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One landmark application of evolutionary game theory is the study of social
dilemmas. This literature explores why people cooperate even when there
are strong incentives to defect. Much of this literature, however, assumes
that interactions are symmetric. Individuals are assumed to have the same
strategic options and the same potential pay-offs. Yet many interesting ques-
tions arise once individuals are allowed to differ. Here, we study asymmetry
in simple coordination games. In our set-up, human participants need to
decide how much of their endowment to contribute to a public good. If a
group’s collective contribution reaches a pre-defined threshold, all group
members receive a reward. To account for possible asymmetries, individuals
either differ in their endowments or their productivities. According to a
theoretical equilibrium analysis, such games tend to have many possible sol-
utions. In equilibrium, group members may contribute the same amount,
different amounts or nothing at all. According to our behavioural exper-
iment, however, humans favour the equilibrium in which everyone
contributes the same proportion of their endowment. We use these exper-
imental results to highlight the non-trivial effects of inequality on
cooperation, and we discuss to which extent models of evolutionary game
theory can account for these effects.

This article is part of the theme issue ‘Half a century of evolutionary
games: a synthesis of theory, application and future directions’.

1. Introduction
Fifty years after the introduction of ‘evolutionarily stable strategies’ [1,2], evol-
utionary game theory has become a powerful toolbox to analyse evolutionary
processes and human behaviours. This toolbox can be applied to a wide variety
of questions. Using evolutionary game theory, researchers have explored how
conventions evolve [3], how people learn from others [4] and how recurrent
corruption threatens the stability of societies [5]. Perhaps one of the most pro-
minent applications of evolutionary game theory is the study of cooperation
[6,7]. This field aims to describe which mechanisms promote cooperative beha-
viours, and in which social and ecological environments cooperation is most
likely to spread. Among the mechanisms that facilitate cooperation are kin
selection [8,9] and group selection [10,11], direct [12–14] and indirect reciprocity
[15,16], network structure [17–19], and reward and punishment [20–23].

Models of cooperation typically assume that all members of an evolving
population are symmetric. That is, all individuals have the same sets of strategies
and identical incentives to choose each strategy. Yet in most human and animal
populations, inequality is ubiquitous. People frequently differ in their endow-
ments, productivities, their shares of rewards, and the positions they occupy in
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social hierarchies [24,25]. Such inequalities gives rise to asym-
metric games, where individuals differ in what they can do,
and what consequences their actions have. In the context of
cooperation, such asymmetric games allow for a range of
new exciting questions. For example, how do different kinds
of inequality affect the way people cooperate? Also, how do
these inequalities influence human notions of fairness?

In this paper, we discuss some of these questions in the con-
text of a simple coordination game, the threshold public goods
game. This game has many possible equilibria, but group
members disagree on which equilibrium they prefer. To
explore the effect of exogenous inequality, we consider two
independent sources of asymmetry. Individuals can either
differ in their endowments (i.e. their wealth) or in their produc-
tivities (i.e. the efficiency of their contributions to the public
good). We use this set-up to explore how inequality impedes
overall coordination (if at all), and how it affects which equili-
bria are chosen. We address these questions with both a
theoretical analysis and a behavioural experiment.

As a part of this analysis, we also ask to which extent clas-
sical evolutionary dynamics can accurately predict the
behaviours that emerge in the experiment. Perhaps somewhat
surprisingly, we find that a naive application of evolutionary
models fails to reproduce many of the empirical patterns. For
example, models based on replicator dynamics with random
initial conditions tend to overestimate how often people
defect, and they underestimate how often less productive
individuals cooperate. However, we also show that predic-
tions become more accurate when initial conditions match
the empirical first-round behaviours. These results suggest
that especially in games with natural focal points, a naive
application of evolutionary game dynamics may mis-predict
which equilibrium is most likely to occur. These predictions
improve dramatically, however, once the participants’ true
initial play is taken into account.

