to

choose, player i considers a weighted average score across all her co-players’ previous decisions,

x̄

t
ij(�) = (1� �) · xij + �

N
X

k=1

wik

w̄i
x

t
ik. (S22)

As before, we interpret � as the model’s crosstalk rate. In the limiting case � = 0, there is no

crosstalk and only the direct co-player’s previous action is taken into account. In the other limiting

case � = 1, there is full crosstalk and player i simply considers the average cooperation rate across

all her co-players. Given the average score x̄

t
ij(�), we assume that player i with strategy (pi, qi)

cooperates with probability pi if x̄tij(�) � ⌧ , and otherwise cooperates with probability qi. The

parameter ⌧i denotes an exogenous cooperation threshold. In the special case � = 0, the above

model is equivalent to the standard model of reactive strategies of direct reciprocity [3, 6] for any

0< ⌧ < 1. However, for positive values of �, players do not only respond to their direct co-player,

but they are also a↵ected by outside experiences with previous co-players.

First, we explore the above model using computer simulations. To this end, we consider players

using the strategy (1, 1/3, ⌧), to which we refer to as Aggregate Generous Tit-for-Tat (AGTFT).

For four di↵erent population structures (cycle, lattice, 6-regular graph and complete graph), we

study the cooperation dynamics that arise in a population in which one player applies ALLD and

all other players apply AGTFT. In Supplementary Fig. 11, we show the resulting payo↵s for

three di↵erent values of the cooperation threshold ⌧ 2{0.2, 0.5, 0.8} and for di↵erent crosstalk rates

0 �  1. As expected, in all population structures the GTFT players gain a higher payo↵ than

the ALLD player in the absence of crosstalk. However, as the crosstalk rate increases, the ranking

of strategies can change once � exceeds a certain threshold. There are two qualitative changes that

can occur. When ⌧ is relatively low compared to �, AGTFT players start to fully cooperate with

the ALLD player (in Supplementary Fig. 11, the red curve jumps from ⇡D=1 to ⇡D=3). On the

other hand, when ⌧ is high compared to �, already a single defector in the population can prevent

AGTFT players to fully cooperate with other AGTFT players (in Supplementary Fig. 11a,b,

this happens when the blue curve for ⌧=0.8 jumps from ⇡A⇡2 to ⇡A<1).

To understand these discontinuous transitions in the players’ payo↵s, we calculated when

AGTFT players fully cooperate among themselves, and when they fully cooperate with the ALLD

player. This yields three di↵erent cases:

1. AGTFT players fully cooperate with everyone. This case applies if the average cooperation
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rate x̄

t
ij is always above the threshold ⌧ , even if the respective co-player is a defector. By

Eq. (S22), this yields the condition

� · N � 2

N � 1
� ⌧ . (S23)

2. AGTFT players are fully cooperative among themselves, but they only cooperate against the

defector with probability q. This case applies if x̄tij � ⌧ in case the co-player uses AGTFT,

whereas x̄tij < ⌧ if the co-player used ALLD. By Eq. (S22), this yields the following condition,

� · N � 2

N � 1
< ⌧  (1� �) + �

N � 2

N � 1
. (S24)

3. AGTFT players are no longer fully cooperative among themselves. This case applies if x̄tij < ⌧

even if the co-player adopts AGTFT and even if all AGTFT players have cooperated in the

previous round. This yields

(1� �) + �

N � 2

N � 1
< ⌧ . (S25)

In Supplementary Fig. 12, we show the parameter regions (�, ⌧) that satisfy the three inequalities

(S23), S24, and (S25). For all population structures, we find that if ⌧ is too small, the AGTFT

population cooperates with everyone. On the other hand, if ⌧ is too large, AGTFT do not even

fully cooperate among themselves. Only when ⌧ is intermediate, the AGTFT players succeed

in keeping the defector’s payo↵ low, while still maintaining full cooperation among themselves.

Surprisingly, we find that this region in the (�, ⌧)-space always has an area of 1/2. Independent

of the population structure, half of the parameter combinations are amenable to AGTFT to be

stable against defectors. However, as in our original model, we find that, all other parameters kept

constant, it is easier for AGTFT to succeed against ALLD if � is small (Supplementary Fig. 12).
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