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Abstract

Human interactions can take the form of social dilemmas: collectively, people fare best if

all cooperate but each individual is tempted to free ride. Social dilemmas can be resolved

when individuals interact repeatedly. Repetition allows them to adopt reciprocal strate-

gies which incentivize cooperation. The most basic model for direct reciprocity is the

repeated donation game, a variant of the prisoner’s dilemma. Two players interact over

many rounds; in each round they decide whether to cooperate or to defect. Strategies

take into account the history of the play. Memory-one strategies depend only on the pre-

vious round. Even though they are among the most elementary strategies of direct reci-

procity, their evolutionary dynamics has been difficult to study analytically. As a result,

much previous work has relied on simulations. Here, we derive and analyze their adap-

tive dynamics. We show that the four-dimensional space of memory-one strategies has

an invariant three-dimensional subspace, generated by the memory-one counting strate-

gies. Counting strategies record how many players cooperated in the previous round,

without considering who cooperated. We give a partial characterization of adaptive

dynamics for memory-one strategies and a full characterization for memory-one counting

strategies.

Author summary

Direct reciprocity is a mechanism for evolution of cooperation based on the repeated

interaction of the same players. In the most basic setting, we consider a game between two

players and in each round they choose between cooperation and defection. Hence, there

are four possible outcomes: (i) both cooperate; (ii) I cooperate, you defect; (ii) I defect,

you cooperate; (iv) both defect. A memory-one strategy for playing this game is character-

ized by four quantities which specify the probabilities to cooperate in the next round

depending on the outcome of the current round. We study evolutionary dynamics in the

space of all memory-one strategies. We assume that mutant strategies are generated in
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close proximity to the existing strategies, and therefore we can use the framework of adap-

tive dynamics, which is deterministic.

Introduction

Evolution of cooperation is of considerable interest, because it demonstrates that natural selec-

tion does not only lead to selfish, brutish behavior red in tooth and claw [1, 2]. Yet in absence

of a mechanism for its evolution, natural selection opposes cooperation. A mechanism for evo-

lution of cooperation is an interaction structure that allows natural selection to favor coopera-

tion over defection [3]. Direct reciprocity is one such mechanism [4–8]. This mechanism is

based on repeated interactions among the same individuals. In a repeated interaction, individ-

uals can condition their decisions on their co-player’s previous behavior. By being more coop-

erative towards other cooperators, they can generate a favorable social environment for the

evolution of cooperation.

The most basic model to illustrate reciprocity is the repeated donation game [1]. This game

takes place among two players, who interact for many rounds. Each round, players indepen-

dently decide whether to cooperate or defect. Cooperation implies a cost c for the donor and

generates a benefit b for the recipient. Defection implies no cost and confers no benefit. Both

players decide simultaneously. If they both cooperate, each of them gets payoff b − c. If both

players defect, each of them gets payoff 0. If one player cooperates while the other defects, the

cooperator’s payoff is −c while the defector’s is b. The donation game is a special case of a pris-

oner’s dilemma if b> c> 0, which is normally assumed.

If the donation game is played for a single round, players can only choose between the two

possible strategies of cooperation and defection. Based on the game’s payoffs, each player pre-

fers to defect, creating the dilemma. In contrast, in the repeated donation game, infinitely

many strategies are available. For example, players may choose to cooperate if and only if their

co-player cooperated in the previous round. This is the well-known strategy Tit-for-tat [5, 9].

Alternatively, players may wish to occasionally forgive a defecting opponent, as captured by

Generous Tit-for-tat [10, 11]. Against each of these strategies, unconditional defection is no

longer the best response. Instead, mutual cooperation is now in the co-player’s best interest.

During the past decades, there has been a considerable effort to explore whether condition-

ally cooperative behaviors would emerge naturally (e.g., [12–24]). To this end, researchers

study the dynamics in evolving populations, in which strategies are transmitted either by bio-

logical or cultural evolution (by inheritance or imitation). For such an analysis, it is useful to

restrict the space of strategies that individuals can choose from. The strategy space ought to be

small enough for a systematic analysis, yet large enough to capture the most interesting

behaviors.

One frequently used subspace is the set of memory-one strategies [24–32]. Players with

memory-one strategies respond to the outcome of the previous round only. Such strategies

can be written as a vector p = (pCC, pCD, pDC, pDD) in the 4-dimensional cube [0, 1]4. Each

entry pij reflects the player’s conditional cooperation probability, depending on the four possi-

ble outcomes of the previous round, CC, CD, DC, DD (the first letter is the focal player’s action,

the second letter is the co-player’s action). Despite their simplicity, memory-one strategies can

capture many different behavioral archetypes. They include always defect, ALLD = (0, 0, 0, 0),

always cooperate, ALLC = (1, 1, 1, 1), Tit-for-tat, TFT = (1, 0, 1, 0) [5, 9], Generous Tit-for-tat,

GTFT = (1, x, 1, x) with 0< x< 1 [10, 11], and Win-stay, Lose-shift, WSLS = (1, 0, 0, 1) [25,
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33]. The sixteen corner points of the cube are the pure strategies. The interior of the cube are

stochastic strategies. The center of the cube is the random strategy (1/2, 1/2, 1/2, 1/2) [5].

Conditionally cooperative strategies have been of particular interest in the study of human

behavior. For example, there is evidence for the intuitive expectation that people tend to coop-

erate more if their co-player was cooperative in the past, or if they expect their co-player to

cooperate in the future [34–36]. The concept of conditionally cooperative strategies is quite

broad and includes strategies such as Tit-for-two-tats, which cannot be realized as a memory-

one strategy. In this paper we consider only conditionally cooperative strategies which can be

realized as memory-one strategies, such as TFT, GTFT, and nearby strategies. However, it is

hoped that techniques similar to the ones used in this paper can be used to study more general

strategy spaces.

When both players adopt memory-one strategies, there is an explicit formula to derive their

average payoffs (as described in the next section). Based on this formula, it is possible to char-

acterize all Nash equilibria among the memory-one strategies [37–42]. In general, however the

payoff formula yields a complex expression in the players’ conditional cooperation probabili-

ties pij. As a result, it is difficult to characterize the dynamics of evolving populations, in which

players switch strategies depending on the payoffs they yield. Most previous work had to resort

to individual-based simulations. Only in special cases, an analytical description has been feasi-

ble (for example, based on differential equations). One special case arises when individuals are

restricted to use reactive strategies [43–48]. Reactive strategies only depend on the co-player’s

previous move. Within the memory-one strategies, they correspond to the 2-dimensional sub-

set with pCC = pDC and pCD = pDD. In addition, there has been work on the replicator dynamics

among three strategies [15, 49], and on the dynamics among transformed memory-one strate-

gies [50, 51]. Here, we wish to explore the dynamics among memory-one strategies directly,

using adaptive dynamics [52, 53].

We begin by describing two interesting mathematical results. First, we show that under

adaptive dynamics, the 4-dimensional space of memory-one strategies contains an invariant

3-dimensional subset. This subset comprises all “counting strategies”. These strategies only

depend on the number of cooperators in the previous round. They correspond to memory-

one strategies with pCD = pDC. Second, we find that for the donation game, the adaptive

dynamics exhibits an interesting symmetry between orbits forward-in-time and backward-in-

time. We use these mathematical results to partially characterize the adaptive dynamics among

memory-one strategies, and to fully characterize the dynamics among memory-one counting

strategies.

Model

We study the infinitely repeated donation game between two players. Each round, each player

has the option to cooperate (C) or to defect (D). Players make their choices independently, not

knowing their co-player’s choice in that round. Payoffs in each round are given by the matrix

C D
C

D

� b � c

b

� c

0

�
ð1Þ

The entries correspond to the payoff of the row-player, with b and c being the benefit and

cost of cooperation, respectively. We assume b> c> 0 throughout. The above payoff matrix is
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a special case of a symmetric 2 × 2 game with matrix

C D
C

D

� R

T

S

P

�
ð2Þ

The payoff matrix (1) of the donation game satisfies the typical inequalities of a prisoner’s

dilemma, T> R> P> S and 2R> T + S. Moreover, it satisfies the condition of ‘equal gains

from switching’,

RþP¼TþS ð3Þ

This condition ensures that if players interact repeatedly, their overall payoffs only depend

on how often each player cooperates, independent of the timing of cooperation.