Overall, the contribution of our study is twofold. First, we
provide novel empirical evidence on how people coordinate
in the presence of exogenous asymmetries. Second, our
data also allow us to test the predictive power of different
types of evolutionary dynamics. Both contributions may
help to further improve existing models on the evolution of
cooperation in asymmetric social dilemmas.

2. An overview of the previous literature on
asymmetric public goods games

Traditionally, a classical model to study the effect of inequality
on cooperation is the linear public goods game [26,27]. In this
game, individuals decide how much of their endowment to
contribute to a public good. All contributions are multiplied
by some factors, and the resulting amount is evenly shared
among all group members. In asymmetric public goods
games, subjects can differ in their endowments, productivities
and in how much they benefit from public goods. For one-
shot games, it has been shown that heterogeneity can have a
positive effect on cooperation—players with higher pro-
ductivity and share of reward tend to contribute all their
endowment [28,29] (Zhang B, Dong Y, Qin C-Z, Gavrilets S,
2022, Kinship can hinder cooperation in heterogeneous
populations, unpublished manuscript). If the public goods
game is played repeatedly, the effect of heterogeneity on
cooperation is more complex. Although extreme inequality

prevents cooperation, slightly unequal endowments may be
necessary for cooperation to evolve if players also differ in
other dimensions [26].

In general, however, the interaction of inequality and
cooperation is non-trivial. Avast amount of experimental studies
observe that endowment inequality tends to reduce cooperation
even in the one-shot public goods game [30–32]. Furthermore,
the relative contributions of the rich are often lower than those
of the poor, but their absolute contributions tend to be higher
[33–35]. Compared with asymmetric endowments, asymmetric
productivities have a neutral or positive impact on contributions,
and highly productive players often contribute more than
players with a low productivity [36–38]. By contrast, the effect
of asymmetric sharing of public goods seems to be neutral,
and players often contribute in proportion to their share
[26,39–42]. Finally, when there are both endowment and pro-
ductivity heterogeneity, cooperation is maximized if the two
sources of heterogeneity are aligned, such that more productive
individuals have higher endowment [26]. By contrast,
cooperation quickly breaks down if endowments and productiv-
ities aremisaligned. Similarly, also a combination of endowment
and reward heterogeneity can increase cooperation [43]. Finally,
the joint effect of productivity and reward inequalities on
cooperation is not significant [40].

While in the linear public goods game, the dominant action
in a single game is to defect, social dilemmas can also arise in
games in which cooperation is an equilibrium. One example is
the threshold public goods game [44–46]. Here, individuals
only benefit from contributions to a public good if their contri-
butions exceed a certain threshold. Threshold public goods
games tend to have many equilibria, including a defective
equilibrium in which no one contributes, and a set of coopera-
tive equilibria in which the group’s collective contribution
matches the threshold. However, different individuals may
prefer different cooperative equilibria: everyone prefers the
threshold to be reached, but they prefer the other group
members to make the necessary contributions.

Recently, a particular variant of the threshold public goods
game has attracted much attention, the climate game or collec-
tive-risk dilemma [47–53]. For this game, evolutionary game
theory suggests that wealth inequality can enhance cooperation.
Furthermore, in the multi-period climate game, players with
higher endowments, productivities and risks of loss generally
contribute more to the common pool at the cooperative
equilibrium [53–56]. However, experimental studies on the
asymmetric threshold public goods game and the climate
game observed an adverse effect of endowment inequality on
coordination [44,45,49,52]. Although rich subjects often contrib-
ute more than in the homogenous case, this surplus is often
overcompensated by the accompanying decrease in contri-
butions by the poor [52]. The negative effect of endowment
inequality could be reduced by introducing additional mechan-
isms, such as setting an intermediate target [48], communication
betweenplayers [49], and the frameof ‘contributing’ (rather than
‘keeping’) in ‘absolute’ terms (rather than ‘relative’) [46]. By con-
trast, productivity inequality does not seem to have a significant
effect [51]. Furthermore, the effects of multiple dimensions of
inequality on coordination is generally more complex [53].

