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Social dilemmas among unequals
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Direct reciprocity is a powerful mechanism for the evolution of 
cooperation on the basis of repeated interactions1–4. It requires 
that interacting individuals are sufficiently equal, such that 
everyone faces similar consequences when they cooperate or defect. 
Yet inequality is ubiquitous among humans5,6 and is generally 
considered to undermine cooperation and welfare7–10. Most 
previous models of reciprocity do not include inequality11–15. These 
models assume that individuals are the same in all relevant aspects. 
Here we introduce a general framework to study direct reciprocity 
among unequal individuals. Our model allows for multiple 
sources of inequality. Subjects can differ in their endowments, 
their productivities and in how much they benefit from public 
goods. We find that extreme inequality prevents cooperation. But 
if subjects differ in productivity, some endowment inequality can be 
necessary for cooperation to prevail. Our mathematical predictions 
are supported by a behavioural experiment in which we vary the 
endowments and productivities of the subjects. We observe that 
overall welfare is maximized when the two sources of heterogeneity 
are aligned, such that more productive individuals receive higher 
endowments. By contrast, when endowments and productivities are 
misaligned, cooperation quickly breaks down. Our findings have 
implications for policy-makers concerned with equity, efficiency 
and the provisioning of public goods.

In social dilemmas, overall welfare is maximized if all individu-
als cooperate yet each individual prefers to defect16. Such dilemmas 
occur at all levels of human society. They affect families, compa-
nies and nations17,18. An extensive body of research has shown that  
cooperation is more likely when groups are stable and subjects interact 
repeatedly11–15. However, this mechanism of direct reciprocity assumes 
that group members have sufficient leverage to influence one another. 
Subjects need to be able to give appropriate responses. Tit-for-tat  
can only be effective if it incentivizes others to cooperate. Most  
previous models of reciprocity assume perfect symmetry between  
individuals11–15. Real groups often exhibit substantial heteroge-
neity, which is derived from multiple sources5,6. Experimental 
studies have shown that inequality in the endowments of the 
players reduces cooperation7,8 and undermines the social 
structure of a population9. Even if subjects start out equally, 
game dynamics can introduce inequality over time, disfavour-
ing individuals who are more cooperative19 (Supplementary 
Information). So far, it has been difficult to predict the effect of  
heterogeneity on cooperation, especially if subjects vary along multiple 
dimensions. Here we propose a general framework to explore how  
different kinds of heterogeneities interact and affect cooperation.

We consider public goods games with n players. In each round, player 
i receives a fixed endowment ei, which can be interpreted as a regu-
lar income. After receiving their endowments, players independently 
decide which fraction xi of their endowment to contribute to the public 
good. The payoff ui of player i for that round depends on the distribu-
tion of endowments, e1, …, en, and on the relative contributions of the 
players, x1, …, xn. It is typically assumed that all players have the same 
endowment and that contributions to the public goods are multiplied 
by a common productivity factor, r (Fig. 1a). Here we instead consider 

interactions in which players have different endowments, different  
productivities or for which payoffs are nonlinear (Fig. 1b–d).

As a specific example, we consider public goods games in which the 
contributions of each player are multiplied by an individual factor ri 
and equally shared among all participants,
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The first term represents the payoff that is derived from the public 
good and the second term represents the remaining endowment of the 
player. We interpret the factors rj as the productivity of each player and 
assume 1 < rj < n for all j. Thus, the game is a social dilemma in which 
individuals have an incentive to free-ride16. Although we focus on the 
example given by equation (1) throughout most of the main text, our 
findings generalize to arbitrary public goods games that satisfy four 
natural requirements (Methods).

If the public goods game is played once, defection is the only equilib-
rium. But for repeated interactions, cooperation can prevail if players 
adopt conditional strategies, such as tit-for-tat2 or win-stay lose-shift 
(WSLS)11, or multiplayer variants of these strategies20. We assume after 
each round that there is another round with probability δ.

To explore the effects of different kinds of heterogeneity, we first 
characterize when it is that cooperation can be maintained. For a 
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Fig. 1 | Public goods games among unequals. We consider social 
dilemmas in which participants decide how much of their endowment 
ei to contribute to the public goods. The contributions of each player are 
multiplied by ri and then divided among all players. The players have 
equal endowments if e1 = e2 = e3. The game is symmetric if players are 
indistinguishable except for their endowments and contributions. Here the 
game is symmetric if r1 = r2 = r3. The game is linear if the payoffs depend 
linearly on the endowments and contributions of the players. Here the 
game is linear if the factors ri are constant. a, Most previous studies assume 
that players have the same endowment, the game is symmetric and payoffs 
are linear. b–d, Instead, we allow players to have different endowments, 
different productivities and nonlinear payoffs. e, We derive general results 
for n-player games. f, As a special case, we study pairwise interactions.
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given public goods game and a given endowment distribution, we  
say that full cooperation is feasible if there is a subgame perfect  
equilibrium in which all players always contribute their entire endow-
ment. In such an equilibrium, players have no incentive to deviate after 
any history of previous play21. In the Supplementary Information, we 
prove that cooperation is feasible if and only if the strategy Grim is an 
equilibrium. Grim cooperates unless another player has defected in a  
previous round3. From the equilibrium condition for Grim, it follows 
that cooperation is feasible for the public good game given by equation 
(1) if and only if for all players i with ei > 0 the following condition 
holds:

∑
δ ≥ 


 − 




≠n
r e

r
n

e1 (2)
j i

j j
i

i

The expected benefit from the future cooperation of others must exceed 
the incentive to defect in the present round. For cooperation to be 
feasible, future losses must outweigh present gains.

