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Direct reciprocity is a wide-spread mechanism for the evolution of cooperation. In
repeated interactions, players can condition their behavior on previous outcomes. A
well-known approach is given by reactive strategies, which respond to the coplayer’s
previous move. Here, we extend reactive strategies to longer memories. A reactive-
n strategy takes into account the sequence of the last n moves of the coplayer. A
reactive-n counting strategy responds to how often the coplayer cooperated during
the last n rounds. We derive an algorithm to identify the partner strategies within
these strategy sets. Partner strategies are those that ensure mutual cooperation without
exploitation. We give explicit conditions for all partner strategies among reactive-2,
reactive-3 strategies, and reactive-n counting strategies. To further explore the role
of memory, we perform evolutionary simulations. We vary several key parameters,
such as the cost-to-benefit ratio of cooperation, the error rate, and the strength of
selection. Within the strategy sets we consider, we find that longer memory tends to
promote cooperation. This positive effect of memory is particularly pronounced when
individuals take into account the precise sequence of moves.

evolutionary game theory | direct reciprocity | evolution of cooperation | prisoner’s dilemma

To a considerable extent, human cooperative behavior is governed by direct reci-
procity (1, 2). This mechanism for cooperation can explain why people return favors (3),
why they show more effort in group tasks when others do (4), or why they stop cooperating
when they feel exploited (5, 6). The main theoretical framework to describe reciprocity
is the repeated prisoner’s dilemma (7–12). This game considers two individuals, referred
to as players, who repeatedly decide whether to cooperate or to defect with one
another (Fig. 1A). Both players prefer mutual cooperation to mutual defection. Yet
given the coplayer’s action, each player has an incentive to defect. One common
implementation of the prisoner’s dilemma is the donation game. Here, cooperation
simply means to pay a cost c > 0 for the coplayer to get a benefit b > c. Despite the
simplicity of these games, they can give rise to remarkable dynamical patterns. These
patterns have been explored in numerous studies (13–32). Some of this literature describes
how the evolution of cooperation depends on the game parameters, such as the benefit
of cooperation, or the frequency with which errors occur (33–36). Others describe the
effect of different learning dynamics (37, 38), of population structure (39–42), or of the
strategies that players are permitted to use (43).

Strategies of the repeated prisoner’s dilemma can vary in their complexity. While
some are straightforward to implement, like always defect, many others are more
sophisticated (44, 45). One way to quantify a strategy’s complexity is to resort to the
number of past rounds that the player needs to remember. Unconditional strategies
like “always defect” (ALLD) or “always cooperate” (ALLC) are said to be memory-0.
Strategies that only depend on the previous round, such as “Tit-for-Tat” (7, 46) or
“Win-Stay Lose-Shift” (20, 21), are memory-1 (Fig. 1B). Similarly, one can distinguish
strategies that require more than one round of memory, or strategies that cannot be
implemented with finite memory (10).

Traditionally, most theoretical research on the evolution of reciprocity focuses on
memory-1 strategies (21–31). Although one-round memory can explain some of the
empirical regularities in human behavior (47–51), people often take into account more
than the last round (52, 53). In experiments, longer memory seems particularly relevant
for noisy games, where people occasionally defect because of unintended errors (54).
However, a formal analysis of strategies with more than one-round memory is nontrivial,
for two reasons. First, as the memory length n increases, strategies become harder
to interpret. For example, because two consecutive rounds of the prisoner’s dilemma
allow for 16 possible outcomes, memory-2 strategies need to specify 16 conditional
cooperation probabilities (55, 56). Although some of the resulting strategies have an
intuitive interpretation, such as “Tit-for-Two-Tat” (7), many others are difficult to make
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Fig. 1. The repeated prisoner’s dilemma among players with finite memory. (A) In the repeated prisoner’s dilemma, in each round two players independently
decide whether to cooperate (C) or to defect (D). (B) When players adopt memory-1 strategies, their decisions depend on the entire outcome of the previous
round. That is, they consider both their own and the coplayer’s previous action. (C) When players adopt a reactive-n strategy, they make their decisions based
on the coplayer’s actions during the past n rounds. (D) A self-reactive-n strategy is contingent on the player’s own actions during the past n rounds. (E) To
illustrate these concepts, we show a game between a player with a reactive-1 strategy (Top) and an arbitrary player (Bottom). Reactive-1 strategies can be
represented as a vector p = (pC , pD). The entry pC is the probability of cooperating given the coplayer cooperated in the previous round. The entry pD is
the cooperation probability after the coplayer defected. (F ) Now, the Top player adopts a self-reactive-1 strategy, p̃ = (p̃C , p̃D). Here, the player’s cooperation
probability depends on its own previous action.