Most of the previous studies on the impact of asymmetry
on coordination are based on a multi-period climate game.
Here, players are required to reach the target at the end of
a series of repeated contributions [47–50,52–54,56]. Such a
multi-period structure can give rise to complex dynamics,
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since individuals may first adopt a wait-and-see approach
[53,54,56]. In the following, we thus explore the effect of
asymmetry in a more simple setting, where each experimen-
tal round represents an independent game. We use this
framework to systematically explore the effect of two sources
of asymmetry, by introducing inequality in the players’
endowments and their productivities.

3. Model and theoretical predictions for the one-
shot game

To explore the effect of exogenous inequality on coordination,
we use a comparably simple set-up. We consider an asym-
metric threshold public goods game among two players,
player 1 and player 2. The game proceeds as follows. First,
each player i (with i = 1, 2) receives a fixed positive integer
endowment of ei. Then the players individually decide
which amount ci from their endowment they wish to contrib-
ute to a common pool, with ci∈ {0, 1,…, ei}. Each individual’s
contribution is multiplied by a productivity factor pi. We
refer to p1c1 + p2c2 as the players’ collective contribution.
If the players’ collective contribution reaches a predefined
threshold θ, each individual i receives a reward ri in addition
to their remaining endowment. Otherwise, both players only
receive their remaining endowment. Therefore, pay-offs
depend on the fixed parameters of the game (ei, pi, ri and θ)
and on the contribution tuple (c1, c2). The pay-off of player
i is:

piðc1, c2Þ ¼
ei $ ci þ ri if p1c1 þ p2c2 & u
ei $ ci otherwise:

!
ð3:1Þ

For our behavioural experiment, we consider five particular
instantiations of this game (figure 1a; electronic supple-
mentary material, table S1). As a control, we consider a
treatment with ‘full equality’. Here, individuals coincide in
all dimensions, and the game is symmetric. Next, we consider
two treatments in which individuals only differ in their
endowments. Here, player 1 either obtains twice the endow-
ment of player 2 (moderate endowment inequality) or
three times the endowment of player 2 (strong endowment
inequality). Finally, we also consider two treatments
in which individuals have different productivities. Again,
player 1 is either twice as productive (moderate productivity
inequality), or three times as productive as player 2 (strong
productivity inequality). To facilitate comparisons across
treatments, the reward is kept constant, and the threshold θ
is determined such that groups reach the threshold if both
players contribute half of their endowment.

To obtain some intuitive understanding of the strategic
considerations that apply to this game, we first describe the
respective Nash equilibria of the one-shot (non-repeated)
game (see the electronic supplementary material, S1.2 for
details; in addition, S4.1 describes the possible equilibrium
outcomes when the game is repeated for many rounds).

In general, the one-shot threshold public goods game can
have two types of equilibria. First, there is a set of cooperative
Nash equilibria in which the group’s collective contribution
exactly matches the threshold. In addition, there can be a
defective Nash equilibrium in which all players keep their
endowment. In figure 1b, we illustrate the set of Nash equili-
bria for the five experimental treatments. Two interesting
observations follow immediately. First, for the parameters
of the experiment, full defection is an equilibrium under
full equality and under endowment inequality, but it ceases
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Figure 1. Basic set-up and predictions for a threshold public goods game. (a) We consider games between two players. In the beginning, players receive some fixed
endowment (indicated by yellow coins). The players then independently decide how much of their endowment to contribute to a public good. The player’s effective
contribution is their contribution times their individual productivity factor (indicated by the arrows). If the sum of the players’ effective contributions exceeds a
threshold, both players receive a reward. We conduct experiments for five treatments. Players are either identical in all aspects, or they differ in their endowments, or
they differ in their productivities. The treatment with full equality serves as our control. (b) To gain some insight into the logic of the game, we calculate the Nash
equilibria of the one-shot game (these equilibria are marked by coloured dots). Each treatment allows for many Nash equilibria. These equilibria differ in whether or
not the threshold is reached, and in how much the two players contribute. For better clarity, we highlight the most extreme Nash equilibria, by depicting the
players’ respective contributions (c1, c2) in equilibrium.
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to be an equilibrium under productivity inequality. In the last
two treatments, the more productive player has a sufficiently
strong incentive to contribute even if the other player defects.
Second, in all treatments there are many different cooperative
equilibria. In all these equilibria the group reaches the
threshold, yet they differ in how the respective costs are
allocated among the two players.