On the basis of this general characterization of when cooperation is 
feasible, we derive a number of results. First, cooperation is never fea-
sible if there is too much inequality, such that most of the endowment 
is in the hands of one player (Supplementary Information). For linear 
and symmetric games (Fig. 1), we show that if cooperation is feasible at 
all, it is feasible for equal endowments (Fig. 2a). However, if the game is 
asymmetric (Fig. 2b) or nonlinear (Fig. 2c), full cooperation may only 
be feasible when players have unequal endowments. In such a case it 
can even be optimal to give some players no initial endowment at all.

To gain intuition, consider a case in which players differ in productiv-
ities, r1 > … > rn. We find a twofold advantage of giving higher endow-
ments to more productive players. First, there is a stability advantage:  
an unequal distribution of endowments makes it easier for full coop-
eration to be an equilibrium. To understand this, assume instead that 

players receive equal endowments. Then inequality (2) suggests that 
cooperation is feasible if

δ ≥
−
−
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in which R = r1 + … + rn is the sum of all productivities. For equal 
endowments, player n with the lowest productivity faces the largest 
temptation to defect, because this player has the highest marginal cost 
1 − rn/n of contributing. This temptation can be counterbalanced by 
allocating a smaller endowment to player n who then has less to gain 
from withholding, whereas the others have more leverage to retaliate 
in future rounds. Both effects enhance the stability of cooperation. 
Second, there is an efficiency advantage of unequal endowments. 
Because contributions of more productive players are multiplied by a 
higher factor, social welfare is maximized when the most productive 
player obtains the largest share of the initial endowment—subject to 
the constraint that full cooperation is feasible.

If the game involves only two players, we can compute which  
endowment distribution is the most conducive to cooperation. An 
endowment distribution is maximally cooperative if it requires the 
lowest continuation probability δ for cooperation to be feasible. Using 
inequality (2), we show in the Supplementary Information that endow-
ments need to be distributed as
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An equal distribution, e1 = e2, is maximally cooperative only if players 
have the same productivities. Otherwise, the more productive player 
should have a larger share of the endowment.

After exploring under which conditions cooperation is feasible, we 
study when it is that cooperation can evolve3. To make an evolutionary 
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Fig. 2 | Feasibility and evolvability of cooperation in public goods 
games among unequals. a–f, We consider groups of three players who 
interact in three different public goods games. In each case, we investigated 
when equal endowments help to maintain cooperation (a–c) or favour its 
evolution (d–f). The triangles represent the possible ways to distribute the 
initial endowment among the players. Corners correspond to distributions 
for which one player receives all of the endowment. Edges correspond to 

distributions for which one player receives no endowment. The centre 
of the triangle marks equal endowments. ‘Group payoff ’ corresponds to 
the total payoff across all group members, averaged over 106 time steps 
of an evolutionary simulation. We find that extreme inequality is always 
detrimental to cooperation. However, when the game is asymmetric or 
nonlinear, slightly unequal endowments may be necessary for cooperation 
to be feasible (b, c) and for cooperation to evolve (e, f).
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approach computationally tractable, we first consider players who 
respond only to the outcome of the last round. Moreover, we assume 
that players choose only from a finite set of possible contributions.  
For example, they may either contribute their full endowment or noth-
ing at all. In that case, we refer to the two possible actions as coopera-
tion and defection, respectively. With some small probability, ε, players 
commit errors such that a player who intends to cooperate defects by 
mistake (and vice versa). Players adopt new strategies over time by com-
paring their payoff to the payoff they would obtain by using a random 
alternative strategy. The better the payoff of the alternative strategy, 
the more likely players are to switch. We iterate this process for many 
steps and record the average cooperation rates over time (Methods).

Our numerical findings parallel the previous equilibrium results. 
Cooperation cannot evolve if one of the players receives almost all of 
the endowment. Moreover, for linear and symmetric games, individuals 
are most likely to cooperate if everyone receives the same endowment 
(Fig. 2d). However, if some players are more productive than others 
(Fig. 2e) or if the game is nonlinear (Fig. 2f), unequal endowments 
yield more cooperation and higher payoffs. In all cases, we observe 
that the strategy Grim is less relevant, because it cannot sustain coop-
eration in the presence of noise3. Instead, cooperation evolves if the 
strategy WSLS11 is an equilibrium (Extended Data Figs. 1–5). WSLS 
contributes the full endowment in the first round, or if all players made 
the same relative contribution in the previous round. Otherwise WSLS 
contributes nothing11,20.

In the simulations, a group of defectors is most likely to be invaded 
by strategies such as tit-for-tat. These conditional cooperators in turn 
quickly adopt WSLS, which is more robust with respect to errors. 
However, because of stochasticity, any strategy is replaced eventually, 
even if it is an equilibrium (Supplementary Information). Further sim-
ulations show that analogous results hold when players choose between 
more than two discrete contributions each round (Fig. 3) or when strat-
egies are represented by finite-state automata15 (Extended Data Fig. 6, 
see Supplementary Information for details).

To explore the applicability of these theoretical results, we designed 
an online behavioural experiment based on the two-player game of 
Fig. 3. Participants are either equally productive or not and have the 
same endowment or not. We consider five treatments: full equality, 
endowment inequality, productivity inequality, aligned inequality and 

misaligned inequality (Fig. 4a). In the last two treatments, individuals 
differ in both dimensions. Either the more productive player (aligned) 
or the less productive player (misaligned) receives the larger endow-
ment. Previous experiments suggest that—in isolation—heterogeneous 
endowments reduce cooperation7,8, whereas heterogeneous productiv-
ities have a negligible effect22. Here we study the interaction between 
the two heterogeneities in repeated games, for which previous research 
did not find any significant effects23.