sense of. Second, the number of strategies, and the time it takes to
compute their payoffs, increases dramatically in n. For example,
for memory-1, there are 24 = 16 deterministic strategies
(strategies that do not randomize between different actions).
When both players adopt memory-1 strategies, computing their
payoffs requires the inversion of a 4 × 4 matrix (9). After
increasing the memory length to memory-2, there are 216 =
64,536 deterministic strategies, and payoffs now require the
inverse of a 16× 16 matrix.

There have been various approaches to tackle this problem.
Some studies describe the strengths of particular strategies with
more than one-round memory (57–60). Others explore the
properties of entire strategy classes, such as “zero-determinant
strategies” (61, 62) or “reactive learning strategies” (19). Stewart
and Plotkin (63) characterize a set of memory-n strategies
that is evolutionary robust. They show that for larger n, the
volume of robust cooperative strategies exceeds the volume of
strategies that lead to mutual defection. However, they do not
provide an explicit description of the memory-n Nash equilibria.
We give a more detailed account of these approaches in our
SI Appendix.

To make further progress, we focus on an easy-to-interpret
subset of memory-n strategies, the reactive-n strategies. Capturing
the basic premise of conditional cooperation, they only depend
on the coplayer’s actions during the last n rounds (Fig. 1 C and
E). We show that within the reactive-n strategies, an explicit
characterization of all Nash equilibria becomes feasible. Our
results rely on a central insight, motivated by previous work of
Press and Dyson (25): If one player adopts a reactive-n strategy,
the other player can always find a best response among the
deterministic self-reactive-n strategies. Self-reactive-n strategies
are remarkably simple. They only depend on the player’s own
previous n moves (Fig. 1 D and F ). Based on this insight, we
study all reactive-n strategies that sustain full cooperation in a
Nash equilibrium (the so-called partner strategies). We provide
a full characterization for n = 2 and n = 3. Even stronger
results are feasible when we restrict attention to so-called counting
strategies. Such strategies only react to how often the coplayer has
cooperated in the last n rounds (irrespective of the exact timing of
cooperation). For the donation game, we characterize the partners

among the counting strategies for arbitrary n. The resulting
conditions are straightforward to interpret: For every defection of
the coplayer in memory, the focal player’s cooperation rate needs
to drop by c/(nb). To further assess the relevance of partner
strategies for the evolution of cooperation, we conduct extensive
simulations for n ∈ {1, 2, 3}. Our findings indicate that the
evolutionary process strongly favors partner strategies and that
these strategies are crucial for cooperation.

Overall, our results provide important insights into the logic
of conditional cooperation when players have more than one-
round memory. We show that partner strategies exist for all
repeated prisoner’s dilemmas and for all memory lengths. These
findings also allow us to reinterpret existing results on strategies
with shorter memory. For example, we find that the well-known
strategy Generous Tit-for-Tat (GTFT, see refs. 64 and 65) is
just one instance of a more general strategy class. The same
principles that make GTFT sustain cooperation within the
reactive-1 strategies, allow us to construct partners within the
reactive-n strategies.

Results

Model and Notation. We consider a repeated game between two
players, player 1 and player 2. Each round, players can choose to
cooperate (C ) or to defect (D). If both players cooperate, they
receive the reward R, which exceeds the (punishment) payoff P
for mutual defection. If only one player defects, the defecting
player receives the temptation T , whereas the cooperator ends
up with the sucker’s payoff S. We assume payoffs satisfy the
typical relationships of a prisoner’s dilemma, T > R > P > S
and 2R > T + S. Therefore, in each round, mutual cooperation
is the best outcome for the pair, but players have some incentive
to defect. The players’ aim is to maximize their average payoff per
round, across infinitely many rounds. To make results easier to
interpret, it is sometimes instructive to look at a particular variant
of the prisoner’s dilemma, the donation game. Here, cooperation
means to pay a cost c > 0 for the coplayer to get a benefit b > c.
The resulting payoffs are R = b − c, S = −c, T = b, P = 0.
For simplicity, we focus on the donation game in the following.
However, most of our findings are straightforward to extend to
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the general prisoner’s dilemma (or to other repeated 2×2 games,
see SI Appendix).