To further explore how participants might choose among
the different cooperative equilibria, in the electronic sup-
plementary material, S1.3 we describe a set of heuristics
that participants might apply. For example, if participants
strive for equal absolute contributions (EAC), they settle at
the cooperative equilibrium for which c1 = c2. Similarly, if
they both strive to achieve equal relative contributions
(ERC), they choose the equilibrium that satisfies c1/e1 = c2/
e2. In addition, participants might also strive for equal collec-
tive contributions, equal pay-offs, and a maximal collective
pay-off. In the electronic supplementary material, table S2,
we summarize which predictions these criteria make for
each of the five treatments. As one aim of the experiment,
we explore which of the above rules is best able to explain
the subjects’ behaviours.

4. A behavioural experiment on asymmetric
threshold public goods games

To explore how humans act in such threshold public goods
games, we invited a total of 558 participants to interact in
one of the five treatments illustrated in figure 1. In the begin-
ning of each experimental treatment, participants are
assigned to a single treatment. Each participant then plays
two sets of repeated games, referred to as game 1 and
game 2. At the beginning of game 1, participants are ran-
domly matched in pairs, and randomly receive the roles of
player 1 and player 2, respectively. Thereafter, they play 20
rounds of the asymmetric public goods game, during
which participants keep their co-player and their respective
role. After each round, participants learn each other’s contri-
butions and pay-offs, as well as their collective contribution.
In game 2, participants interact for another 20 rounds, but
now with a different partner and in the opposite role (those
participants who acted as player 1 in game 1 now act as
player 2, and vice versa). At the end of the experiment, par-
ticipants are asked to fill out a questionnaire on what they
consider to be the fair contribution patterns for each of
their roles. In the following, we present the results of our
experiment when we combine the results of game 1 and
game 2. For a detailed analysis of each separate game and
more details on the experimental procedures, see the
electronic supplementary material, S2.

To assess the effects of inequality, we consider two
measures of a group’s performance. We call a group successful
if their collective contribution matches or exceeds the
threshold. Similarly, we call the group effective if their collective
contribution exactly matches the threshold. In figure 2a, we
compare the proportion of successful groups across the five
treatments. Overall, we observe that under full equality and
under productivity inequality, these proportions are largely
similar, with approximately 90% of these groups meeting the
threshold on average. Onlywhen there is endowment inequal-
ity, groups become less successful (in particular, in both
treatments with endowment inequality, the proportion of

successful groups is significantly lower than in the treatments
with productivity inequality; electronic supplementary
material, table S5). To further explore these differences, we
analyse how the proportion of successful groups changes
over the course of the experiment. In figure 2b, we show that
this proportion increases in all treatments, suggesting that
individuals learn to better coordinate their contributions
over time. However, especially in the groups with endowment
inequality, it may take a substantial number of rounds until
groups have learned to coordinate effectively.