In the following we focus on repeated games among players with memory-one strategies.

Each player’s decision is determined by a four-tuple p = (pCC, pCD, pDC, pDD). Depending on

the outcome of the previous round, CC, CD, DC, or DD, the focal player responds by cooperat-

ing with probability pCC, pCD, pDC, or pDD, respectively.

Strategies with large pCC exhibit a high frequency of mutual cooperation and will receive

relatively large payoffs in the donation game. We note that in games with other payoff matrices

2, it may be beneficial in the long run for players to take turns cooperating with each other

while the other defects. This behavior is called ST-reciprocity, because players will alternately

receive payoffs S and T rather than R in every round. ST-reciprocity becomes superior to R-

reciprocity in terms of payoffs when S + T> 2R, and it can be achieved by memory-one strate-

gies such as (p1, 0, 1, p4) with small but positive p1, p4. For an account of ST- and R-reciprocity

in other 2 × 2 games such as the Chicken or Snowdrift game, see [54, 55]. For the donation

game, where S + T = R< 2R, we are primarily interested in the evolution of mutual coopera-

tion CC.

We refer to a memory-one strategy as a counting strategy if it satisfies pCD = pDC. A count-

ing strategy only reacts to the number of cooperators in the previous round. If both players

cooperated in the previous round, they cooperate with probability pCC. If exactly one of the

players cooperated, they cooperate with probability pCD = pDC, irrespective of whether the out-

come was CD or DC. If no one cooperated, the cooperation probability is pDD. Memory-one

counting strategies include all unconditional strategies (such as ALLC and ALLD), as well as

the strategies GRIM = (1, 0, 0, 0) and WSLS = (1, 0, 0, 1).

If the two players employ memory-one strategies p = (pCC, pCD, pDC, pDD) and

p0 ¼ðp0CC; p
0
CD; p

0
DC; p

0
DDÞ, then their behavior generates a Markov chain with transition matrix

M ¼

pCC p0CC pCCð1� p0CCÞ ð1� pCCÞp0CC ð1� pCCÞð1� p0CCÞ

pCD p0DC pCDð1� p0DCÞ ð1� pCDÞp
0
DC ð1� pCDÞð1� p0DCÞ

pDC p0CD pDCð1� p0CDÞ ð1� pDCÞp
0
CD ð1� pDCÞð1� p0CDÞ

pDD p0DD pDDð1� p0DDÞ ð1� pDDÞp
0
DD ð1� pDDÞð1� p0DDÞ

0

B
B
B
B
@

1

C
C
C
C
A

ð4Þ

That is, if s(n) = (sCC(n), sCD(n), sDC(n), sDD(n)), and sij(n) is the probability that the p-

player chooses i and the p0-player chooses j in round n, then s(n + 1) = s(n)M. For

p, p0 2 (0, 1)4, the Markov chain has a unique invariant distribution v = (vCC, vCD, vDC, vDD).

This distribution v corresponds to the left eigenvector of M with respect to the eigenvalue 1,

normalized such that the entries of v sum up to one. The entries of v can be interpreted as the

average frequency of the four possible outcomes over the course of the game. Therefore we can
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define the repeated-game payoff of the p-player as

Aðp; p0Þ ¼ RvCC þ SvCD þ TvDC þ PvDD ð5Þ

For a more explicit representation of the players’ payoffs, one can use the determinant for-

mula by [56], which is shown in Methods.

To explore how players adapt their strategies over time, we use adaptive dynamics [52, 53].

Adaptive dynamics is a method to study deterministic evolutionary dynamics in a continuous

strategy space. The idea is that the population is (mostly) homogeneous at any given time.

Mutations generate a small ensemble of possible invaders, which are very close to the resident

in strategy space. These invaders can take over the population if they receive a higher payoff

against the resident than the resident achieves against itself. In the limit of infinitesimally small

variation between resident and invader, we obtain an ordinary differential equation. For mem-

ory-one strategies this differential equation takes the form

_pij ¼
@Aðp; p0Þ
@pij

�
�
�
�
p¼p0

with i; j2fC;Dg ð6Þ

That is, populations evolve towards the direction of the payoff gradient. We derive an

explicit representation of this differential equation in Methods. The resulting expression

defines a flow on the cube [0, 1]4. Our aim is to understand the properties of this flow.

Results

Structural properties of adaptive dynamics

We begin by describing two general properties of adaptive dynamics in the cube [0, 1]4 of

memory-one strategies. The first property concerns an invariance result. As we prove in Meth-

ods, the subspace of counting strategies is left invariant under adaptive dynamics. That is, if

the initial population p(0) satisfies pCD(0) = pDC(0) and p(t) is a solution of the dynamic (6),

then pCD(t) = pDC(t) for all times t. Therefore, if initially all population members only care

about the number of cooperators, then the same is true for all future population members.

This result does not require the specific payoffs of the donation game. Instead it is true for all

symmetric 2 × 2 games. The result is useful because it allows us to decompose the space of

memory-one strategies into three invariant sets: the set of strategies with pCD> pDC, with

pCD = pDC, and with pCD< pDC. Each of these invariant subsets can be studied in isolation. In a

subsequent section, we provide such an analysis for the counting strategies (with pCD = pDC)

specifically.

As a second property, we observe an interesting symmetry between different orbits of adap-

tive dynamics. Specifically, if (pCC, pCD, pDC, pDD)(t) is a solution to (6) on some interval t 2
(a , b), then so is (1 − pDD, 1 − pDC, 1 − pCD, 1 − pCC)(−t) on the interval t 2 (−b, −a). This prop-

erty implies that for every orbit forward in time, there is an associated orbit backward in time

that exhibits the same dynamics. This result is specific to the donation games (or more pre-

cisely, to games with equal gains from switching). The formal proof of this symmetry is in

Methods. In the following we provide an intuitive argument. To this end, consider the follow-

ing series of transformations applied to the payoff matrix of a 2 × 2 game with equal gains
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from switching (R + P = S + T):

C Dµ ¶
C R S
D T P

negating
payoff¡¡¡¡¡¡¡¡!

C Dµ ¶
C ¡R ¡S
D ¡T ¡P

adding a
constant¡¡¡¡¡¡¡¡!

C D ¶µ
C ¡R+(R+P ) ¡S+(S+T )
D ¡T+(S+T ) ¡P+(R+P ) =

C Dµ ¶
C P T
D S R

exchanging
C and D¡¡¡¡¡¡¡¡!

C Dµ ¶
C R S
D T P

ð7Þ

Notice that we started and ended at the same game; this property is equivalent to equal

gains from switching. But now it is easy to see that solutions to the associated ordinary differ-

ential equation transform correspondingly as follows,

ðpCC; pCD; pDC; pDDÞðtÞ ��������!

negating

payoff
ðpCC; pCD; pDC; pDDÞð� tÞ

��������!

adding a

constant
ðpCC; pCD; pDC; pDDÞð� tÞ

��������!

exchanging

C and D
ð1� pDD; 1� pDC; 1� pCD; 1� pCCÞð� tÞ

ð8Þ

The upshot of this duality is that solutions to adaptive dynamics come in related pairs. We

will see expressions of this duality in several of the figures below.

Adaptive dynamics of memory-one strategies

In the following, we aim to get a more qualitative understanding of the adaptive dynamics. To

this end, we first examine which combinations of signs can appear in the components of the

vector field ð _pCC; _pCD; _pDC; _pDDÞ. For example, it turns out that if pCC is decreasing, pDC must be

decreasing as well. Similarly, if pDD is decreasing, then so is pCD. For c/b = 0.1, the results of

this sign analysis are shown in Fig 1. There we show a 9 × 9 × 9 × 9 evenly spaced grid on

[0, 1]4. Each point is colored according to the signs of the components of

_p ¼ ð _pCC; _pCD; _pCD; _pDDÞ at that point. Therefore, the figure provides information about the

direction of adaptive dynamics at each point. We observe that the combinations abcd of signs

come in pairs of the form abcd, dcba. For example, there are exactly as many points having

signs ‘+---’ as ‘---+’. The sets of points in each pair are related to each other by reflection

about the diagonal in the figure. If abcd are the signs at (x, y, z, w) 2 (0, 1)4, then dcba are the

signs at (1 − w, 1 − z, 1 − y, 1 − x). This is, of course, a consequence of the symmetry described

in the previous section.