On the basis of our evolutionary analysis, we expect aligned inequal-
ity to increase and misaligned inequality to reduce welfare compared 
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Fig. 3 | When players differ in their productivities, equal endowments 
do not maximize contributions. We consider public goods games 
between two players. a, b, Players either coincide in their productivities, 
r1 = r2 = 1.6 (a) or player 1 is more productive, r1 = 1.9 and r2 = 1.3 (b). 
In each case, we vary player 1’s share of the initial endowment. We perform 
evolutionary simulations (dotted lines) for three scenarios, depending on 
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players differ in productivity, the maximum total payoff is achieved when 
player 1 obtains a larger fraction of the endowment. The position of the 
maximum is well-approximated by the maximally cooperative endowment 
distribution given by equation (4).
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Fig. 4 | Exploring the effects of multidimensional inequality with a 
behavioural experiment. a, On the basis of the two-player game shown 
in Fig. 3, we conduct an experiment with varying endowments and 
productivities. There are five conditions: (1) full equality, (2) endowment 
inequality, (3) productivity inequality, (4) aligned inequality (the 
more productive player has higher endowment), and (5) misaligned 
inequality (the more productive player has lower endowment). 
b–e, For each treatment, we compare the theoretical predictions from 
evolutionary simulations (grey bars) with the respective average values 
of the experiment (coloured bars). We show the relative contributions 
of each player (top) and the generated surplus (by how much the total 
payoffs of the players exceed their initial endowments; bottom). Aligned 
inequality yields high cooperation rates and higher payoffs than other 
treatments. Coloured dots represent individual groups of players; the 
number of observations (groups) for each treatment was 42, 42, 40, 39, 
40 for treatments 1–5, respectively. Error bars represent 95% confidence 
intervals. We analysed pairwise differences between treatments using  
two-tailed Mann–Whitney U-tests. **P < 0.01; ***P < 0.001. 
See Methods for details.
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to the case of productivity inequality alone (Fig. 3). The experiment 
confirms these predictions (Fig. 4b–e). Aligned inequality results in 
substantially higher contributions than misaligned inequality and 
generates the highest surplus across all treatments. Under aligned ine-
quality, most high-endowment players match the relative contribution of 
the low-endowment players. That is, if the low-endowment player gives 
their full endowment, then so does the high-endowment player, even if 
their absolute contributions are three times higher. By contrast, contribu-
tions under misaligned inequality do not follow a clear norm; often, the 
high-endowment player only matches the absolute contribution of the 
other player (Extended Data Figs. 7–10 and Supplementary Information).

Here we introduce a general framework to study direct reciprocity 
among unequals. Our three complementary approaches—equilib-
rium calculations, evolutionary simulations and a behavioural experi-
ment—suggest an unexpected benefit of inequality. We show that equal 
endowments can be detrimental to social welfare if subjects differ along 
multiple other dimensions, such as productivity or benefits from public 
goods. In those cases, some inequality can increase both the stability of 
cooperation and the efficiency of contributions.

Despite these potential benefits, inequality comes with caveats. First, 
maximizing cooperation requires a delicate balance between the differ-
ent dimensions of heterogeneity. Finding the right amount of inequality 
can prove difficult when the players’ personal characteristics, such as 
their productivities, are known only imperfectly. The problem is aggra-
vated by our finding that an excess of inequality is always detrimental.

Second, endowment inequality could interfere with institutional 
solutions to cooperation. For example, when cooperation is maintained 
through sanctions, heterogeneous groups may disagree on which norm 
to enforce24. Additional problems arise when sanctioning institutions 
can be corrupted25,26, especially when better-endowed individuals can 
‘play the system’.

Finally, reducing inequality is often considered an important pol-
icy objective in itself. Humans dislike inequality27 and are sometimes 
willing to sacrifice their own wealth to guarantee more-egalitarian out-
comes28,29. In addition, inequality often renders successful coordination 
in social dilemmas difficult, as different actors may disagree on which 
cooperative equilibrium is fair30. However, here we show that inequality 
does not need to render cooperation impossible. When individuals 
are naturally heterogeneous, moderate inequality can be necessary for 
cooperation to prevail.
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Methods
General modelling framework. In the main text, we used the public goods 
game in equation (1) to illustrate our main findings. However, the framework 
that we use to study reciprocity in asymmetric social dilemmas is general and can 
encompass many other examples (as indicated in Fig. 2c, f). Here we introduce, 
in brief, our general framework. A full account is provided in the Supplementary 
Information.

We consider games with n players. The endowments of the players in each round 
are given by the endowment vector e = (e1, …, en). Endowments are non-negative, 
ei ≥ 0 for all players i, and normalized, e1 + … + en = 1. Given their endowments, 
players decide which fraction of their endowment they contribute, as summarized 
by the contribution vector x = (x1, …, xn) for which xi ∈ [0, 1] for all players i.  
We refer to xi as the relative contribution of the player and to eixi as the absolute 
contribution of the player. We use the shorthand notation x = 0 if no player con-
tributes to the public goods and x = 1 if all players contribute their full endowment. 
Given the endowments e and the relative contributions x in a given round, the 
payoff for player i in that round is ui(e, x). If there are no contributions, players 
receive their initial endowment ui(e, 0) = ei.

We consider public goods games that satisfy the following four conditions:  
continuity (C), the payoff functions ui(e, x) are continuous in both arguments; 
positive externalities (PE), as a player with a positive endowment increases their 
contribution, the payoffs of all other players increase; incentive to free-ride (IF), 
as a player with positive endowment increases their contribution, their own payoff 
decreases; and optimality of cooperation (OC), as a player with positive endow-
ment increases their contribution, the overall payoff over all members of the group 
increases.

The first condition of continuity is merely a technical assumption that is useful 
for some of the analytical results. The other three conditions generalize previ-
ous notions of social dilemmas in one-shot games in which players can either  
cooperate or defect16.

We note that the above conditions rule out certain threshold public goods 
games, in which payoffs increase discontinuously once total contributions exceed a 
certain threshold31–34. In such threshold public goods games, cooperation can often 
emerge even if the game is played only once, because players have an incentive not 
to fall below the threshold35. By considering public goods games that satisfy (C), 
(PE), (IF) and (OC), we consider the most stringent case of a social dilemma, in 
which repeated interactions are key to sustain positive contributions. Asymmetric 
threshold public goods games in a one-shot or finite-horizon setting have  
previously been studied36–39. Previous work has also explored the consequences 
of heterogeneities in the background fitness of the players40, as well as strategies to 
maintain cooperation in the asymmetric prisoner’s dilemma41.

