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Direct reciprocity is a powerful mechanism for the evolution of cooperation based
on repeated interactions between the same individuals. But high levels of cooperation
evolve only if the benefit-to-cost ratio exceeds a certain threshold that depends on
memory length. For the best-explored case of one-roundmemory, that threshold is two.
Here, we report that intermediate mutation rates lead to high levels of cooperation,
even if the benefit-to-cost ratio is only marginally above one, and even if individuals
only use a minimum of past information. This surprising observation is caused by
two effects. First, mutation generates diversity which undermines the evolutionary
stability of defectors. Second, mutation leads to diverse communities of cooperators
that are more resilient than homogeneous ones. This finding is relevant because many
real-world opportunities for cooperation have small benefit-to-cost ratios, which are
between one and two, and we describe how direct reciprocity can attain cooperation
in such settings. Our result can be interpreted as showing that diversity, rather than
uniformity, promotes evolution of cooperation.

evolution of cooperation | direct reciprocity | donation game | mutation rate

In evolutionary game theory, cooperation is an action in which an individual voluntarily
incurs a cost to give a benefit to someone else. While socially beneficial, cooperation
is opposed by natural selection unless a mechanism for evolution of cooperation is in
place (1, 2). One such mechanism is direct reciprocity: When the same two individuals
interact repeatedly, mutual cooperation becomes a viable option (3–16).

The phenomenon of cooperation can be described quantitatively by the donation
game (17), which is a simplified prisoner’s dilemma (18). In the donation game, each of
two players chooses between cooperation and defection (Fig. 1A). Cooperation means
paying a cost, c > 0, for the other player to receive a benefit, b > c. Defection incurs
no cost and causes no benefit. When players only interact for one round of the donation
game, evolutionary game theory predicts that both players learn to defect (19). This
prediction, however, changes when the game is repeated. In that case, individuals can
react to their coplayer’s previous behavior. They can employ conditionally cooperative
strategies, such as Grim-Trigger (17), Tit-for-Tat (18), Generous Tit-for-Tat (20, 21),
or Win–Stay Lose–Shift (7, 8) to incentivize their coplayer to cooperate. With such
conditional strategies, mutual cooperation can be sustained as a Nash equilibrium.

Full cooperation, however, is not the only possible equilibrium outcome of the
repeated donation game. On the contrary, the so-called Folk theorem guarantees the
existence of a multitude of equilibria with all possible levels of cooperation, provided that
each player gets at least the payoff for mutual defection (22). For example, in addition to
cooperating in every round, there are equilibria in which players defect unconditionally,
or in which they alternate between cooperation and defection (23).

Because there are many equilibria, it becomes natural to ask which equilibrium
emerges in populations of evolving players. This question can be explored with computer
simulations of stochastic evolutionary dynamics (24–26). In these simulations, players
can choose among many different strategies for the repeated interaction. Over time, they
abandon strategies that yield inferior payoffs and instead adopt strategies that perform
comparably well. By analyzing the resulting evolutionary trajectories, researchers explore
how likely players learn to cooperate and which strategies they eventually use.

The results of these individual-based simulations depend on a number of parameters,
which include the benefit-to-cost ratio, the population’s size, the intensity of selection,
and the mutation rate. The latter specifies how often players randomly explore new
strategies. The values of these parameters not only affect whether or not cooperation
evolves but also how long it takes for populations to converge and whether or not
analytical approximations are feasible. One way to minimize computation time is to
assume that mutations are exceedingly rare (27–29). In this limit, populations are
homogeneous most of the time. Only occasionally a mutant strategy arises, and this
mutant either fixes in the population or goes extinct before the next mutation occurs.
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A B C

Fig. 1. Evolutionary dynamics of cooperation. (A) In the donation game, players choose between cooperation and defection. Cooperation incurs a cost c and
provides a benefit b to the coplayer. Defection incurs no cost and provides no benefit. (B) We consider the repeated donation game, in which players can use
conditional strategies that depend on the outcome of previous rounds. (C) In each evolutionary update step, a focal individual, F , either explores a new random
strategy (with probability u) or compares his own payo� to that of a random role model, R. He is then more likely to switch to the role model’s strategy if she
performs better than him.