In a next step, we aim to find all interior fixed (critical) points of adaptive dynamics. As we

show in Methods, these turn out to be the solutions to the linear system

bðpCC � pCDÞ þ cð� 1þpCC � pDCÞ ¼ 0 and pCCþpDD ¼ pCDþpDC ð9Þ
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In particular, the set of interior critical points forms a two-dimensional plane within the

four-dimensional cube. As we will show in Methods, (9) implies certain bounds on pCC and

pDD among the interior critical points: pCC> c/b and pDD< 1−c/b.

By definition, critical points satisfy a local condition, _pij¼0 for all i, j 2 {C, D}. However, it

turns out that the critical points identified above have a shared global property. The points that

satisfy (9) coincide with the equalizer strategies that have been described earlier [56, 57]. An

equalizer is a strategy p such that A(p0, p) is a constant, irrespective of p0. Every such strategy

must be a critical point of adaptive dynamics. Our result shows that also the converse is true.

Every interior critical point of the system (6) needs to be an equalizer.

Fig 1. Local adaptive dynamics for memory-one strategies. For a 9 × 9 × 9 × 9-grid (= 6561 points) we show the direction of change in terms of the

sign of each component of ð _pCC; _pCD; _pDC; _pDDÞ as given by Eq (6). The possibilities are shown on the right. We observe that for 1424 points all four

components are positive, ++++. For 3269 points all four components are negative, - - --. Seven combinations do not occur. These combinations fall

into one or both of the following categories: (i) _pCC is negative and _pDC is positive, and (ii) _pDD is negative and _pCD is positive. Both combinations are

forbidden. Because of the symmetry (8) there are three pairs where each combination occurs as often as its partner. One such pair is ++-+ and +-++

(each occurring 353 times). The configuration +- -+ is its own mirror image and therefore a singleton (occurring 536 times). The reason for the

symmetry in the plot is explained in the main text. Let σ: [0, 1]4! [0, 1]4 be defined by σ(pCC, pCD, pDC, pDD) = (1−pDD, 1−pDC, 1−pCD, 1−pCC). If abcd
are the signs at p, then dcba are the signs at σ(p). σ acts by reflection about the dotted diagonal line shown. Finally, eight points are critical points with

ð _pCC; _pCD; _pDC; _pDDÞ ¼ ð0; 0; 0; 0Þ. Two points are zero in one but not all of the four components. The graph is created for c = 0.1.

https://doi.org/10.1371/journal.pcbi.1010987.g001
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We can also examine what happens on the boundary of the strategy space. For our analysis,

we define the boundary Bð½0; 1�4Þ to be all points p 2 [0, 1]4 with exactly one entry pij 2 {0, 1}.

That is, we exclude corner and edge points. What remains is a set of eight 3-dimensional

cubes. We call a point p2Bð½0; 1�4Þ saturated if pij = 0 implies _pij�0 and pij = 1 implies _pij�0.

A point is called strictly saturated if the above inequalities are strict. A point is unsaturated if it

is not saturated. Orbits that start at an unsaturated point move into the interior of the strategy

space. Conversely, every strictly saturated point is the limit, forward in time, of some trajectory

in the interior.

For memory-one strategies, all eight boundary faces contain both saturated and unsaturated

points for some values of 0< c< b (Fig 2). In the following, we discuss in more detail the

boundary face for which mutual cooperation is absorbing (that is, the boundary face with

pCC = 1). On this boundary face, the population obtains the socially optimal payoff of b − c,
irrespective of the specific values of pCD, pDC, pDD. As a result, we show in Methods that the

time derivatives with respect to these components vanish, _pCD¼ _pDC¼ _pDD¼0. The saturated

points on the face pCC = 1 are exactly those that satisfy _pCC�0, which yields the condition

ð1� pCDÞð1 � ð1� pDCÞðpCD � pDDÞ � ðpDC � pDDÞ
2
Þ

ð1� pCDÞ
2
ð1� pDCÞ þ pDCpDDð2� pDDÞ þ ð1� pCDÞð1� pDCÞðpDCþpDDÞ

�
c
b

ð10Þ

This set of saturated points contains all cooperative memory-one Nash equilibria, which

has been characterized by [38] to be the set of all strategies p that satisfy pCC = 1 and

1� pCD
pDD

�
c

b � c
and

1 � pCD
pDC

�
c
b ð11Þ

We note, that the conditions (11) are more strict than the conditions (10). Put another way,

a boundary point can be a local maximum of the payoff function against itself without being a

global maximum.

In a similar way, one can also characterize the saturated points on the boundary face with

pDD = 0, where mutual defection is absorbing. We depict the set of saturated points on this

face in the bottom row of Fig 2, together with the previously discussed set of saturated points

with pCC = 1 in the top row. As the figure suggests, the two sets exactly complement each

other. For every point that is strictly saturated on the boundary face pCC = 1 there is a corre-

sponding point on the face pDD = 0 that is unsaturated. Of course, that correspondence is

again a consequence of the symmetry described earlier.

After describing the critical points in the interior, and the saturated points on the boundary,

we explore the ‘typical’ behavior of interior trajectories. To this end, we record the end behav-

ior of solutions p(t) to Eq (6) beginning at various initial conditions p(0). Dynamics are

assumed to cease at the boundary of the strategy space. This behavior can be numerically cal-

culated. The results, for a 9 × 9 × 9 × 9 grid of initial conditions and cost-to-benefit ratio

c/b = 0.1, are shown in Fig 3. There are 6561 initial conditions. Out of those, 1835 points are

observed to end at full cooperation (pCC = 1), 1375 points at full defection (pDD = 0), 2964

points at other places on the boundary, and 387 at interior critical points (equalizers). Unlike

in Fig 1, we do not observe the symmetry described in Eqs (7 and 8). The choice of depicting

the forward direction of time breaks the symmetry.
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Fig 2. Saturated points on the boundary of memory-one strategies. The boundary of the set of memory-one

strategies consists of eight three-dimensional faces with pij = 0 or pij = 1 for exactly one pair of i, j 2 {C, D}. We omit

points (pCC, pCD, pDC, pDD) for which more than one pij is 0 or 1. Thus, the eight boundary faces do not intersect. A

point p on the boundary is saturated if the payoff gradient does not point into the interior of the cube. We show the set

of saturated points on all eight boundary faces. Because of the symmetry described by Eqs (7) and (8), these eight sets

of points fit together in four complementary pairs, like the curved pieces of a three-dimensional puzzle. The boundary

face pij = 0 is paired with the face p �i �j ¼ 1 (where a bar refers to the opposite action, �C¼D and �D¼C). The paired

boundary faces fit together after a rotation of one of them 180˚ about the line parameterized by t; 1

2
; 1 � t

� �
. Parameter

c = 0.1.

https://doi.org/10.1371/journal.pcbi.1010987.g002
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Fig 3. Long-time limits of adaptive dynamics of memory-one strategies. For a 9 × 9 × 9 × 9-grid of starting points (= 6561 points), we show the limit

limt!1 p(t) of a solution p(t) to Eq (6). Dynamics are assumed to cease at the boundary of the strategy space. Generically, there are 4 possibilities, as

shown in the legend. For 1835 points, the trajectory p(t) evolves to full cooperation, defined by pCC = 1 (blue). For 1375 points, the trajectory p(t)
evolves to full defection, defined by pDD = 0 (red). The remaining points either evolve into other regions of the boundary (green) or approach interior

critical points, which are equalizers (yellow). The symmetry described in the main text does not manifest in this plot, but reappears when we juxtapose

the plot with the corresponding plot for reversed time. Parameter c = 0.1.

https://doi.org/10.1371/journal.pcbi.1010987.g003
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Adaptive dynamics of memory-one counting strategies

After describing the dynamics of memory-one strategies, we proceed by analyzing the dynam-

ics of counting strategies, with pCD = pDC. Counting strategies are especially convenient

because they can be represented in three dimensions. To make this representation explicit, in

the following we write counting strategies as vectors q = (q2, q1, q0) 2 [0, 1]3. Here, qi is the

probability to cooperate if i of the two players have cooperated previously. The respective

memory-one representation is thus given by pCC = q2, pCD = pDC = q1, and pDD = q0. Corre-

spondingly, the dynamics that we explore is given by

_qi ¼
@Aðq; q0Þ
@qi

�
�
�
�
q¼q0

with i2f2; 1; 0g ð12Þ

This dynamics among counting strategies is not identical to the previously considered

dynamics among memory-one strategies, even when the starting population is taken from the

invariant subset with pCD = pDC. Instead, differences arise because the embedding

[0, 1]3! [0, 1]4 is not distance-preserving with the standard metric on each space. As a result,

the gradient of the payoff function is computed slightly differently in the two spaces—specifi-

cally, the memory-one adaptive dynamics (6) within the subspace of counting strategies sub-

space differs from the adaptive dynamics (6) by a factor of 2 in _q1ðtÞ. The analysis in this

section is thus not to characterize the orbits of the invariant subspace of counting strategies

within the memory-one strategies. Rather we consider the space of counting strategies [0, 1]3

as an interesting space in its own right, which we analyze in the following.