We can classify public goods games according to two properties, linearity and 
symmetry. We say a public goods game is linear if payoffs ui(e, x) are linear in both 
arguments, e and x. A public goods game is symmetric if players are indistinguish-
able, except for their endowments and for their contributions. Formally, if 
σ = (σ1, …, σn) is a permutation of the numbers 1, …, n and if eσ and xσ are the 
permuted endowment and contribution vectors, respectively, then the public goods 
game is symmetric if = σ σ σu ue x e x( , ) ( , )i i

 for all permutations σ, endowments e 
and contributions x. That is, if players were to switch roles with respect to their 
endowments and contributions, their payoffs would change accordingly. In par-
ticular, the public goods game in equation (1) is symmetric only if all players have 
the same productivity, r1 = … = rn.
Equilibrium analysis. We explore under which conditions full cooperation can 
be sustained if the public goods game is repeated. After each round, there is another 
round with probability δ. Strategies for the repeated game are rules that tell  
the player which fraction of the endowment to contribute, depending on the  
players’ endowments and on all previous contributions. If the contribution vector 
in round t is x(t), payoffs are given by the weighted average payoff per round, 
π δ δ= − ∑ =

∞ u te x(1 ) ( , ( ))i
t

it 0 .
For a given public goods game with payoff function u = (u1, …, un), continua-

tion probability δ and endowment distribution e, we say full cooperation is feasi-
ble if there is a subgame perfect equilibrium in which all players contribute their 
full endowment in every round. In a subgame perfect equilibrium, no player has 
an incentive to deviate after any given history21. It is a refinement of the Nash  
equilibrium concept: every subgame perfect equilibrium is a Nash equilibrium, 
but the converse does not need to be true.

We refer to the set of all endowments for which full cooperation is feasible 
as Eu(δ). In Fig. 2a–c, these sets are illustrated as blue areas within the space of 
all endowment distributions. In the Supplementary Information, we character-
ize these sets for all games that satisfy the four conditions (C), (PE), (IF) and 
(OC). We show that the following are equivalent (Supplementary Information, 
proposition 1): (i) cooperation is feasible for a given endowment distribution e; 
(ii) the condition δ(ui(e, 1−i) − ui(e, 0)) ≥ ui(e, 1−i) − ui(e, 1) holds for all play-
ers i with positive endowment. Here, 1−i is the shorthand notation for a group 
in which everyone contributes the full endowment, except for player i who  

contributes nothing; and (iii) Grim is a subgame perfect equilibrium for the endow-
ment distribution e.

On the basis of this general characterization, we prove the following implications.
First, for any given payoff function u and continuation probability δ, there is a 

threshold <∗e 1i  such that e ∉ Eu(δ) holds for any endowment distribution e  
with > ∗e ei i . That is, cooperation is never feasible if one of the players receives an 
excessive share of the endowment.

Second, if the public goods game is symmetric and linear, and Eu(δ) ≠ ∅, then 
(1/n, …, 1/n) ∈ Eu(δ). That is, if full cooperation is feasible in a linear and sym-
metric public goods game, then it is always feasible when all players receive the 
same endowment.

Third, if the public goods game is either asymmetric or nonlinear, there are 
cases for which Eu(δ) ≠ ∅, but (1/n, …, 1/n) ∉ Eu(δ). That is, in asymmetric or 
nonlinear public goods games, full cooperation may be feasible only for unequal 
endowment distributions.
Evolutionary analysis. We also explored the dynamics that arises if players have 
not yet settled on a particular equilibrium. Instead, they may begin with randomly 
initialized strategies, and then learn to use more profitable strategies over time.

To this end, we first consider a simplified strategy space. We assume that the 
contributions of the players in any given round depend only on the outcome of the 
previous round, as in most previous work on evolution of reciprocity41–63. In addi-
tion, we assume that players can choose only from among a fixed finite set 

= …X x x{ˆ , , ˆ }m1  of possible contributions. Under these two assumptions, the strat-
egies of the players take the form of a vector p = (p0,k, px,k). The entries p0,k for 
1 ≤ k ≤ m give the probability of the player to choose contribution level x̂k in the 
first round, when no previous history is yet available. The other entries px,k give 
the probability of the player to choose x̂k in subsequent rounds, conditional on the 
contribution vector x ∈ Xn of the previous round. For p to be a sensible strategy, 
we require ∑ == p 1k

m
k1 0,

 and ∑ == p 1k
m

kx1 ,
 for all x; that is, the strategy must  

prescribe an action for any given outcome of the previous round. When all players 
apply memory-1 strategies, their payoffs in the repeated game can be computed 
efficiently by representing the game as a Markov chain. The algorithm is shown in 
the Supplementary Information.

In the special case that players can give only their full endowment or nothing 
at all, we obtain X = {0, 1}. We refer to these two possible actions as ‘cooperation’ 
(C) and ‘defection’ (D). When there are only these two possible contribution lev-
els, we can drop the index k in the definition of a memory-1 strategy and write 
p = (p0; px). Under this notation, pz is now the probability that the player will 
cooperate in the next round. If the game involves only two players, we obtain 
the typical format of memory-1 strategies for the iterated prisoner’s dilemma3, 
p = (p0; pCC, pCD, pDC, pDD). For example, the strategy Grim may be approximated 
by the memory-1 strategy p = (1; 1, 0, 0, 0). In the absence of errors, this memory-1 
strategy cooperates only if both players have cooperated in all previous rounds.

Pure memory-1 strategies have entries that are either zero or one. Given the 
outcome of the previous round, their action is deterministic. Stochastic memory-1 
strategies have entries that can take arbitrary values between zero and one. For 
given m and n, there are finitely many pure memory-1 strategies, but infinitely 
many stochastic memory-1 strategies.