In the next step, we compare the contributions of players 1
and 2 across the five treatments (figure 2c,d ). Under
full equality and productivity inequality, the contributions of
the two players are indistinguishable. When there is endow-
ment inequality, however, high-endowment players
contribute more in absolute terms but less in relative terms
(see also the electronic supplementary material, table S7).
To further explore these results, we look at the groups’
contribution patterns (c1, c2) over time, separately for each
treatment (see the electronic supplementary material, figure
S2). When there is either full equality or productivity inequal-
ity, most participants quickly coordinate on giving half of their
respective endowment. This contribution pattern is consistent
with the heuristics of EAC and ERC in these treatments (see
the electronic supplementary material, table S2). By contrast,
in the treatments with endowment inequality, the picture is
more mixed. Here, in about a quarter of groups, players con-
tinue to give half of their endowment (consistent with the
ERC criterion). In addition, there is a substantial number of
groups in which players either make the same absolute contri-
bution (EAC), they contribute nothing at all, or their
contribution pattern is somewhat between the patterns of
ERC and EAC (see the electronic supplementary material,
figure S2). Interestingly, the picture is much more clear when
participants need to specify the contribution pattern they con-
sider to be most fair. According to the post-experiment
questionnaire, ERC is clearly the most common response
(see the electronic supplementary material, figure S3).

In a last step, we also analyse why some groups fail to
reach the threshold (see the electronic supplementary
material, figure S4) and how players respond to failure (see
the electronic supplementary material, figure S9). To this
end, we take the outcome with ERCs as the baseline, and dis-
tinguish three categories of failing groups: (i) groups in which
only player 1 contributes less than half of the endowment, (ii)
groups in which only player 2 contributes less than half of the
endowment, and (iii) groups in which both players fail to
contribute at least half of their endowment. In the two treat-
ments with endowment inequality (where we observe most
failures), most groups either fail because player 1 (high-
endowment player) falls short of contributing at least half
of the endowment, or because both players contribute too
little. Only in a clear minority of groups it is the low-endow-
ment player who under-contributes. Overall, these results
suggest that endowment inequality represents the biggest
obstacle to coordination since no contribution pattern is a
clear focal point. Finally, conditional behaviours are observed
in failing groups with categories (i) and (ii), where players
who contribute less than half of their endowment tend to
increase their contribution in the next round (see the elec-
tronic supplementary material, figures S8 and S9). This can
help to understand how players gradually coordinate on
the pattern of ERCs.
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5. Evolutionary game dynamics and equilibrium
selection

When games have multiple equilibria (as in our treatments),
evolutionary game theory is often interpreted as a means to
single out one of these equilibria as the most salient outcome

[57]. In the following, we explore to which extent classical
evolutionary game dynamics predict the equilibria that
arise in the experiment. To this end, we compare our exper-
imental results to four models of evolutionary game theory.
Specifically, we consider replicator dynamics [58], best-
response dynamics [58], a stochastic birth–death process
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Figure 2. Main results of the experiment. (a) For each treatment, we first compute how likely groups are successful in obtaining the reward (i.e. how likely their
collective contribution matches or exceeds the threshold). Dots indicate the average success rate of each individual group, averaged over all 20 rounds of the game.
Compared to the treatment with full equality, both moderate and strong endowment inequality diminish a group’s success rate. In addition, also moderate pro-
ductivity inequality has a weakly negative effect. (b) We next study the groups’ cooperation dynamics over time. To this end, we consider how often groups are
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[59] and introspection dynamics [60]. These models have
been widely used to predict human behaviour in social
dilemma games [26,53,61,62]. Furthermore, we distinguish
two scenarios, depending on whether individuals interpret
their interactions as a series of independent one-shot
games, or whether they interpret them as a repeated game
(in the latter case, individuals may use conditional strategies
that depend on the outcome of previous rounds). We fully
discuss all these models and their results in the electronic
supplementary material, S3 and S4.3. Here, we briefly
summarize our results for the replicator dynamics for the
one-shot game.