Since there is an explicit formula for the mutant’s fixation
probability (24), simulations that make use of the rare-mutation
assumption tend to be many orders of magnitudes faster than
conventional simulations (26). In addition, simulation results
can be interpreted more easily when mutations are rare because
the evolving population compositions are often closely connected
to the Nash equilibria of the game (23). Due to these advantages,
the rare-mutations assumption has become a standard approach
to explore the evolution of direct reciprocity (30–41).

However, there is by now substantial evidence from experi-
mental games among human subjects suggesting that empirical
mutation rates are sizeable (42). In particular, estimatedmutation
rates are far beyond the threshold for which the rare-mutation
approximation is valid (43). This observation raises the question
how individuals learn to engage in direct reciprocity when
mutations occur more frequently. This is the question that we
explore in the present paper.

If mutations are frequent, evolutionary dynamics lead to com-
munities in which many different strategies coexist. Surprisingly,
we find that such diverse communities facilitate cooperation.
The previous literature based on rare mutations emphasized that
cooperation can only evolve if the benefit-to-cost ratio, b/c, is
large. For example, the well-known strategy Win–Stay Lose–
Shift can only maintain cooperation if b/c > 2. Among reactive
strategies (which only take into account the coplayer’s previous
action), it takes an even larger benefit-to-cost ratio for cooperation
to evolve (44). Here, we show that once mutation rates are
nonnegligible, high cooperation levels can occur even as the
benefit-to-cost ratio approaches one, the theoretical minimum.
To this end, we present extensive simulations for various strategy
sets, including the set of stochastic reactive strategies, stochastic
memory-1 strategies, and deterministic memory-2 strategies. In
each case, we find that intermediate mutation rates are able to
facilitate cooperation in parameter regions in which cooperative
populations are unlikely to emerge otherwise. The emerging
diverse communities destabilize the equilibrium around all out
defectors, while keeping the cooperative equilibria stable. Thus,
certain levels of diversity—rather than uniformity—promote
cooperation.

Results

Model Framework.We consider a population of size N . Indi-
viduals engage in repeated donation games (Fig. 1). For most of
the main text, we assume that individuals make their decision
whether or not to cooperate based on reactive strategies (21).
Such strategies consist of two parameters: p is the probability to
cooperate if the coplayer has cooperated in the previous round,
whereas q is the probability to cooperate if the coplayer has
defected in the previous round. A strategy is called deterministic

if all cooperation probabilities are either zero or one. If at least
one probability is in between, the strategy is called stochastic.
The space of stochastic reactive strategies is the unit square, and
the deterministic strategies correspond to the four corners of
this square. Reactive strategies include: always defect ALLD =
(0, 0), always cooperate ALLC = (1, 1), the random strategy
(0.5, 0.5), tit-for-tat TFT = (1, 0), and generous tit-for-tat
GTFT = (1, q), where q 2 [0, 1] is the probability of forgiveness
or the level of generosity. We note that it is straightforward to
compute the cooperation rate C(S, S0) for a reactive strategy S
when facing a reactive strategy S0. This in turn also allows us to
compute the resulting payoff ⇡(S, S0), that is, the average benefit
minus cost derived from that interaction (45). For details, see SI
Appendix, Note 2. We focus on reactive strategies for simplicity;
analogous results hold when players use memory-1 (SI Appendix,
Fig. S1) or memory-2 strategies (SI Appendix, Fig. S9).

At any point in time, the composition of the popu-
lation is described by a list of the employed strategies
(S1, S2, ..., SN ). Each individual i derives an average payoff
⇡i =

P
j 6=i ⇡(Si, Sj)/(N � 1) from all pairwise interactions.