For our evolutionary analysis, the actions of the players may be subject to imple-
mentation errors. That is, if the set of possible contributions is = …X x x{ˆ , , ˆ }m1  and 
the player decides to choose the contribution x̂k, then the player will instead make 
a different contribution x̂l with probability ε/(m − 1). We refer to ε as the error 
rate of the players. For infinitely repeated games (with δ = 1), errors have the 
useful mathematical property that they make the game dynamics ergodic.  
As a result, the payoffs of the players will be independent of the contribution of the 
players in the very first round. In that case, we no longer need to specify a player’s 
initial contribution probability p0,k.

To model how players adapt their memory-1 strategies over time, we introduce 
an evolutionary process that we call ‘introspection dynamics’. For this process, we 
again consider n players who interact in an asymmetric public goods game. In each 
evolutionary time step, one of the players is chosen at random to revise their strat-
egy. To this end, this player i considers a randomly chosen alternative memory-1 
strategy. Suppose the original strategy yields payoff πi, whereas the alternative 
strategy yields payoff π�i (keeping the strategies of the other players fixed). Then 
player i switches to the alternative strategy with probability ρ = + π π− − −�(1 e )s ( ) 1

i i . 
The parameter s ≥ 0 represents the ‘strength of selection’. In the limiting case s → 0, 
the switching probability simplifies to ρ = 1/2, such that players adopt new strat-
egies at random. In the other limiting case s →  ∞, the player adopts the alternative 
strategy only if it yields at least the payoff of their original strategy. Iterating these 
updates over many time steps, we obtain an ergodic process on the space of  
all strategy choices of n players. In particular, we note that this process has no 
absorbing states. Even if a strategy profile is an equilibrium, there is always a  
positive chance that one of the players deviates owing to chance. For small n, the 
invariant distribution of the evolutionary process can be calculated exactly. For 
larger n, the invariant distribution can be approximated by simulations.
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Although memory-1 strategies have been routinely used to explore the evo-
lution of reciprocity41–63, it is natural to ask to what extent our results depend 
on the assumption of one-round memory. To explore this issue, we repeated all 
simulations with a more-general strategy space. We follow a previously published 
approach15,64,65. Players can choose among all strategies that can be represented by 
finite-state automata over the possible contributions X. Finite-state automata con-
tain the previously considered memory-1 strategies as a special case. However, they 
can also encode strategies with arbitrarily long memory (Extended Data Fig. 6a). 
For the evolutionary process, we assume that when a mutation occurs, four cases 
can occur: (i) the action chosen in a given state changes, (ii) a transition between 
two states changes, (iii) a new state is added to the finite-state automaton or (iv) an 
existing state is removed (Extended Data Fig. 6b). Simulations show that although 
absolute cooperation rates tend to be lower for this strategy space, all of our quali-
tative predictions remain unchanged (Extended Data Fig. 6c). See Supplementary 
Information for details.
Experimental methods. For our experiment, we have recruited 436 participants on 
Amazon Mechanical Turk to take part in an interactive game. The experiment was 
implemented with SoPHIE, an online platform that allows for real-time interaction 
between participants on Amazon Mechanical Turk10,66,67.

Participants were matched in pairs, which were randomly assigned to one 
of the five treatments. For each pair, one participant was randomly determined 
to adopt role A, whereas the other participant obtained role B. Players received 
US$1.00 for participating and could earn a bonus payment depending on their 
performance in the game. The tokens earned during the game were converted 
to US dollars at a rate of 800 tokens = US$1.00. The average bonus participants 
earned was US$1.70. After reading the experimental instructions (Supplementary 
Information), all participants had to pass a series of comprehension questions to 
ensure they understood the consequences of their decisions. All players were anon-
ymous. They were identified only by their player ID (A or B). Each game consisted 
of at least 20 rounds. Thereafter, the game was continued with a 50% probability 
after each round to avoid end-game effects.

The behavioural experiment is based on the public goods game with the payoff 
function given by equation (1). Before the first round, both players were assigned 
an endowment ei and a productivity value ri. The possible values of ei and ri are 
depicted in Fig. 4a. Once assigned, the ei and ri of each participant remained con-
stant throughout the experiment. Both players were informed about their own 
and the other player’s endowment and productivity. Each round, participants 
decided how much to contribute to the public good. They could contribute any  
integer between 0 and ei. A player’s absolute contribution was multiplied by the 
respective productivity value ri. All multiplied contributions were split equally 
among the players. Participants could not observe the other player’s contribution 
before making their own decision. However, after each round, participants learned 
each other’s contributions as well as the resulting payoffs for each player.

We analysed the data using two-tailed non-parametric tests, using pairs of 
two interacting players as our statistical unit. That is, for each quantity of inter-
est, we calculated the respective average value for each pair of players; then we 
compared this average value across treatments (Fig. 4) or within each treatment 
(Extended Data Figs. 7, 10). For comparisons between treatments, we use the 
Mann–Whitney U-test, whereas for comparisons within a treatment we use the 
Wilcoxon signed-rank test. In the main text and all figures, we report the outcome 
of each test directly, without correcting for multiple testing. However, all of our key 
findings continue to hold when we apply Bonferroni correction (Supplementary 
Information section 5.3).

The sample size was determined in advance based on similar past research10. 
The number of groups that completed the experiment were n1 = 42, n2 = 42, 
n3 = 40, n4 = 39, n5 = 40 for each of the five treatments, respectively. We find no 
significant differences between groups that completed the experiment and groups 
for which at least one player dropped out (Supplementary Information). For the 
statistical results presented in the main text, we used only the first 20 rounds of 
groups that completed the experiment. However, all of our conclusions remain 
valid if we include dropout groups by using multiple imputation (Supplementary 
Tables 1, 2).