As a first approach, we assume that initially, all strategies
are played with equal frequency and trace the trajectory of
replicator dynamics [63,64], see figure 3a. The equilibria pre-
dicted by this method, however, fail to reproduce the
experimental patterns. For three treatments (full equality,
and both endowment inequality treatments), this method
selects the mutual defection equilibrium as most salient.
In the remaining two treatments (productivity inequality),
replicator dynamics predicts the more productive player to
make all the contributions. We find a similar mismatch
between evolutionary trajectories and experimental results
when we use a random sample of initial populations, or
when we use different evolutionary dynamics (electronic
supplementary material, figure S5). In all cases, evolutio-
nary models underestimate the contributions of both
players in the treatments with full equality and endowment
inequality. In addition, they overestimate the contributions
of the more productive player in the treatments with
productivity inequality.

As one potential reason for this mismatch, we note that
models of evolutionary game theory neglect information
that is not directly represented by the pay-off matrix. This

information may entail, for example, the presence of natural
focal points [65]. In addition, by choosing random initial con-
ditions, we give equal weight to all strategies. Such a choice
can exaggerate the influence of dominated strategies on the
subsequent dynamics. To address this issue, we have run a
second set of simulations, for which we take the empirical
first-round behaviour as the population’s initial strategy distri-
bution. With this modification, replicator dynamics now
predicts the most abundant experimental outcome in all five
treatments (see figure 3b). Similarly, also the fit of all other
evolutionary models is now greatly improved, as illustrated
in the electronic supplementary material, figure S6. Overall,
these results suggest that a naive application of classical
evolutionary dynamics and learning processes may fail to
anticipate the regularities of empirical play (irrespective of
whether the used dynamics is deterministic or stochastic).
However, evolutionary models can recover these empirical
regularities when taking into account the true empirical
initial distribution.

To complement this one-shot analysis, in the electronic
supplementary material, S4, we provide additional analyses
to capture the repeated-game character of the experiment.
Among other results, we explore how individuals learn to
make decisions when they can choose among all reactive
strategies. When individuals use reactive strategies, they con-
dition their behaviour on their co-player’s behaviour in the
previous round. Our simulations suggest that once individ-
uals interact repeatedly with the same partner, they are
more likely to reach the threshold over time (electronic
supplementary material, figure S10). At the same time, how-
ever, the repeated game analysis does not recover the
empirical observation that individuals have a clear tendency
to favour outcomes in which both players contribute equally
(either in absolute or relative terms). These findings may be
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Figure 3. Modelling the evolution of strategies with replicator dynamics. To explore to which extent classical game dynamics are able to recover the previous
empirical patterns, we consider a variety of dynamics (see the electronic supplementary material, S3 for details). Here, we report results for replicator dynamics,
assuming that individuals interpret each round as an isolated one-shot game. In particular, a player’s possible strategies are all possible contributions between zero
and the player’s endowment (for a repeated game analysis where players use conditional strategies, see the electronic supplementary material, S4). (a) First, we
assume that initially, all strategies are played with equal frequency. In that case, we observe that eventually, either players do not contribute at all ( full equality,
endowment inequality), or that only the first player contributes (productivity inequality). (b) We reconsider the outcome of replicator dynamics with an initial
population that matches the empirical first-round behaviour. We observe that now the model recovers the main empirical patterns. In particular, the solution
according to replicator dynamics matches the most abundant experimental outcome in round 20 (see the electronic supplementary material, figure S6).
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taken as another indication that focal points and the subjects’
expectations prior to the experiment may play a decisive role.

6. Discussion
In this paper, we study the effect of inequality in asymmetric
threshold public goods games. Players decide how much of
their endowment to contribute to a public good. Only if the
group’s collective contribution reaches a given threshold,
players receive a reward. To study the effect of exogenous
inequality, individuals may either differ in their endowments,
or in how productive their contributions are. In general, such
threshold public goods games allow for many different equi-
libria. These equilibria differ in whether or not the threshold
is reached, and in the relative contributions of each player.