Individuals learn to adopt more profitable strategies over time.
To describe the resulting dynamics, several processes have
been proposed, including processes based on stochastic best
responses (46) or based on stochastic imitation (47). Here, we use
a pairwise comparison process (48), which is a variant of stochastic
imitation. When a focal individual F revises their strategy, they
can do so in two ways (Fig. 1C). With probability u, the focal
individual adopts a new strategy at random, which represents
mutation. With probability 1� u, the focal individual considers
imitating the strategy of another population member, which
corresponds to reproduction and selection. To this end, the focal
player randomly picks a role model R from the population and
compares its payoff, ⇡F , to that of the role model, ⇡R . The focal
player switches to the role model’s strategy with a probability
given by the Fermi function, 1/

⇥
1 + exp(� ·

�
⇡F � ⇡R)

�⇤
;

otherwise, the focal individual keeps their strategy. The parameter
� � 0 measures the intensity of selection. It reflects how clearly
payoffs can be evaluated. If � = 0, the imitation probability
simplifies to one-half, meaning that payoffs become irrelevant
and we are in the realm of neutral evolution. In the other limit
� ! 1, the focal player adopts the role model’s strategy only
if ⇡R � ⇡F , and selection becomes very strong. For most our
simulations, we choose� = 10, which represents an intermediate
intensity of selection.

We consider two versions of this process. For our simulations,
we consider a Wright–Fisher type model with nonoverlapping
generations (49): in each time step, all players are given the
opportunity to revise their strategy. For analytical calculations,
we complement this framework with a Moran-type model (24),
in which in each step only one randomly chosen player can revise
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Fig. 2. The e�ect of diversity on cooperation. In the limit of rare mutations (u ! 0, black bars), the average cooperation rate increases very slowly with the
benefit-to-cost ratio. Adding mutation (red bars) substantially enhances cooperation for small benefit-to-cost ratios. Parameters: � = 10; simulations are run
for at least 109 updates to get reliable averages.

their strategy. In both cases, we obtain similar results, but the
model with nonoverlapping generations is computationally more
efficient. Our simulations start out with random populations.
Over time, players adopt new strategies according to the above
process. The results depend on the benefit-to-cost ratio b/c, the
mutation rate u, the population size N , and the intensity of
selection �. In the following, we explore how these parameters
affect evolutionary outcomes. The quantity of interest is the
average cooperation rate C , with the average being taken over
all pairwise interactions over sufficiently long time.

The Diversity E�ect. In Fig. 2, we show how the average
cooperation rate C depends on the benefit-to-cost ratio b/c. In
the limit of rare mutations, u ! 0, the process is relatively well
understood (50). In that setting, the cooperation rate increases
only very slowly with rising benefit-to-cost ratio. But if we add
mutation we find a dramatic increase in the cooperation rate. For
population size N = 100, we find that mutation rates between
u = 0.01 and u = 0.03 are ideal for reactive strategies, while
slightly higher mutations rates (from u = 0.03 to u = 0.05)
are ideal for memory-1 strategies. The optimum mutation rate
depends on the exact value of b/c.

In the limit of rare mutation, u ! 0, the population is
mostly homogeneous at any one time and is exploring the strategy
space by making transitions between states that are dominated
by single strategies. For larger mutation rates, communities
are more diverse and, unexpectedly, this enhances the average
cooperation rate. Our goal is to understand this surprising
effect. Why does diversity promote cooperation? In the limit
of vanishing mutation, all players update their strategies based
on performance, but in the presence of mutation, some players
choose randomly.Why do random choices augment cooperation?

Characteristic Curve and Optimum Mutation Rate. In the do-
nation game, the benefit-to-cost ratio varies between one and
infinity. Consequently, the cost-to-benefit ratio varies between
zero and one. For a givenmutation rate u and a population sizeN ,
we can plot the average cooperation rate in the population versus
the cost-to-benefit ratio, c/b. We call this graph the characteristic
curve of the evolutionary process (Fig. 3A). Since increasing
the cost-to-benefit ratio makes cooperation less rewarding, all
characteristic curves are expected to decline monotonically. For
u ! 0, we find very low levels of cooperation if c/b > 1/2. For
u = 0.01, high levels of cooperation are observed for population
sizes N = 100 and 200 even if c/b > 1/2.

To examine the role of diversity in more detail, another
perspective is useful. In Fig. 3B, we show the average cooperation

rate C as a function of the mutation rate u. Proceeding from
high (u = 1) to low mutation rates (u ⇡ 10�4), we observe
three trends: First, the cooperation rate declines from 0.5 toward
near zero; subsequently, it rises suddenly to very high values (near
one); and then, it declines again. We refer to those trends as the
valley and the hump. The exact locations of the minimum of the
valley and the maximum of the hump depend on the cost-to-
benefit ratio and the population size. However, both the valley
and the hump occur consistently across many combinations of
parameters considered.