In the Supplementary Information, we provide a full description of the meth-
ods used, and we report all test statistics and P values. Moreover, we discuss fur-
ther aspects of our empirical results, such as the game dynamics over time or the 
distribution of contributions (Extended Data Figs. 7–10).
Parameters used for figures. Figure 2a–c shows the region in the endowment 
space in which full cooperation is feasible. The respective calculations are provided 
in the Supplementary Information. The first two columns are based on the linear 
public goods game with parameters r1 = r2 = r3 = 2, δ = 0.8 (Fig. 2a) and r1 = 2.9, 
r2 = 1.5, r3 = 1.1, δ = 0.3 (Fig. 2b), respectively. The last column considers a non-
linear three-player public goods game with δ = 0.35 (Fig. 2c) and payoff function

∑= + + + −
≠ =

e xu e x e x e x x e( , ) 1
2

max( ) 1
3

(1 ) (5)i
j k j

j j k k
j

j j i i
, 1

3

This game represents a situation in which the two highest absolute contributions 
are of particular importance for the public good.

Figure 2d–f shows the outcome of evolutionary simulations. We systematically 
varied the players’ initial endowments, considering all endowment distributions 
(e1, e2, e3) for which ei ∈ {0.00, 0.05, …, 0.95, 1.00}. We used the same three payoff 
functions as in Fig. 2a–c, a continuation probability of δ = 1 and strong selection, 
s = 1,000. Players use stochastic memory-1 strategies without errors, and they 
either contribute their full endowment or nothing, X = {0, 1}. The evolutionary 
process was simulated for 106 elementary time steps.

Figure 3 shows simulations as we vary player 1’s endowment e1 ∈ {0.00, 0.05, …, 1.00}  
and e2 = 1 − e1. We use the same productivity values as in the experiment, 
r1 = r2 = 1.6 (Fig. 3a) or r1 = 1.9 and r2 = 1.3 (Fig. 3b), respectively, and consider 
the case δ = 1 and s = 1,000. To explore the robustness of our evolutionary findings, 
we consider three different scenarios, depending on the possible contribution levels 
in each round, X1 = {0, 1}, X2 = {0, 1/2, 1} and X3 = {0, 1/3, 2/3, 1}. Players can 
choose among all pure memory-1 strategies, subject to an error rate of ε = 0.001. 
For each value of e1, simulations were run for at least 2 × 106 time steps for each 
data point.

Extended Data Figures 1–4 show further evolutionary results for the pairwise 
game considered in the behavioural experiment. For these figures, we assume 
that players choose only among pure memory-1 strategies with errors, and that 
they contribute only their full endowment or nothing in any given round. As a 
consequence, there are 16 possible strategies p = (pCC, pCD, pDC, pDD). For example, 
the strategy of unconditional defectors is given by ALLD = (0, 0, 0, 0), whereas 
WSLS3 takes the form WSLS = (1, 0, 0, 1). For these 16 strategies, we can compute 
numerically exact strategy abundances (Supplementary Information). Except for 
the parameters explicitly varied, all payoff parameters are the same as in the five 
experimental treatments, using a continuation probability δ = 1, selection strength 
s = 1,000 and error rate ε = 0.05.

Extended Data Figure 5 considers a public goods game in which players have 
the same productivity, but they yield different benefits from the public goods. The 
payoff function is given by

∑= + −e xu q r x e x e( , ) (1 ) (6)i i
j

j j i i

Here, r is the common productivity of the players and qi ∈ [0, 1] is player i’s share 
of the public good. The game is a social dilemma only for certain values of qi 
(see Supplementary Information for details). We show numerically exact results for 
pure memory-1 strategies with errors, and possible contribution levels X = {0, 1}. 
We use the parameters r = 1.6, s = 1,000 and ε = 0.05.

For Extended Data Fig. 6, we repeat the simulations shown in Fig. 3 for the case 
in which players can choose their strategies from the set of finite-state automata. 
We use the same baseline parameters as in Fig. 3. However, simulations are run 
for longer (5 × 106 time steps) and the error rate has been set to ε = 0 to allow for 
neutral invasions as previously described15,64,65.

The results of our behavioural experiment are shown in Fig. 4 and Extended 
Data Figs. 7–10. As auxiliary information, we also provide error bars that indi-
cate the respective 95% confidence intervals in Fig. 4 and Extended Data Figs. 7, 
10. For the theoretical predictions, we used simulations for stochastic memory-1 
strategies and possible contributions x ∈ {0, 1}. As parameters, we chose s = 1,000 
and ε = 0.001. As indicated in Fig. 3 and Extended Data Fig. 4, our qualitative 
predictions are independent of the evolutionary parameters that we use, and inde-
pendent of the possible contribution levels. A detailed description of the methods 
applied and of the depicted results is provided in the Supplementary Information.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The experimental data on which Fig. 4 and Extended Data Figs. 7–10 are based, 
as well as the STATA and R files that contain our statistical analysis, are available 
at https://osf.io/92jyw/.

Code availability
All evolutionary simulations and numerical calculations have been performed 
with MATLAB R2014A. We provide the respective scripts in the Supplementary 
Information. These scripts can be used to compute the payoffs of the players, to 
simulate the introspection dynamics and to numerically compute the expected 
dynamics.
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Extended Data Fig. 1 | Dynamics of cooperation among unequals.  
In Figs. 2, 3, we show how often players cooperate on average. a–e, Here 
we depict evolutionary trajectories over time, for the five treatments 
considered in our experiment. We assume that players can choose among 
the 16 pure memory-1 strategies. Top, five single runs of the introspection 
dynamics. Bottom, expected trajectories of the introspection dynamics, 