With a behavioural experiment, we show that endow-
ment inequality is more of an obstacle to cooperation than
productivity inequality. Interestingly, the strength of asym-
metry (e.g. whether one player has two times or three times
the endowment of the other player) seems to have a negli-
gible effect. Our data suggest that endowment inequality
makes it particularly difficult to coordinate because different
individuals may consider different contribution patterns as
the most salient. While some individuals may strive to
make equal absolute contributions, others may strive
to equalize the individuals’ relative contributions (relative
to the players’ endowments) [35,46]. Such mismatches in
expectations can delay the time until individuals reach an
equilibrium, or it can prevent them from reaching a coopera-
tive equilibrium altogether. By contrast, in the treatments
with full equality and productivity inequality, the two
above criteria (equal absolute or relative contributions)
single out the same equilibrium. This might explain why
individuals find it easier to coordinate in those treatments.

Interestingly, although groups in the treatment with pro-
ductivity inequality are extremely successful in reaching the
threshold, they typically do not coordinate on themost efficient
equilibrium. In these treatments, efficiency would require the
more productive player to make all the contributions. While
this equilibrium maximizes the group’s collective pay-off, it
leads to a rather uneven distribution of these pay-offs, with
the low-productivity player benefitting disproportionately.
Instead, our experiment suggests that groups unanimously
prefer the two players to make equal contributions. This obser-
vation suggests that there is an interesting efficiency dilemma
on top of the usual social dilemma. Individuals may refuse to
choose the most efficient equilibrium if doing so would lead
to unequal pay-offs [66,67].

Using different models of evolutionary game theory, we
have also explored to which extent classical evolutionary
dynamics can account for these empirical regularities. To
this end, we assume in the main text that individuals inter-
pret their interactions as a series of one-shot games. This
analysis does not directly mimic the set-up of the experiment,
in which participants interact with the same co-player for 20
rounds. Nevertheless, in coordination games such as ours, a
one-shot analysis can already give basic insights into the stra-
tegic logic of the game: in threshold public good games,
individuals prefer to meet the threshold, yet they prefer
their co-player to make the respective contributions. Repeated
games may allow for additional equilibria. Yet the most effi-
cient repeated-game equilibria correspond to the set of

cooperative one-shot equilibria shown in figure 1 (see the
electronic supplementary material, S4.1 for details).

When applied naively (i.e. when we use uniform or
random initial conditions), we find that all considered evol-
utionary dynamics based on the one-shot game provide a
poor match to the empirical data. They overestimate how
often people would defect, and how often the more pro-
ductive player would cooperate in the treatments with
productivity inequality. One reason for this mismatch
might be related to the participants’ beliefs and expectations
prior to the experiment. In their daily lives, individuals rarely
play any single coordination game in isolation. Rather they
play a mixture of different games with different incentives
to cooperate. As a result they develop simple heuristics
based on inequality aversion [68,69], reference points [70],
pay-off ranking [67,71] or collective pay-off maximization
[66] to help them with their typical decision problems.
When such individuals participate in behavioural exper-
iments, their first-round behaviour tends to be largely
affected by the heuristics they apply. In line with this view,
we observe that all considered evolutionary dynamics
describe the empirical patterns fairly accurately when
they take the participants’ empirical first-round behaviour
into account.

Overall, our study demonstrates that evolutionary game
theory remains a powerful tool for modelling behavioural
dynamics in asymmetric interaction. However, when predict-
ing human behaviour in coordination games with many
equilibria, they may mis-predict which equilibrium arises if
some of the equilibria are more salient to participants than
others. In addition, the experiments also identify another
source of complexity. For instance, some players withdraw
from the cooperative equilibrium by decreasing their contri-
bution, most likely because they expect the co-player to
make up for their missing contributions in the future
[72,73]. In this sense, cooperation and coordination in
repeated asymmetric interaction become an even more
delicate issue.
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