Stationary Distribution. To understand the two effects of valley
and hump, we show in Fig. 4 how often each strategy in the
space of all reactive strategies is used at various mutation rates.
The heat maps suggest that two regions of the strategy space
are visited predominantly. The first region corresponds to a set
of defective strategies (p, 0), with 0  p  c/b, including the
strategy ALLD = (0, 0). The second region consists of generous
tit-for-tat strategies GTFT = (1, q) with q satisfying 0  q 
1 � c/b. Both regions are favored by selection for all mutation
rates: They are visited more often than expected under neutrality.
However, the relative abundance of each region changes with u.
For smallmutation rates such as u = 10�4, the region of defectors
is most abundant. For larger mutation rates up to u = 10�1,
individuals predominantly use GTFT.

Detailed Analysis of a Reduced Strategy Set. To gain intuition
for these findings, it is useful to consider a reduced strategy set.
This set ought to be large enough to reproduce the above findings,
yet small enough to be tractable in detail. In SI Appendix, Note 2,
we show that a set with two strategies is not sufficient to reproduce
all qualitative findings. Specifically, if individuals can only choose
between ALLD=(0, 0) and GTFT = (1, q), we obtain neither
the valley nor the hump (SI Appendix, Fig. S2). Intuitively, this
two-strategy system fails to capture one key feature of the full
system, namely that all strategies (1, q)with q 2 [0, 1] are neutral
with respect to each other. This neutrality implies that the mass
of the blue peak in Fig. 4 can move freely along the edge p = 1
of the unit square [0, 1]2.

To capture this effect, we study a three-strategy system
consisting of ALLD, GTFT, and ALLC. For this system, we
observe both the valley and the hump, independent of whether
mutations introduce all three strategies equally often or whether
they are biased toward ALLD, SI Appendix, Fig. S3.

To explain the valley and the hump in this reduced strategy
space, we plot the relative abundance of each possible population
composition. Any compositions can be depicted as a point
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A

B

Fig. 3. Characteristic curve and the optimum diversity for reactive strategies. (A) The characteristic curve of an evolutionary process of cooperation and
defection is the graph of average cooperation rate versus cost-to-benefit ratio. In the limit of rare mutations (u ! 0, left), no substantial cooperation occurs
for c/b > 0.5. For mutation rate u = 10�2 (right), we observe substantial levels of cooperation even if c/b > 0.5, especially when N � 50. (B) The average
cooperation rate C as a function of the mutation rate u, for N = 100 (Left) and N = 200 (Right). When there are only mutations, u= 1, the cooperation rate
approaches C=0.5, regardless of the cost-to-benefit ratio c/b (Lemma 2 in SI Appendix, Note 2). As u goes down, the cooperation rate first drops toward zero,
then jumps up toward one (here at around u ⇡ 10�1), and finally, it drops toward zero again (here at around u ⇡ 10�4). We call these phenomena the “valley”
and the “hump”. The optimum mutation rate is around u ⇡ 10�2. We use � = 10.

in a simplex with corners ALLD, GTFT, ALLC. The relative
frequency of each strategy is proportional to the distance of the
point from the opposite side (Fig. 5A). Corners correspond to
homogeneous populations, where all individuals play the same
strategy.

The evolutionary dynamics on the simplex can be interpreted
most easily in the limiting cases, when there are either only
mutations (u = 1) or very rare mutations (u ⌧ 1). When there
are only mutations, individuals use each of the three available
strategies with equal probability. Since there is no selection, the
law of large numbers implies that populations are concentrated
around the center of the simplex (Fig. 5B). In such populations,
the strategy receiving the highest payoff is ALLD. If u is slightly
decreased, ALLD is favored by selection and becomes most
frequent. Since ALLC is exploited by ALLD, the remaining
population members are more likely to adopt GTFT rather than
ALLC (Fig. 5C ).