which can be derived explicitly (Supplementary Information section 4.3). 
These expected trajectories represent the cooperation rate over time as 
we average over many realizations of the process. We observe substantial 
cooperation in three of the five cases: in the treatments with full equality 
(a), productivity inequality (c) and aligned inequality (d).
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Extended Data Fig. 2 | Under endowment inequality and misaligned 
inequality, players fail to coordinate on WSLS. Here, we consider the 
long-run dynamics of the games considered in Extended Data Fig. 1. For 
each pair (p1, p2) of pure memory-1 strategies, we can compute how often 
the respective strategy pair is played according to the invariant distribution 
of the evolutionary process. a, c, d, Under full equality, productivity 
inequality or aligned inequality, players typically coordinate on a WSLS 
equilibrium, as indicated by the coloured square in the centre of the 

dotted lines. b, e, Under endowment inequality or misaligned inequality, 
players fail to coordinate on a unique equilibrium. Instead, most of the 
evolving strategies prescribe to defect against the opponent. We note 
that in those treatments in which players have different endowments, the 
low-endowment player faces a reduced strength of selection (because the 
endowment of this player is reduced from 0.5 to 0.25). As a consequence, 
the marginal distribution of the low-endowment player in b, e is more 
uniform than the marginal distribution of the high-endowment player.
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Extended Data Fig. 3 | An equilibrium analysis explains why 
cooperation emerges in only three of the five treatments. Using the 
same two-player setup as in Extended Data Figs. 1, 2, we explored how 
much players contribute on average when we simultaneously vary the 
endowment (x axis) as well as their productivity r1 of player 1. For each 
parameter combination, we record the total contributions of the player 
and how often they use WSLS according to the invariant distribution of 
the evolutionary process (indicated in shades of grey). We compare these 
evolutionary results with the region for which WSLS is an equilibrium 

(indicated by dashed lines) and with the region for which Grim is an 
equilibrium (dotted lines); see Supplementary Information for details. 
The coloured symbols indicate which parameter combinations have been 
used for the experimental treatments. a–c, For equal productivities, the 
full equality treatment (1) is in the region in which cooperation can evolve, 
whereas the unequal endowment treatment (2) is not. d–f, For unequal 
productivities, only the misaligned inequality treatment (5) is outside the 
region in which cooperation can evolve.
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Extended Data Fig. 4 | Robustness of evolutionary results with respect 
to parameter changes. a–c, To explore the robustness of our theoretical 
predictions, we varied the expected number of rounds played between two 
players (a), the selection strength (b) and the rate at which players commit 

an implementation error (c). Although the quantitative results depend on 
these parameters, the qualitative ordering of the five treatments is the same 
across all considered scenarios. Except for the parameters explicitly varied 
on the x axis, all parameters are the same as in Extended Data Figs. 1, 2.
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Extended Data Fig. 5 | Cooperation in an asymmetric game in which 
players derive different payoffs from the public good. Instead of 
considering players who differ in their productivity, here we consider 
an asymmetric two-player public goods game in which players differ in 
the share of the public goods that they get (the exact model is specified 
in the Supplementary Information). We vary two parameters, player 1’s 
share of the initial endowment, and player 1’s share of the public good. 
For each parameter combination, we record the average contributions of 

the players over the course of the evolutionary process (indicated in the 
grey colour). For games in which players get different shares of the public 
good, we note that the game is a social dilemma only if neither player’s 
share is too large (otherwise that player would always have an incentive to 
cooperate, no matter what the co-player does). However, if both players get 
an intermediate share of the public good, full cooperation can again evolve 
when WSLS is an equilibrium.
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Extended Data Fig. 6 | Evolution of cooperation among players using 
finite-state automata. a, Here we represent finite-state automata for a 
game between two players in which players can either contribute their 
full endowment (C) or nothing (D). A finite-state automaton consists of 
three components: a set of states (represented by the large circles), the 
action played in each state (represented by the colour of the circle and 
the letters ‘C’ and ‘D’) and a transition rule (represented by arrows; the 
associated letter shows for which of the co-player’s actions the respective 
arrow is taken). Finite-state automata are able to implement all memory-1 

strategies. In addition, they can encode strategies that depend on 
arbitrarily long sequences of past actions. b, To model evolution among 
finite-state automata, we use a previously published mutation scheme15,64. 
When a mutation occurs, the direction of a random arrow is changed, the 
action in a randomly chosen state is changed, a random state is removed or 
a state is added. c, Using this more general strategy space, we repeated the 
simulations in Fig. 3. Although overall cooperation rates are slightly lower, 
all qualitative results remain unchanged.
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Extended Data Fig. 7 | Contributions and payoffs of the two players 
across treatments. For each of the five experimental treatments, 
we compare the average contributions and the average payoff of the 
two players. Grey bars indicate the theoretical prediction based on 
evolutionary simulations. Coloured bars depict the outcome of the 
experiment. Error bars represent the respective 95% confidence intervals. 
Asterisks indicate statistical differences based on two-tailed Wilcoxon 
signed-rank tests. The number of groups per treatment is 42, 42, 40, 
39, 40 for treatments 1–5, respectively. a, b, Under full equality, the 
two players contribute a similar share of their endowment and they 
obtain approximately equal payoffs. Under endowment inequality, the 

cooperation rates of both players are reduced, with the contributions of 
the high-endowment player (player 1) being significantly lower than the 
contributions of player 2. c, d, For productivity inequality and aligned 
inequality, we find no differences in the relative contributions of the 
players. For misaligned inequality, the relative contributions of the better-
endowed but less-productive player 2 are considerably reduced. For both 
aligned and misaligned inequality, the two players earn significantly 
different payoffs. Nevertheless, the player with the lower payoff in the 
aligned inequality treatment derives a similar payoff as the two player 
types under productivity inequality. For details, see Supplementary 
Information.