In a first step, we reproduce Fig 1 for the case of counting strategies. In Fig 1, counting strat-

egies correspond to the points on the diagonal pCD = pDC of each subpanel. Fig 4 is the analog

of Fig 1 for counting strategies, where we plot the signs of the components of ð _q2; _q1; _q0Þ at

each counting strategy. As one may expect, these combinations again come in pairs, where abc
is paired with cba. Some combinations, such as +++, are self-paired.

Similar to the memory-one strategies, we also want to characterize the set of interior critical

points of the system (12). In Methods, we show that these points can now be parametrized by

tþ
c

bþ c
; t ; t �

c
bþ c

� �

; with t2
c

bþ c
;

b
bþ c

� �

ð13Þ

Hence the set of interior critical points forms a straight line segment. The boundary points

of this line segment are

2c
bþ c

;
c

bþ c
; 0

� �

and 1;
b

bþ c
;
b � c
bþ c

� �

ð14Þ

The length of this line segment is
ffiffiffi
3
p
ðb� cÞ=ðbþcÞ, which ranges from

ffiffiffi
3
p

(the diagonal of

the cube) to 0, as c/b ranges from 0 to 1. We can classify the stability of the critical points by

finding their associated eigenvalues. The complete results are shown in Fig 5. Five generic

types of critical points are present as we vary the cost-to-benefit ratio: source, spiral source, spi-

ral sink, sink, and saddle.

In addition to these interior critical points, Fig 6 also depicts the critical points on the

boundary faces Bð½0; 1�3Þ. Using the terminology of the previous section, these critical points

are saturated without being strictly saturated. On each boundary face, the respective curve

thus separates the region of strictly saturated points from the unsaturated points. Because of

the aforementioned symmetry of solutions, the set of boundary critical points is symmetric

under the transformation (x, y, z) 7! (1 − z, 1 − y, 1 − x). We note that counting strategies have

PLOS COMPUTATIONAL BIOLOGY Adaptive dynamics of memory-1 strategies in the repeated donation game

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010987 June 29, 2023 11 / 31

https://doi.org/10.1371/journal.pcbi.1010987


boundary properties unshared by memory-one strategies. For example, every boundary point

with q1 = 0 is saturated. Conversely, every boundary point with q1 = 1 is unsaturated.

To explore the dynamics in the interior, Fig 7 depicts the end behavior of solutions q(t) to

Eq (12) with initial conditions on an evenly spaced grid (analogous to Fig 3). Again, dynamics

are assumed to cease at the boundary. We observe that out of 729 initial points, 190 evolve to

full cooperation, 140 evolve to full defection, 229 evolve to other places on the boundary, and

170 evolve to interior critical points. The overall abundance of the four outcomes is thus simi-

lar to the respective numbers in the space of all memory-one strategies, with the only exception

being that now more orbits converge to interior critical points.

Fig 4. Local adaptive dynamics for counting strategies. On a 9 × 9 × 9 × 9-grid representing the space of memory-one strategies, we depict the 729

points which are counting strategies (defined by pCD = pDC). They are colored according to their direction of change in terms of the sign of each

component of ð _q2; _q1; _q0Þ. Generically, there are eight possibilities as shown in the legend. We observe that for 156 points all three components are

positive, +++, while for 373 points all three components are negative, ---. Three combinations do not occur: -+-, -++, and ++-. These are combinations

in which _q2 or _q0 is negative while _q1 is positive; such combinations are forbidden. Because of the symmetry derived in the main text there is a

symmetric pair, +- - and - -+, each occurring 29 times. The configuration +-+ is its own mirror image and therefore a singleton (occurring 142 times).

Parameter c = 0.1.

https://doi.org/10.1371/journal.pcbi.1010987.g004

PLOS COMPUTATIONAL BIOLOGY Adaptive dynamics of memory-1 strategies in the repeated donation game

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010987 June 29, 2023 12 / 31

https://doi.org/10.1371/journal.pcbi.1010987.g004
https://doi.org/10.1371/journal.pcbi.1010987


Fig 5. Classification of interior critical points in the space of counting strategies. We show the line of interior

critical points in the space of counting strategies for five values of c. The line is colored according to the type of each

critical point, which is determined by the eigenvalues of the linearization of the system (12) at this point. We observe

all five generic types: source, spiral source, sink, spiral sink, and saddle. The complete classification is shown in the

lower right panel. Each interior critical point is an equalizer (see main text). The line is parameterized by

(t + c/(1 + c), t, t − c/(1 + c)) as t ranges over the interval (c/(1 + c), 1/(1 + c)). The symmetry described in the main text

is manifest in this figure. The transformation σ: (x, y, z) 7! (1 − z, 1 − y, 1 − x) carries the line of critical points to itself.

It exchanges sinks and sources, spiral sinks and spiral sources, and saddle points and other saddle points.

https://doi.org/10.1371/journal.pcbi.1010987.g005
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Fig 6. Interior and boundary critical points in the space of counting strategies. For four values of c, we show the line of interior critical points

(green) and the boundary critical points (black) in the space of counting strategies. The boundary critical points consist of three pieces: the edge defined

by q0 = 0 and q2 = 1 (i.e. the intersection of full cooperation and full defection) and two separate curves on the faces q0 = 0 and q2 = 1. For example, the

strategy GRIM = (1, 0, 0) is a boundary critical point. The symmetry described in the main text is visible in the rotational symmetry of the set of critical

points.

https://doi.org/10.1371/journal.pcbi.1010987.g006
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Fig 7. Long-time limits of adaptive dynamics of counting strategies. On a 9 × 9 × 9 × 9-grid representing the space of memory-one strategies, we

depict the 729 points which are counting strategies (defined by pCD = pDC). They are colored according to the limit limt!1 q(t) of a solution q(t) to

Eq (6), with starting value q(0) in the grid. Dynamics are assumed to cease at the boundary of the strategy space. Generically, there are 4 possibilities as

shown in the legend. For 190 points the trajectory q(t) evolves to full cooperation, defined by q2 = 1 (blue). For 140 points the trajectory q(t) evolves to

full defection, defined by q0 = 0 (red). The remaining points either evolve into other regions of the boundary (green) or approach interior critical points,

which are equalizers (yellow). This figure is not a simple restriction of Fig 3 because the restriction of Eq (6) differs from Eq (12) by a factor of 2.

Parameter c = 0.1.

https://doi.org/10.1371/journal.pcbi.1010987.g007
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Fig 8. Trajectories of adaptive dynamics of counting strategies. We consider four different initial conditions. We

plot the solutions q(t) to Eq (12) on the left, colored by hue and marked with arrowheads to indicate the direction of

evolution in the strategy space. On the right, we plot the cooperation rate C(q(t)), which is a real number between zero

(full defection) and one (full cooperation). Each of the initial conditions leads to a different behavior. In the first row,

for an initial condition q(0) = (1, 1, 0.8), the cooperation rate decreases monotonically from one to zero. In the second

row, for q(0) = (0.6833, 0.85, 0), the cooperation rate increases monotonically from zero to one. In the third row, for

q (0) = (0.6, 0.5, 0), the cooperation rate increases from zero to an intermediate value before decreasing and then
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We can also plot a few solutions q(t) of Eq (12) in three dimensions to give an idea of the

possible behaviors. Four types of behavior are shown in Fig 8. Alongside plots of the trajectory

q(t) we depict the cooperation rate C(q(t)), defined as the average rate of cooperation in a

large population playing the respective strategy. Previous studies show that these cooperation

rates change monotonically when players are restricted to use reactive strategies (those with

pCC = pDC and pCD = pDD, see [1]). Within the counting strategies, this monotonicity is violated

in the third and fourth example, and the fourth converges to intermediate cooperation rather

than full cooperation or full defection.