Looking at the other extreme, when u is very small (Fig. 5G–I),
populations are typically homogeneous. That is, populations are
at one of the three corners of the state space most of the time;
they are less often on one of the edges; and they are least often in
the interior. In this limit, selection makes the population oscillate
around the simplex as follows (Fig. 5J ). If the current population
predominantly uses ALLD, then GTFT can invade with a certain
probability (24). Once this happens, evolution leads toward a
pure GTFT state. Because ALLD players are now absent, the
strategies ALLC andGTFT are neutral with respect to each other.
Thus, a pure GTFT population drifts toward a mix of GTFT and
ALLC. Once the proportion of ALLC is high, the population

becomes susceptible to invasion by ALLD. This pattern is
consistent with the behavior of the full process in the limit of rare
mutations, u ! 0. In that limit, the population resolves to a pure
state between every two consecutivemutations. As a consequence,
the relative frequencies of the three pure states can be computed
from the probabilities pA!B that a single mutant with strategy
B successfully invades and fixes in a resident population with
strategy A, for A, B 2 {ALLD,GTFT,ALLC} (27). In particular,
for largeN (and any c and q), we show that the population spends
virtually all the time at a pure ALLD state, Theorem 3 in the SI
Appendix, Note 2.

For intermediate mutation rates, all three strategies are
typically present in the population simultaneously, but selection
events occur sufficiently often to drive inefficient strategies to low
frequencies. As a result, we observe two peaks for intermediate
u. One peak is near ALLD and the other one is near GTFT
(Fig. 5D), which is consistent with the behavior observed for
the full strategy space (Fig. 4). In this regime, mutations have
two positive effects on the evolution of cooperation. On the one
hand, they destabilize the peak around ALLD: because mutations
recurrently introduce GTFT players, these GTFT players are
more likely to reach a critical number after which cooperation
is more profitable. On the other hand, mutations make the
peak around GTFT more stable: because mutations recurrently
introduce small minorities of defectors, GTFT yields a strictly
better payoff than ALLC, which prevents ALLC from invading
through neutral drift.

This situation is reminiscent of a counterintuitive effect in
rock–paper–scissors games. In these games, providing a payoff
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A B C D

Fig. 4. Frequencies of reactive strategies. (A–D) For 4 distinct values of the mutation rate, u = 10�4 ,10�3 ,10�2 ,10�1, we simulate evolutionary dynamics for
at least 109 steps. We collect the appearing strategies into a 25⇥ 25 grid and plot their relative abundance as a heat map (Top row, log scale) and as a bar chart
(Bottom row, linear scale). In all 4 cases, the strategies with nonnegligible frequency have either q ⇡ 0 (orange peak, Bottom Left) or p ⇡ 1 (blue peak, Right).
For intermediate mutation rate, u = 10�2 (third column), the blue peak has more mass than the orange one, and we observe high overall cooperation rates.
Parameters: N = 100, c/b = 0.5, � = 10.

advantage to one strategy may eventually lower that strategy’s
frequency in equilibrium (51, 52). This counterintuitive effect
could explain our findings, as higher mutation rates seem to give
a payoff advantage to defectors. However, we believe that this
explanation does not fully capture our results. First, in addition
to (indirectly) affecting the payoffs of each strategy, mutations
alter the evolutionary dynamics altogether. They provide the
population with a larger pool of role models that can be imitated
subsequently. Second, the dynamics between ALLD, GTFT, and
ALLC does not follow a strict rock–scissors–paper cycle (Fig. 5J ).
Instead, the competition between ALLD and GTFT is bistable,
whereas the competition between GTFT and ALLC is neutral.
In each case, mutations favor cooperation: They help GTFT
to overcome the invasion barrier (against ALLD) and to resist
neutral drift (against ALLC).

We emphasize that unconditional ALLC players catalyze the
transition from the cooperative equilibrium to the defective one

in the limit of rare mutation. If we instead consider the triplet
{ALLD,GTFT,ALLD}, where ALLC is replaced by another
copy of ALLD, then high levels of cooperation occur for all
low enough mutation rates (SI Appendix, Fig. S4).