Letter reSeArCH

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 e
nd

ow
m

en
t

co
nt

rib
ut

ed

Round

Player 1

Player 2

a Full Equality
e

1
 = e

2
 and r

1
 = r

2

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Round

Player 1

Player 2

b Endowment inequality
e

1
 > e

2
 and r

1
 = r

2

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Round

Player 1

Player 2

c Productivity inequality
e

1
 = e

2
 and r

1
 > r

2

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Round

Player 1

Player 2

d Aligned inequality
e

1
 > e

2
 and r

1
 > r

2

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Round

Player 1

Player 2

e Misaligned inequality
e

1
 < e

2
 and r

1
 > r

2

Extended Data Fig. 8 | Experimental dynamics of cooperation.  
a–e, For each of the five treatments, we show the average contributions 
of the players over the course of the experiment. In all treatments the 

contributions are relatively stable over time, except for a significant 
negative trend in the treatment with endowment inequality  
(b) (see Supplementary Information for details).
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Extended Data Fig. 9 | Individual cooperation decisions across the five 
treatments. a–e, To analyse the joint contribution decisions of the two 
players, we plot here how often player 1 has contributed y1 tokens while 
player 2 has contributed y2 tokens, for each pair (y1, y2). a, c, d, Under full 
equality (a), productivity inequality (c) and aligned inequality (d), most 
individual decisions are mutually cooperative. b, e, By contrast, under 
endowment inequality (b) and misaligned inequality (e), contributions are 

more scattered. e, Moreover, in the treatment with misaligned inequality, 
we observe that a substantial fraction of high-endowment players only 
matches the absolute contributions of the other player. For example, 
in 12.4% of the rounds, the low-endowment player contributes all 25 
tokens at their disposal, and the high-endowment player contributes the 
same absolute amount of tokens (corresponding to 1/3 of this player’s 
endowment).
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Extended Data Fig. 10 | Abundance of reciprocal behaviours across 
the five treatments. a, b, To explore whether subjects apply reciprocal 
strategies, we show the fraction of rounds in which subjects match or 
exceed their co-player’s relative contribution from the previous round. 
That is, if player 1 has contributed x% of their endowment in round t, we 
record whether or not player 2 contributes at least x% of their endowment 
in round t + 1. Note that reciprocal strategies do not automatically 
yield high cooperation rates, because mutually defecting players are 

also reciprocal. Error bars represent the respective confidence intervals. 
Statistically significant differences were analysed using a two-tailed 
Wilcoxon signed-rank test. ***P < 0.001. Sample sizes are 42, 42, 40,  
39, 40 for the treatments 1–5, respectively. Generally, we find high levels 
of reciprocity; only in the treatment with misaligned inequality does the 
high-endowment low-productivity player 2 exhibit a strongly reduced 
reciprocity rate. See Supplementary Information for details.



1

nature research  |  reporting sum
m

ary
April 2018

Corresponding author(s): Martin A. Nowak

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
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Data collection All evolutionary simulations were performed using Matlab R2014A.  
The online experiment was implemented with SoPHIE, an online platform that allows for real-time interaction between Amazon 
Mechanical Turk (AMT) participants.

Data analysis To analyze the experimental data, we used Stata SE 15.1, R 1.1.453, and Microsoft Excel 14.7.7.
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Ecological, evolutionary & environmental sciences study design
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Study description Participants were matched in pairs, which were assigned to one of five conditions (as described in Fig. 4a). The conditions varied 
across two dimensions: equality or inequality in endowments and equality or inequality in productivities. The five conditions are (1) 
Full equality in both dimensions, (2) Endowment inequality only, (3) Productivity inequality only, (4) Aligned inequality (the more 
productive player has a higher endowment), (5) Misaligned inequality (the more productive player has a lower endowment). Each 
pair of players interacted over at least 20 rounds. After that, the game was repeated with 50% probability after each round. See SI 
Section 5.1 for details. 
Because of the repeated interaction between two players, the data is structured hierarchically. For the main analysis, we averaged 
the two players' contributions at the round level and subsequently at the group level. The experiment was conducted exactly once. 
The number of participants for each condition is described below.

Research sample We recruited N = 436 participants on Amazon Mechanical Turk (AMT). 

Sampling strategy The sample size was determined in advance based on similar past research (e.g. Hauser et al, Behavioral Public Policy, 2019). In total, 
we recruited 88, 88, 86, 86, and 88 subjects to participate in the five conditions, respectively. The number of subjects that completed 
the experiment was 84, 84, 80, 78, and 80, respectively. See SI Section 5 for details.  
The number of groups sampled has not been based on a formal power analysis. However, we chose our sample size such that we 
have a comparably large number of groups per condition, relative to previous studies on direct reciprocity (e.g. Wedekind and 
Milinski, PNAS 1996; Milinski and Wedekind, PNAS 1998; Dal Bo and Frechette, Am Econ Rev 2011; Fudenberg et al, Am Econ Rev 
2012; Hilbe et al, Nature Communications 2015).

Data collection The data was collected using SoPHIE, an online experimental software. Once the experiment is programmed and launched, data 
collection proceeds automatically. Once the data collection is completed, we downloaded the data for analysis offline.

Timing and spatial scale Our experiments were conducted across 10 experimental sessions on AMT in October 2015.

Data exclusions As planned from the outset, we only statistically analyzed the first twenty rounds of each game, because this was the maximum 
number of rounds all groups had in common.  
Moreover, we excluded groups in which at least one participant dropped out half-way through the game. However, all our results are 
unchanged when we use imputed values for dropout groups. See SI Section 5.3 for details.

Reproducibility The experiment was conducted only once; however, our sample size is sufficiently large (and perhaps larger then usual) for 
experimental games of this nature.

Randomization Randomization occurred at the session level.

Blinding Blinding was not necessary because the experimental software took care of randomization and data collection automatically.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics Our study population is drawn from the general Amazon Mechanical Turk (see above) pool, which has been described in detail in 
other research (e.g. see Buhrmester et al. 2011)

Recruitment Participants were recruited on AMT through a standard procedure by describing the nature of this research, the length of the 
task, the payoff for participating, and the potential for an additional bonus payment depending on decisions made during the 
study. For details, see SI Section 5.1.
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