Discussion and conclusion

The donation game is one of the main paradigms to explore direct reciprocity, and memory-

one strategies are among the best-studied strategy spaces in the respective literature [24–32].

These strategies are comparably simple. They only condition on the outcome of the very last

round, while ignoring the outcome of all previous rounds.

Despite their simplicity, the formulas that describe the payoffs of memory-one players are

non-trivial to manipulate mathematically. As a result, many previous studies on memory-one

strategies rely on simulations. On the one hand, such simulations give valuable insights into

the dynamics of reciprocity. On the other hand, they make it difficult to describe why certain

strategies are favored by evolution, and how results depend on parameters such as the cost of

cooperation.

To get a more analytical description of the evolution of reciprocity, we use the framework

of adaptive dynamics. This framework considers homogeneous populations that move into the

direction of mutants with maximum invasion fitness [52, 53]. For our setup of memory-one

players in the donation game, we show that this dynamics has two remarkable mathematical

properties. Our first result concerns the subspace of counting strategies. Counting strategies

only depend on the number of cooperating players in the previous round. We show that the

adaptive dynamics leaves the subspace of counting strategies invariant. Moreover, we show in

Methods that this invariance result is not restricted to donation games or memory-one strate-

gies. A similar invariance arises for arbitrary repeated 2 × 2 games, or when players remember

more than the very last round.

Second, we describe an interesting symmetry between forward-in-time orbits and back-

ward-in-time orbits. This symmetry is specific to the donation game, but is not restricted to

memory-one strategies. Its importance becomes apparent in many of our figures (for example,

in Figs 1 and 2, where it leads to beautiful geometric patterns).

We use these mathematical insights to qualitatively describe the adaptive dynamics of mem-

ory-one strategies and of counting strategies. In particular, we describe the set of interior criti-

cal points, and the set of saturated boundary points. Any converging solution of adaptive

dynamics ends up in one of these two sets. While previous research has identified which mem-

ory-one strategies are Nash equilibria [38, 39], our study identifies those memory-one strate-

gies that satisfy a local notion of uninvadability. For example, Eq (10) describes all memory-

one strategies that are mutually cooperative and locally stable. The respective condition is less

stringent than the condition for being a Nash equilibrium. This insight allows for the following

interpretation. If evolution generates mutant strategies that are phenotypically similar to the

increasing again to one. Finally, in the last row, for q(0) = (0.6667, 0.75, 0), the cooperation rate increases from zero

before oscillating and converging to an intermediate value. The last two orbits loop around the line of interior critical

points, shown in black. Parameter c = 0.1.

https://doi.org/10.1371/journal.pcbi.1010987.g008
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parent, there is a strictly larger strategy set of memory-one strategies that can maintain

cooperation.

We believe these results give a more rigorous understanding of the properties of memory-

one strategies. At the same time we hope that similar techniques can be used to explore other

games and more general strategy spaces.

Methods

Adaptive dynamics of memory-one strategies

Derivation of the adaptive dynamics. In the main text, we have described how to define

the payoff of two players with memory-one strategies by representing the game as a Markov

chain. However, to derive the adaptive dynamics, it is useful to start with an alternative repre-

sentation of the payoffs. As shown by [56], the payoff expression (5) can be rewritten as

Aðp; p0Þ ¼

det

� 1þpCC p0CC � 1þpCC � 1þp0CC R

pCD p0DC � 1þpCD p0DC S

pDC p0CD pDC � 1þp0CD T

pDD p0DD pDD p0DD P

0

B
B
B
B
@

1

C
C
C
C
A

det

� 1þpCC p0CC � 1þpCC � 1þp0CC 1

pCD p0DC � 1þpCD p0DC 1

pDC p0CD pDC � 1þp0CD 1

pDD p0DD pDD p0DD 1

0

B
B
B
B
@

1

C
C
C
C
A

ð15Þ

Using this representation, we can write out the expression for adaptive dynamics (6) in full.

To this end, it is convenient to multiply the resulting system by the common denominator,

(1 − pCD + pDC)r(pCC, pCD, pDC, pDD)2, where

rðx; y; z;wÞ ¼ w2ð� 1þ 2x � y � zÞ þ wð2 � 2x2 þ 2yzÞ þ ð� 1þ xÞð� 1þ yþ z � 2yz þ xð� 1þ yþ zÞÞ ð16Þ

This denominator is positive in the interior (0, 1)4 of the strategy space. Hence, multiplying

by the denominator only affects the timescale of evolution, but not the direction of the trajec-

tories. After applying this modification to the system (6), the dynamics among the memory-

one strategies of the donation game takes the following form,

_pCC ¼ f1ðpCD; pDC; pDDÞ �
�

b�g1ðpCC; pCD; pDC; pDDÞ þ c�h1ðpCC; pCD; pDC; pDDÞ
�

_pCD ¼ f2ðpCC; pDDÞ �

�

b�g2ðpCC; pCD; pDC; pDDÞ þ c�h2ðpCC; pCD; pDC; pDDÞ
�

_pDC ¼ f3ðpCC; pDDÞ �

�

b�g3ðpCC; pCD; pDC; pDDÞ þ c�h3ðpCC; pCD; pDC; pDDÞ
�

_pDD ¼ f4ðpCC; pCD; pDCÞ �
�

b�g4ðpCC; pCD; pDC; pDDÞ þ c�h4ðpCC; pCD; pDC; pDDÞ
�

ð17Þ
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Here, the auxiliary functions fi, gi, hi for i 2 {1, 2, 3, 4} are defined as follows

f1ðy; z;wÞ ¼ wð2yz þ w � yw � zwÞ

g1ðx; y; z;wÞ ¼ � wþ wx � w2xþ x2 þ wx2 þ w2y � xy � wxy � x2yþ xy2 þ z

� xz þ wxz � wyz þ xyz � y2z � xz2 þ yz2

h1ðx; y; z;wÞ ¼ � 1 � wþ w2 � wx � w2xþ wx2 þ yþ xyþ wxy � xy2 þ w2z

þxz � wxz � x2z � 2yz � wyz þ xyz þ y2z þ xz2 � yz2

f2ðx;wÞ ¼ � wð1 � wþ xÞð1 � xÞ

g2ðx; y; z;wÞ ¼ wþ w2x � wx2 � w2y � z � wz � xz þ x2z þ yz þ 2wyz þ z2

� wz2 � xz2 � yz2 þ z3

h2ðx; y; z;wÞ ¼ 1þ w � w2 þ w2x � x2 � wx2 � yþ x2yþ wz � w2z þ xz þ yz

� 2xyz � z2 þ wz2 þ xz2 þ yz2 � z3

f3ðx;wÞ ¼ f2ð1 � w; 1 � xÞ

g3ðx; y; z;wÞ ¼ g2ð1 � w; 1 � z; 1 � y; 1 � xÞ

h3ðx; y; z;wÞ ¼ h2ð1 � w; 1 � z; 1 � y; 1 � xÞ

f4ðx; y; zÞ ¼ f1ð1 � z; 1 � y; 1 � xÞ

g4ðx; y; z;wÞ ¼ g1ð1 � w; 1 � y; 1 � z; 1 � xÞ

h4ðx; y; z;wÞ ¼ h1ð1 � w; 1 � z; 1 � y; 1 � xÞ

ð18Þ

Note that we can write fi, gi, hi for i 2 {3, 4} in terms of the same functions for i 2 {1, 2}.

This is a consequence of the symmetry we discuss later.

Invariance of counting strategies. Using the representation (17) and (18), it becomes

straightforward to show that the space of memory-one counting strategies remains invariant

under adaptive dynamics.