Beyond Reactive Strategies. To illustrate the robustness of our
results, we also explored the space of stochastic memory-1
strategies (8). These strategies are given by four parameters pCC ,
pCD, pDC , and pDD that denote the probabilities to cooperate
after each of the possible outcomes of the last round, CC , CD,
DC , and DD, respectively. The space of memory-1 strategies is
the hypercube, [0, 1]4. The space includes all reactive strategies
but also Win–Stay Lose–Shift and many other strategies. In SI
Appendix, Fig. S1 and in Fig. 2, we show that our findings
continue to hold in this broader space. In the limit of rare
mutations, u ! 0, there is no substantial cooperation when the
cost-to-benefit ratio exceeds 1/2. In contrast, for nonnegligible

A B

FJ H IG

C D E

Fig. 5. Evolution of the reduced three strategy system S3 = {ALLD,GTFT,ALLC}. (A) Each point in the simplex represents a composition of the population.
(B–I) Relative frequencies of the population composition (red is high) as u decreases from B, u = 100 = 1 to i, u = 10�2.8. (B) For u = 1, the population
typically consists of roughly 1/3 of each of ALLD, GTFT, and ALLC and the average cooperation rate is 5.1/9 .

= 0.57 (Theorem 1 in SI Appendix, Note 2). (E–F) For
u 2 [10�1.2 ,10�1.6], the population typically consists mostly of GTFT players and the cooperation rate is ⇡0.9. (H and I) For u  10�2.4, virtually all players play
ALLD virtually all the time. (J) The e�ects of mutation and selection on the total mass. Parameters: N = 100, c = 0.7, � = 10. For GTFT we use (1,0.1).
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mutation rates, cooperation does occur even if c/b > 1/2.
Moreover, the average cooperation rate as a function of u again
exhibits both the valley and the hump. In SI Appendix, Note 4, we
report similar results for (deterministic) memory-two strategies
(SI Appendix, Fig. S9). Overall, these findings suggest that the
positive effects of mutations are not restricted to one particular
strategy space.

Discussion

In repeated social dilemmas, individuals can sustain cooperation
by reacting to their interaction partner’s previous actions. This
mechanism for cooperation is called direct reciprocity (3–16).
For direct reciprocity, fully cooperative Nash equilibria exist
if the benefit-to-cost ratio is greater than one, b/c > 1 (53).
But there is still a range of other equilibria with lower levels
of cooperation (23). In particular, full defection remains an
equilibrium for all benefit-to-cost ratios. Therefore, it is a
question of evolutionary dynamics which equilibrium is chosen
and how much cooperation is achieved on average. When indi-
viduals react to their interaction partner’s last decision, previous
papers (33, 34, 44) suggest that high levels of cooperation only
emerge if the benefit-to-cost ratio is greater than two, b/c > 2.
Hence, the interval 2 > b/c > 1 was void of cooperation. Here,
we show how to attain high levels of cooperation for b/c > 1 in
general, and thus for 2 > b/c > 1 in particular.

Many previous studies of direct reciprocity explore selection
dynamics either in the absence of mutation (54–61), or in the
limit of very low levels of mutation (30–41) (for a more detailed
discussion of the previous literature, SI Appendix, Note 1). In
the context of evolutionary game theory, selection means to
adopt strategies based on performance, while mutation means to
adopt strategies randomly. We find that intermediate mutation
rates allow high levels of cooperation even if benefit-to-cost
ratios are only marginally above one. Mutations generate diverse
communities which we find to have two beneficial effects for
evolution of cooperation. First, diversity undermines defective
equilibria by seeding clusters of potential invaders. Second,
diversity stabilizes cooperative equilibria by preventing neutral
drift toward strategies that can be exploited.

The importance of mutant strategies has also been highlighted
in earlier studies of direct reciprocity (5, 12, 62). These studies
stress that any resident population becomes unstable when in-
teracting with an appropriate ensemble of mutants. Importantly,
however, the reported effects of mutant strategies in these studies
are symmetric. Just as there are mixtures of mutants that can
invade an ALLD equilibrium, there are mutants that can invade
WSLS (or any other cooperative resident strategy). In contrast,
the effect of mutations that we report is asymmetric. We find
that the variation introduced by mutations systematically favors
cooperation. This effect is robust, and it arises independently of
the strategy spaces we considered. Interestingly, the positive effect
of variation does not even require this variation to be heritable.
Indeed, further simulations reported in SI Appendix, Note 3
suggest that even phenotypic (nonheritable) variation in the
player’s behaviors can foster cooperation (SI Appendix, Fig. S8).