We consider players who use strategies with finite memory. To
describe such strategies formally, we introduce some notation.
The last n actions of each player i ∈ {1, 2} are referred to
as the player’s n-history. We write this n-history as a tuple
hi = (ai−n, . . . , a

i
−1) ∈ {C,D}

n. Each entry ai
−k corresponds

to player i’s action k rounds ago. We use H i for the set of all
n-histories. This set contains |H i

| = 2n elements. Based on this
notation, we can define a reactive-n strategy for player 1 as a
vector p = (ph)h∈H2 ∈ [0, 1]2

n
. The entries ph correspond to

player 1’s cooperation probability in any given round, contingent
on player 2’s actions during the last n rounds. The strategy
is called pure or deterministic if any entry is either zero or
one. We note that the above definition leaves player 1’s moves
during the first n rounds unspecified. However, in infinitely
repeated games without discounting, these initial moves tend
to be inconsequential. Hence, we neglect them in the following.

For n = 1, we recover the classical format of reactive-1
strategies (9), p = (pC , pD). Here, pC and pD are the player’s
cooperation probability given that the coplayer cooperated or
defected in the previous round, respectively. This set contains,
for example, the strategies of unconditional defection, ALLD =
(0, 0), and Tit-for-Tat, TFT = (1, 0). The next complexity class
is the set of reactive-2 strategies, p = (pCC , pCD, pDC , pDD). In
addition to ALLD and TFT, this set contains, for instance, the
strategies Tit-for-Two-Tat, TF2T = (1, 1, 1, 0) and Two-Tit-
for-Tat, 2TFT= (1, 0, 0, 0). Similar examples exist for n > 2.
When both players adopt reactive-n strategies (or more generally,
memory-n strategies), it is straightforward to compute their
expected payoffs, by representing the game as a Markov chain.
The respective procedure is described in SI Appendix.

Herein, we are particularly interested in those reactive-n
strategies that sustain full cooperation. Such strategies ought to
have two properties. First, they ought to be nice, meaning that
they are never the first to defect (7). This property ensures that
two players with nice strategies fully cooperate. In particular, if
hC is a coplayer’s n-history that consists of n bits of cooperation,
a nice strategy needs to respond by cooperating with certainty,
phC = 1. Second, the strategy ought to form a Nash equilibrium,
such that no coplayer has an incentive to deviate. Strategies that
have both properties are called partner strategies (66) or partners.
The partners among the reactive-1 strategies are well known. For
the donation game, partners are those strategies with pC = 1 and
pD ≤ 1 − c/b (29). However, a general theory of partners for
n ≥ 2 is lacking. This is what we aim to derive in the following.
In the main text, we provide the main intuition for our results;
all proofs are in SI Appendix.

AnAlgorithm to Identify Partners AmongReactive-n Strategies.
It is comparably easy to verify whether a reactive-n strategy p is
nice. Demonstrating that the strategy is also a Nash equilibrium,
however, is far less trivial. In principle, this requires uncountably
many payoff comparisons. We would have to show that if player
2’s strategy is fixed to p, no other strategy � for player 1 can
result in a higher payoff. That is, player 1’s payoff needs to satisfy
�1(�, p) ≤ �1(p, p) for all �. Fortunately, this task can be
simplified considerably. Already Press and Dyson (25) showed
that it is sufficient to test only those � with at most n rounds of
memory. Based on two insights, we can even further restrict the
search space of strategies � that need to be tested.

First, suppose player 1 uses some arbitrary strategy � against
player 2 with reactive-n strategy p = (ph)h∈H1 . Then we prove

that instead of �, player 1 may switch to a self-reactive-n strategy
p̃ without changing either player’s payoffs. When adopting a self-
reactive strategy, player 1 only takes into account her own actions
during the last n rounds, p̃ = (p̃h)h∈H1 . In particular, if � is a best
response to p, then there is an associated self-reactive strategy p̃
that is also a best response. This result follows the same intuition
as a similar result of Press and Dyson (25): If there is a part of the
joint history that player 2 does not take into account, player 1
gains nothing by considering that part of the history. In our case,
because player 2 only considers the last n actions of player 1, it
is sufficient for player 1 to do the same. Fig. 2 A and B provides
an illustration. There, we depict a game in which player 1 adopts
a memory-1 strategy against a reactive-1 opponent. Due to the
above result, we can find an equivalent self-reactive-1 strategy for
player 1. While that self-reactive strategy is simpler, on average
it induces the same game dynamics. Hence, it results in identical
payoffs.