Proposition 1. Let C denote the three-dimensional subspace of counting strategies among the
memory-one strategies,

C≔fp2½0; 1�4 j pCD¼pDCg ð19Þ

Then C is invariant under adaptive dynamics. That is, if p(t) is a solution of Eq (17) with
pð0Þ2C, then pðtÞ2C for all t.
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Proof. By using the definitions in (18), one can verify that

f2ðpCC; pDDÞ � f3ðpCC; pDDÞ ¼ 0

g2ðpCC; pCD; pDC; pDDÞ � g3ðpCC; pCD; pDC; pDDÞ ¼

ð1� pCDþpDCÞ ðpCD � pDCÞðpCC � pCD � pDCþpDDÞ

h2ðpCC; pCD; pDC; pDDÞ � h3ðpCC; pCD; pDC; pDDÞ ¼

� ð1� pCDþpDCÞ ðpCD � pDCÞðpCC � pCD � pDCþpDDÞ

ð20Þ

In particular, if we define d≔ pCD − pDC, it follows by (17) and (20) that

_d ¼ _pCD � _pDC ¼ f2ðpCC; pDDÞðb� cÞð1� pCDþpDCÞðpCD � pDCÞðpCC � pCD � pDCþpDDÞ ð21Þ

For d = pCD − pDC = 0, we can therefore conclude that _d ¼ 0.

While the proof of Proposition 1 shows that the set of counting strategies is invariant, it also

shows that this set is not a local attractor. Instead, from Eq (21) it follows that the distance d to

the set of counting strategies decreases at a given time if and only if p 2 (0, 1)4 satisfies

pCC + pDD> pCD + pDC.

A symmetry between forward and backward orbits. Another direct implication of the

functional form of adaptive dynamics in Eqs (17) and (18) is that solutions come in pairs. In

Results we gave an intuitive argument for a symmetry in solutions for donation games. Here

we derive the result formally.

Proposition 2. Let p(t) = (pCC, pCD, pDC, pDD)(t) be a solution to Eq (17) on some interval t
2 (a, b).

Then ~pð� tÞ≔ð1� pDD; 1� pDC; 1� pCD; 1� pCCÞð� tÞ is a solution to Eq (17) for the interval
t 2 (−b, −a).

Proof. We show the result for the first component; the other components follow similarly.

For the first component, we have

_~pCCð� tÞ ¼ f4ð1� pDD; 1� pDC; 1� pCDÞ½b g4ð1� pDD; 1� pDC; 1� pCD; 1� pCCÞ

þc h4ð1� pDD; 1� pCD; 1� pDC; 1� pCCÞ�

¼ f1ðpCD; pDC; pDDÞ
�

b�g1ðpCC; pCD; pDC; pDDÞ þ c�h1ðpCC; pCD; pDC; pDDÞ
�

¼ _pCCðtÞ

Therefore, if p(t) satisfies the differential Eq (17), then so does ~pð� tÞ.
The transformation p7!~p, defined by (pCC, pCD, pDC, pDD) 7! (1 − pDD, 1 − pDC, 1 − pCD,

1 − pCC), reflects a point in the hypercube [0, 1]4 with respect to the 2-dimensional plane

P ¼
�

p2½0; 1�4
�
�
�
� pCCþpDD¼1; pCDþpDC¼1

�

ð22Þ

That is, if one takes the line segment between p and ~p, then the midpoint of this line seg-

ment is in P. The plane P is exactly the set of points that are mapped onto themselves. Every

point is mapped onto itself if the transformation is applied twice. It can be directly checked

that the transformation p 7! ~p maps critical points to critical points (see next subsection), and

the previous proposition means that it interchanges points which are limits forward in time

and points which are limits backward in time.
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The symmetry described by Proposition 2 is not unique to memory-one strategies; it is a

general phenomenon related to equal gains from switching. For example, the same argument

we used in Results can be used to establish a direct analogue of Proposition 2 for memory-one

counting strategies and for memory-n strategies.

The symmetry is particularly easy to visualize for the three-dimensional space of memory-

one counting strategies. In this case, we define q! ~q to be the transformation

(q2, q1, q0) 7! (1−q0, 1−q1, 1−q2). The analogue of Proposition 2 says that if q(t) is a solution to

12 on the interval t 2 (a, b), then so is ~qð� tÞ on the interval t 2 (−b, −a). This pair of solutions

is related by a time reversal and a rotation of the cube [0, 1]3 about the axis q1 = 1/2, q2 + q0 =

1.

Critical points of adaptive dynamics. In the following, we characterize the fixed (critical)

points of adaptive dynamics in the interior of the hypercube.

Proposition 3. A stochastic strategy p 2 (0, 1)4 is a critical point of system (17) if and only if

bðpCC � pCDÞ � cð1 � pCC þ pDCÞ ¼ 0; pCC þ pDD ¼ pCD þ pDC ð23Þ

Proof. ()) Directly setting 0 ¼ _pCC ¼ _pCD ¼ _pDC ¼ _pDD quickly becomes unwieldy. Notice,

however, that f1, f2, f3, f4 do not vanish when their parameters take values in (0, 1). So at

interior critical points, we must have

0 ¼
_pCC

f1ðpCD; pDC; pDDÞ
þ

_pCD
f2ðpCC; pDDÞ

¼ ðb � cÞðpCC � pDCÞðpCC þ pDD � pCD � pDCÞð1 � pCD þ pDCÞ

0 ¼
_pCC

f1ðpCD; pDC; pDDÞ
þ

_pDC
f3ðpCC; pDDÞ

¼ ðb � cÞðpCC � pCDÞðpCC þ pDD � pCD � pDCÞð1 � pCD þ pDCÞ

0 ¼
_pCC

f1ðpCD; pDC; pDDÞ
�

_pDD
f4ðpCC; pCD; pDCÞ

¼ ðb � cÞðpCC � pDDÞðpCC þ pDD � pCD � pDCÞð1 � pCD þ pDCÞ

ð24Þ

Since 1 − pCD + pDC> 0 for pCD, pDC 2 (0, 1), either pCC = pCD = pDC = pDD or pCC + pDD
= pCD + pDC must be enforced. Note that if pCC = pCD = pDC = pDD, then pCC + pDD
= pCD + pDC holds trivially. Hence, in both cases we have the identity pDD = pCD + pDC −
pCC, which we can plug into _pCC=f1ðpCD; pDC; pDDÞ to get

_pCC

f1ðpCD; pDC; pDDÞ
¼

�

bðpCD � pCCÞþcð1� pCCþpDCÞ
�

� � 1þðpCD � pCCÞ
2
þðpDC � pCCÞ

2

�

ð25Þ

�

It is verified without too much difficulty that whenever the second factor vanishes in (0, 1)3,

then pCD + pDC −pCC =2 (0, 1). Any interior critical points of (17) thus needs to satisfy

bðpCC � pCDÞ � cð1� pCCþpDCÞ ¼ 0 and pCC þ pDD ¼ pCD þ pDC ð26Þ
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(() If a strategy satisfies the conditions (26), we can express pCD and pDC in terms of pCC and

pDD,

pCD ¼
b pCC � cð1þpDDÞ

b � c
and pDC ¼

cð1� pCCÞ þ bpDD
b � c

ð27Þ

Inserting these expressions into the system (17) yields, after some algebraic manipulations,

_pCC¼ _pCD¼ _pDC¼ _pDD¼0.

Solving Eq (23) for pCC and pDD, we arrive at

pCC ¼
cþ b pCD þ c pDC

bþ c
and pDD ¼

c ð� 1þ pCDÞ þ b pDC
bþ c

ð28Þ

Using (28), the constraint pDD> 0 becomes pDC> (c/b)(1 − pCD). When we plug this back

into the expression for pCC and use the fact that pCD> 0, we get pCC> c/b. Similarly, the con-

straints pCC< 1 and pDC< 1 lead to pDD< 1 − c/b. The result is that we have two useful

bounds pCC> c/b and pDD< 1 − c/b among the interior critical points.

We now relate the interior critical points to the equalizer strategies discussed by [57] and

[56].

Definition. An equalizer is a strategy p for which A(p0, p) is a constant function of p0.