The essential question of evolution of cooperation is not
only whether cooperation can evolve but for which benefit-to-
cost ratio. The efficiency of a mechanism could be defined by
the minimum benefit-to-cost ratio needed for the evolution of
cooperation. We show that the efficiency of direct reciprocity is
greatly enhanced by nonnegligible mutation rates. Remarkably,
the path to cooperation identified in this paper does not
require complex strategies with extended memory capacities, as
proposed earlier (63–67). Instead, this path is already available to

individuals with the most basic strategies of direct reciprocity. In
our paper, cooperation does not evolve because individual strate-
gies are sufficiently sophisticated. Instead, cooperation evolves
because the evolutionary process is sufficiently erratic. Our
observation is both surprising and relevant. It is surprising because
one would not expect a-priori that replacing performance-based
update events with random ones could promote cooperation. It
is relevant because many opportunities for cooperation naturally
arise in situations where the benefit-to-cost ratio is only slightly
above one.

Materials and Methods

Here, we sketch the intuition behind themathematical claimsmade in themain
text. The full mathematical proofs appear in the SI Appendix, Note 2.

Reactive Strategies. A reactive strategy is given by a pair (p, q), where p 2
[0, 1] (resp. q 2 [0, 1]) are the probabilities to cooperate in the next round,
assuming that the coplayer has just cooperated (resp. defected). When two
individuals employing reactive strategies s and s0 play an infinitely repeated
donation game, their payoffs⇡(s, s0),⇡(s0, s)derived from that interaction can
be computed using a standard formula (45). The same applies to the pairwise
cooperation rates C(s, s0), C(s0, s), Lemma 1 in the SI Appendix, Note 2.

Case u = 1 (No Selection). When u = 1 then selection does not play any role
and at each point in time, each individual plays a strategy selected uniformly
at random from the space S of available strategies. As a consequence, when
the space S consists of finitely many strategies, by linearity of expectation, the
overall cooperation rate can be computedby averaging the pairwise cooperation
rates among the strategies, Theorem1.Moreover, when the spaceS includes all
reactive strategies, we show that the average cooperation rate of the population
is precisely 1/2. This is because of a certain symmetry between cooperation and
defection, Lemma 2.

Case u ! 0 (Rare Mutations). In the regime of rare mutations (u ! 0),
we obtain a simplified process studied by Fudenberg and Imhof (27), as well
as Imhof and Nowak (50). In that regime, the population resolves to a pure
(homogeneous) state between every two consecutive mutations. When the
space S of available strategies is finite, the long-term fate of the population
can be characterized by a frequency vector f = (fS | S 2 S) that records,
for each strategy S, the relative proportion fS of time for which everyone in the
population employs strategy S. This frequency vector can be found in time that
is polynomial in the population size N and in the size k of the strategy space,
by computing all the pairwise fixation probabilities {⇢N(S, S0) | S, S0 2 S}
and solving for the stationary distribution of the underlying Markov chain (27).
Given the frequency vector, it is straightforward to compute the overall average
cooperation rate C as C =

P
S2S fS · C(S, S).

In the SI Appendix, Note 2, we show that for large population sizes N, each
of the pairwise fixation probabilities ⇢N(S, S0) is either very small (namely
exponentially small inN) or quite large (namely at least inversely proportional to
N), see Lemma 3. This allows us to argue that for the reduced strategy spaceS3,
the cooperation rate C tends to either 0 or to 1, as the population size N grows
large. The intuition is that for largeN, one of the entries fS in the frequency vector
f tends to 1, whereas all other entries tend to 0. Thus, the overall cooperation
rate tends to the pairwise cooperation rate C(S, S) of thismost frequent strategy
against itself. Theorem 2 and Theorem 3 for details.

Data, Materials, and Software Availability. All the datasets used in this
paper together with the related computer code are available at https://doi.org/
10.6084/m9.figshare.21583554.v1 (68).
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