The above result guarantees that for any reactive-n strategy,
there is always a best response among the self-reactive-n strategies.
In a second step, we prove that such a best response can always be
found among the deterministic self-reactive-n strategies. This
further reduces the search space for best responses, from an
uncountable set to a finite set of size 22n . For n = 2, this leaves
us with 16 self-reactive strategies to test. For n = 3, we end
up with (at most) 256 strategies. While this may still appear
to be a large number, many of the different strategies impose
redundant constraints on partner strategies. This redundancy
further reduces the number of conditions a partner needs
to satisfy.

Partners Among the Reactive-2 and the Reactive-3 Strategies.
To illustrate the above algorithm, we first characterize the partners
among the reactive-2 strategies. To this end, we note that it is
straightforward to compute the payoff of a specific self-reactive-2
strategy against a general reactive-2 strategy p (SI Appendix). By
computing the payoffs of all 16 pure self-deterministic strategies
p̃, and by requiring �1(p̃, p) ≤ �1(p, p) for all of them, we end
up with only three conditions. Specifically, we prove that p is a
partner if and only if

pCC = 1,
pCD + pDC

2
≤ 1−

1
2
·
c
b
, pDD ≤ 1−

c
b
. [1]

The above conditions define a three-dimensional polyhedron
within the space of all nice reactive-2 strategies (Fig. 2C ). The
condition pCC = 1 follows from the requirement that the strategy
ought to be nice. As long as the coplayer cooperates, the reactive-
n player goes along. The other two conditions imply that for
each defection in memory, the player’s cooperation rate decreases
proportionally. Interestingly, in cases with a mixed 2-history
(one cooperation, one defection), the above conditions suggest
that the exact timing of cooperation does not matter. It is only
required that the two cooperation probabilities pCD and pDC
are sufficiently small on average. Notably, the above conditions
also imply that to check whether a given reactive-2 strategy is
a partner, it suffices to check two deviations. These deviations
are the strategy that strictly alternates between cooperation and
defection (yielding the first inequality), and ALLD (yielding the
second inequality) (Fig. 3). We note that this last implication is
specific to the donation game. For the general prisoner’s dilemma
(depicted in Fig. 2D), there are more than two inequalities that
need to be satisfied (SI Appendix).

Analogously, we can also characterize the partners among the
reactive-3 strategies. A reactive-3 strategy can be represented by
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A B C

D

Fig. 2. Characterizing partners among the reactive-n strategies. (A and B) To characterize the reactive-n partner strategies, we prove the following result.
Suppose the focal player adopts a reactive-n strategy. Then, for any strategy of the opponent (with arbitrary memory), one can find an associated self-reactive-n
strategy that yields the same payoffs. Here, we show an example. Player 1 uses a reactive-1 strategy against player 2 with a memory-1 strategy. Our result implies
that player 2 can switch to a well-defined self-reactive-1 strategy. This switch leaves the outcome distribution unchanged. In both cases, players are equally
likely to experience mutual cooperation, unilateral cooperation, or mutual defection in the long run. (C) Based on this insight, we can explicitly characterize the
reactive-2 partner strategies (with pCC = 1). Here, we represent the corresponding conditions in Eq. 1 for a donation game with b/c = 2. Among the reactive-2
strategies, the counting strategies correspond to the subset with pCD = pDC . Counting strategies only depend on how often the coplayer cooperated in the
past, not on the timing of cooperation. (D) Similarly, we can also characterize the reactive-2 partner strategies for the general prisoner’s dilemma. Here, we use
the payoff matrix of Axelrod (7).