It follows from the definition that every equalizer strategy is a critical point of the dynamics

(17). In the interior (0, 1)4, the converse is also true. That is,

Proposition 4. Every interior critical point of the system (17) is an equalizer.
Proof. Our condition for critical points (27) coincides with the expression for equalizers,

Eq. (8) in [56], when using the payoffs of the donation game.

As shown by [39], equalizers are the only Nash equilibria among the stochastic memory-

one strategies. Thus our above results can be summarized as follows. In the donation game,

an interior point is a critical point of adaptive dynamics if and only if it is a Nash equilib-

rium (such a result does not need to hold in general, because strategies might be locally sta-

ble critical points of adaptive dynamics without being global best responses to themselves,

see [50]).

Analysis of the boundary faces. In the main text, we define the boundary of the strategy

space [0, 1]4 as the set of all (pCC, pCD, pDC, pDD) for which exactly one entry is in {0, 1}. There-

fore there are eight different boundary faces. One particularly important face is the one with

pCC = 1, which corresponds to a fully cooperative population. It follows from Eq (18) that on

this boundary face f2(pCC, pDD) = f3(pCC, pDD) = f4(pCC, pCD, pDC) = 0. By Eq (17) we can then

conclude that _pCD¼ _pDC¼ _pDD¼0. A point p on this boundary face is saturated if and only if

_pCC�0. By Eq (17) and because f1(pCD, pDC, pDD)> 0, this condition is equivalent to

b �g1(1, pCD, pDC, pDD)> − c � h1(1, pCD, pDC, pDD), which yields condition (10).

The boundary face with pDD = 0 can be analyzed analogously.

Adaptive dynamics of memory-one counting strategies

In the following, we identify memory-one counting strategies with points in the 3-dimensional

cube [0, 1]3. The entries of a counting strategy q = (q2, q1, q0) correspond to the cooperation

probability in the next round, based on the number of cooperators in the previous round. We

can embed the space of counting strategies into the space of memory-one strategies by using

the mapping (q2, q1, q0) 7! (q2, q1, q1, q0). Using this embedding, we can compute the payoff of
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a q-player against q0-player using the payoff formula (15), which yields

Aðq; q0Þ ¼

det

� 1þ q2q02 � 1þ q2 � 1þ q0
2

b � c

q1q01 � 1þ q1 q0
1

� c

q1q01 q1 � 1þ q0
1

b

q0q00 q0 q0
0

0

0

B
B
B
B
@

1

C
C
C
C
A

det

� 1þ q2q02 � 1þ q2 � 1þ q0
2

1

q1q01 � 1þ q1 q0
1

1

q1q01 q1 � 1þ q0
1

1

q0q00 q0 q0
0

1

0

B
B
B
B
@

1

C
C
C
C
A

ð29Þ

In the following we study the adaptive dynamics of counting strategies. Again, we consider

a homogeneous population with strategy q, evolving in the direction of the gradient of the pay-

off function, now calculated in [0, 1]3. Evolution in the space of counting strategies is thus

given by

_qi ¼
@Aðq; q0Þ
@qi

�
�
�
�
q¼q0

ð30Þ

To write out the adaptive dynamics Eq (30) in full, it is again convenient to multiply the

equations by the common denominator r(q2, q1, q0)2, with

rðx; y; zÞ ¼ ð� 1þxÞð� 1þyþ ð1� 2yÞðy� xÞÞ þ ð2 � 2x2 þ 2y2Þz þ ð� 1þ 2x � 2yÞz2 ð31Þ

This denominator is nonzero in the interior (0, 1)3 of the strategy space. After this rescaling,

the system of Eq (30) becomes

_q2 ¼ f2ðq1; q0Þ �
�
b�g2ðq2; q1; q0Þ þ c�h2ðq2; q1; q0Þ

�

_q1 ¼ f1ðq2; q0Þ �
�
b�g1ðq2; q1; q0Þ þ c�h1ðq2; q1; q0Þ

�

_q0 ¼ f0ðq2; q1Þ �
�
b�g0ðq2; q1; q0Þ þ c�h0ðq2; q1; q0Þ

�

ð32Þ

The auxiliary functions fi, gi, hi now take the form

f2ðy; zÞ ¼ � zð2yðy � zÞ þ zÞ

g2ðx; y; zÞ ¼ � x2 � yþ 2xyþ x2y � xy2 þ z � xz � x2z þ y2z þ xz2 � yz2

h2ðx; y; zÞ ¼ 1 � y � 2xyþ x2yþ 2y2 � xy2 þ z þ xz � x2z þ y2z � z2 þ xz2 � yz2

f1ðx; zÞ ¼ � 2zð� 1þ xÞð1þ x � zÞ

g1ðx; y; zÞ ¼ yþ xy � x2y � 2y2 þ xy2 � z þ x2z þ yz � y2z � xz2 þ yz2

h1ðx; y; zÞ ¼ � 1þ x2 þ y � xy � x2yþ xy2 � z þ x2z � yz � y2z þ z2 � xz2 þ yz2

f0ðx; yÞ ¼ f2ð1 � y; 1 � xÞ

g0ðx; y; zÞ ¼ g2ð1 � z; 1 � y; 1 � xÞ

h0ðx; y; zÞ ¼ h2ð1 � z; 1 � y; 1 � xÞ

ð33Þ
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Critical points of adaptive dynamics of counting strategies. Again, in the following we

characterize the fixed (critical) points of adaptive dynamics in the interior of [0, 1]3.

Proposition 5. The interior critical points of the system (32) are parametrized by

t þ
c

bþ c
; t; t �

c
bþ c

� �

; for t 2
c

bþ c
;

b
bþ c

� �

ð34Þ

Proof. Because f2, f1, f0 do not vanish in the interior of the strategy space (0, 1)3, we can com-

pute

_q1

f1ðq2; q0Þ
þ

_q0

f0ðq2; q1Þ
¼ ðb � cÞðq0 � q1Þðq2 � 2q1 þ q0Þ;

_q2

f2ðq1; q0Þ
�

_q0

f0ðq2; q1Þ
¼ ðb � cÞðq2 � q0Þðq2 � 2q1 þ q0Þ

ð35Þ

At a critical point we have _q2¼ _q1¼ _q0¼0; so the expressions on the right hand side must

vanish. This implies q2 − 2q1 + q0 = 0 or q2 = q1 = q0 (in which case q2 − 2q1 + q0 = 0 holds trivi-

ally). So q1 = (q2 + q0)/2 is a necessary condition for the strategy q to be a critical point. To

obtain a condition that is also sufficient we take this expression for q1 and plug it into

4 _q1ðq2; ðq2þq0Þ=2; q0Þ

f1ðq2; q0Þ
¼
�
bðq0 � q2Þ þ cð2þq0 � q2Þ

�
2 � ðq2 � q0Þ

2
� �

ð36Þ

This expression only vanishes when q2 � q0 ¼
2c
bþc. The solutions to the conditions

q2þq0¼2q1; q2 � q0¼
2c

bþ c
ð37Þ

are parameterized by

t þ
c

bþ c
; t; t �

c
bþ c

� �

; t 2
c

bþ c
;

b
bþ c

� �

ð38Þ

Conversely, it is easily checked that all of these strategies are critical points of (32).

Thus the interior critical points form a straight line segment on the interior of the cube

with boundary points 2c
bþc ;

c
bþc ; 0

� �
and 1; b

bþc ;
b� c
bþc

� �
and length

ffiffiffi
3
p

b� c
bþc, which ranges from

ffiffiffi
3
p

(the diagonal of the cube) to 0 as c
b ranges from 0 to 1. We can classify the stability of these criti-

cal points by finding their associated eigenvalues. The results are complicated, but shown in

Fig 5.

Comparison to reactive strategies

Reactive strategies are the memory-one strategies satisfying pCC = pDC and pCD = pDD. They

form a two-dimensional space which has been studied extensively, including their adaptive

dynamics [43–48]. The set of interior critical points for adaptive dynamics of reactive strategies

coincides with the set of equalizer strategies, a result which we generalized in Results.

However, we also highlight several key differences between the strategy spaces. One impor-

tant theme is that the three-dimensional space of memory-one counting strategies captures a

surprising degree of complexity not seen in reactive strategies. In Fig 8 we show that the rate of

self-cooperation does not always monotonically increase or decrease, as it does for reactive

strategies. In fact, cooperativity can increase and decrease several times along a trajectory. Fur-

thermore, the symmetry pðtÞ 7! ~pð� tÞ has a direct analogue for reactive strategies, which
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turns out to associate each trajectory to itself. That is, trajectories for reactive strategies do not

come in pairs, as they do in the larger spaces of memory-one, memory-one counting, and

higher memory strategies.

In Fig 9, we plot the cooperative region for memory-one strategies (the region for which

the self-cooperation rate is locally increasing). The corresponding region for reactive strategies

is straightforward to describe [43]: If (pC, pD) is a player’s probability to cooperate depending

on the co-player’s previous action (C or D), then the cooperative region consists of all points

with pC − pD> c/b.

Extensions of the invariance result

Our Proposition 1 shows that among the memory-one strategies of the donation game, adap-

tive dynamics leaves the set of counting strategies invariant. In the following, we derive two

generalizations of this result. In a first step, we show that the same result holds for arbitrary

repeated 2 × 2 games.

Proposition 6. Let C denote the three-dimensional subspace of counting strategies among the
memory-one strategies, as defined by Eq (19). Then C is invariant under adaptive dynamics, for
any repeated 2 × 2 game with payoff matrix (2).

Proof. Let M be the Markov chain of the form (4) generated by the behavior of two play-

ers with strategies p and p0. Moreover, let v denote the associated stationary distribution.

The payoff to the p-player in the repeated 2 × 2 game is then given by A(p, p0) = π(v),

where p : R4 ! R is some linear map that depends on the payoff matrix of the game but

not on p or p0.

By definition vM = v. If we introduce an infinitesimal variation δ p in the strategy p there

will be an associated δM and δ v, and they satisfy (v + δv)(M + δM) = v + δv. Since v M = v and

since δvδM is disregarded as doubly infinitesimal, we have δ v M + vδM = δv. Choose δ p to be

(0, �, −�, 0). Then it can be seen easily that

dM ¼

0 0 0 0

�p0DC �ð1 � p0DCÞ � �p0DC � �ð1 � p0DCÞ

� �p0CD � �ð1 � p0CDÞ �p0CD �ð1 � p0CDÞ

0 0 0 0

0

B
B
B
B
@

1

C
C
C
C
A

ð39Þ

Now suppose p and p0 are equal and furthermore that pCD = pDC. Then vCD = vDC by sym-

metry, and vδM manifestly vanishes. It follows from the above that δvM = δv. Then δv is pro-

portional to v by uniqueness of a stationary distribution. But we are also demanding that the

sum of components of v + δv is 1. Thus δv = 0 and there is no variation in payoff π(v). No

player gains from deviating infinitesimally off the hypersurface pCD = pDC in adaptive dynam-

ics, i.e. from departing the space C.

In a second step, we ask whether a similar invariance result applies to memory-n strategies.

With an argument similar to the one above, we can show that it applies at least in a restricted

way.

Our notation for memory-n strategies is best introduced by example: the component

p CDC
DDC

� � of a memory-3 strategy of player 1 denotes the probability of cooperation if the

outcomes of the most recent three rounds were CD, DD, CC, in that order.
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Fig 9. Cooperative region for adaptive dynamics of memory-one strategies. For a 9 × 9 × 9 × 9-grid (= 6561 points) we show the points for which the

cooperativity, or rate of self-cooperation, of ð _pCC; _pCD; _pDC; _pDDÞ is locally increasing. The rate of self-cooperation of a strategy p can be calculated by

A(p, p)/(b − c) using formula (15). We find that for 1876 points cooperativity is locally increasing; for 4677 points cooperativity is decreasing; and eight

points are critical points with ð _pCC; _pCD; _pDC; _pDDÞ ¼ ð0; 0; 0; 0Þ. Note that, unlike the corresponding region for reactive strategies, trajectories beginning

in the cooperative region can leave this region, and trajectories beginning outside of the cooperative region can enter it. We show examples of this in

Fig 8). The graph is created for c = 0.1.

https://doi.org/10.1371/journal.pcbi.1010987.g009
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Proposition 7. Consider the adaptive dynamics for memory-n strategies p and let s be a fixed
arbitrary sequence of n − 1 moves for one player. Then the condition

p Cs
Ds

� � ¼ p Ds
Cs

� � ð40Þ

is invariant for any repeated 2 × 2 game.
Proof. Similar to before, let M be the Markov chain generated by the behavior of two players

with memory-n strategies p and p0, with stationary distribution v. The components of v are the

average frequencies of observing each possible history of length n over the course of the game.

The payoff to player 1 is given by A(S, S0) = π(v), where p : R4n ! R is again some linear func-

tion depending on the payoff matrix of the game but independent of p and p0. Again, we intro-

duce an infinitesimal variation δp in the strategy p. As a result, there will be an associated δM
and δv, and they satisfy (v + δv)(M + δM) = v + δv. Since vM = v, and δvδM is disregarded as

doubly infinitesimal, we have δvM + v δM = δv.

Now suppose that p is a memory-n strategy that satisfies condition (40), with s being an

arbitrary but fixed sequence of length n − 1 of C’s and D’s. Let ei denote the vector with a 1 in

the ith position and zeros elsewhere, and let ei,j denote the matrix with a 1 in the i, j’th entry

and zeros elsewhere. The dimensions will be clear from context. We introduce the following

infinitesimal variation in p,

dp ¼ � � e Cs
Ds

� � � � � e Ds
Cs

� � ð41Þ

The corresponding variation in M is

dM ¼ �p0
Ds

Cs

 !e Cs sD

Ds sC

 ! � � 1 � p0
Ds

Cs

 !

0

B
B
B
B
B
@

1

C
C
C
C
C
A

e Cs sC

Ds sD

 !

� �p0
Ds

Cs

 !e Cs sD

Ds sC

 ! � � 1 � p0
Ds

Cs

 !

0

B
B
B
B
B
@

1

C
C
C
C
C
A

e Cs sD

Ds sD

 !

� �p0
Cs

Ds

 !e Ds sC

Cs sC

 ! � � 1 � p0
Cs

Ds

 !

0

B
B
B
B
@

1

C
C
C
C
A

e Ds sC

Cs sD

 !

þ �p0
Cs

Ds

 !e Ds sD

Cs sC

 ! þ � 1 � p0
Cs

Ds

 !

0

B
B
B
B
@

1

C
C
C
C
A

e Ds sD

Cs sD

 !

: ð42Þ
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We can compute

vdM ¼ � v Cs

Ds

 !p0
Ds

Cs

 ! � v
Ds

Cs

 !p0
Cs

Ds

 !

2

6
6
6
6
6
4

3

7
7
7
7
7
5

e
sC

sC

 !

þ� v Cs

Ds

 ! 1 � p0
Ds

Cs

 !

0

B
B
B
B
B
@

1

C
C
C
C
C
A

� v
Ds

Cs

 ! 1 � p0
Cs

Ds

 !

0

B
B
B
B
B
@

1

C
C
C
C
C
A

2

6
6
6
6
6
4

3

7
7
7
7
7
5

e
sC

sD

 !

þ� � v Cs

Ds

 !p0
Ds

Cs

 ! þ v
Ds

Cs

 !p0
Cs

Ds

 !

2

6
6
6
6
6
4

3

7
7
7
7
7
5

e
sD

sC

 !

þ� � v Cs

Ds

 ! 1 � p0
Ds

Cs

 !

0

B
B
B
B
B
@

1

C
C
C
C
C
A

þ v
Ds

Cs

 ! 1 � p0
Cs

Ds

 !

0

B
B
B
B
B
@

1

C
C
C
C
C
A

2

6
6
6
6
6
4

3

7
7
7
7
7
5

e sD

sD

 !

ð43Þ

If p and p0 are equal, then it follows by symmetry that

v Cs

Ds

 ! ¼ v Ds

Cs

 !

ð44Þ

Now (40) applied to p0, along with (44), imply that the right hand side of (43) vanishes.

Since vδM = 0, our initial discussion means that δvM = δv. Therefore δv is proportional to v

by uniqueness of stationary distribution. Because the sum of components of v + δv is 1, we

conclude that δv = 0. Hence there is no variation in payoff π(v). No player gains from making

the infinitesimal variation (41).
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