a vector p = (pCCC , pCCD, pCDC , pCDD, pDCC , pDCD, pDDC ,
pDDD). It is a partner strategy if and only if

pCCC = 1
pCDC + pDCD

2
≤ 1−

1
2
·
c
b

pCCD + pCDC + pDCC
3

≤ 1−
1
3
·
c
b

pCDD + pDCD + pDDC
3

≤ 1−
2
3
·
c
b

pCCD + pCDD + pDCC + pDDC
4

≤ 1−
1
2
·
c
b

pDDD ≤ 1−
c
b

[2]

These conditions follow a similar logic as in the previous case with
n = 2. For every coplayer’s defection in memory, the respective
cooperation probability needs to be diminished proportionally.
As an example, the second inequality in Eq. 2 considers three
sequences CCD, CDC , DCC . The proportion of D’s across these
three sequences is 1/3. Hence, the threshold on the right-hand
side is 1− 1/3 · c/b. Because reactive-2 strategies are a subset of
reactive-3 strategies, we can also derive the conditions in Eq. 1 as
a special case of Eq. 2 (SI Appendix).

Moreover, the above conditions imply that to check whether
a given reactive-3 strategy is a partner, it suffices to check
five deviations. Similarly to the previous case, two of these
deviations include the strategy that strictly alternates between
cooperation and defection, and ALLD. The remaining conditions
arise from deviations toward self-reactive strategies that repeat

certain sequences, where the sequences are CCD, CDD, and
CCDD (Fig. 3).

For n = 3, there are now more conditions to consider than in
the previous case. These conditions become even more complex
for the general prisoner’s dilemma. Given these complexities, we
do not present conditions for reactive-n partner strategies beyond
n = 3, even though the algorithm presented in the previous
section still applies.

Partners Among the Reactive-n Counting Strategies. We can
more easily generalize these formulas to arbitrary n if we further
restrict the strategy space. In the following, we consider reactive-
n counting strategies. These strategies only depend on how
often the coplayer cooperated during the past n rounds; they
do not take into account in which of the past n rounds the
coplayer cooperated. We represent such strategies as a vector r =
(ri)i∈{n,n−1,...,0}. Each entry ri indicates the player’s cooperation
probability if the coplayer cooperated i times during the last
n rounds. We note that although reactive-n counting strategies
have fewer entries (bits) than reactive-n strategies, they are equally
complex in terms of their memory requirements. Even a player
with a reactive-n counting strategy needs to keep a record of the
exact sequence of the opponent’s last n actions. Only by doing
so, the player can update its opponent’s cooperation count each
round, by discarding the opponent’s oldest action in memory
(SI Appendix). Any reactive-1 strategy p = (pC , pD) is a counting
strategy by definition. However, for larger n, the set of counting
strategies is a strict subset of the reactive-n strategies. For example,
for n = 2, counting strategies are those strategies that satisfy
pCD = pDC =: r1. As a result, the partners among the counting
strategies form a 2-dimensional plane within the 3-dimensional
polyhedron of reactive-2 partner strategies (Fig. 2 C and D).
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A B C

Fig. 3. Conditions for partners among reactive-2 and reactive-3 strategies. (A) Pure self-reactive strategies generate simple repetitive sequences of actions
that are independent of the coplayer. For example, in the case of n = 2, the pure self-reactive strategy p̃ = (0,1) generates the indefinitely repeated alternating
sequence DC. (B) For a nice reactive strategy p to be a partner, all of these self-reactive strategies need to achieve at most the mutual cooperation payoff against
p. This leads to necessary conditions for p to be a partner, which we show here for n = 2, and n = 3. Interestingly, we prove that these necessary conditions
are also sufficient, see SI Appendix. (C) To derive the conditions, we consider the average payoff of each repetitive sequence. In the Top panel, we illustrate an
example for n = 2. Here, the repetitive sequence DC plays against the reactive strategy p = (1, pCD , pDC , pDD). In odd rounds, the sequence player receives a
benefit b with probability pDC , without paying any cost. In even rounds, the player receives the benefit b with probability pCD, while paying a cost c. Over the
course of two consecutive rounds, the player thus receives (pDC + pCD)b − c. This payoff needs to be smaller or equal than what a partner strategy achieves
against itself, which is 2(b− c). This leads to condition (∗). In the Bottom panel, we illustrate a similar example for n = 3, explaining condition (†).

For the donation game, it is possible to characterize the set of
partner strategies for arbitrary n. We find that a counting strategy
r is a partner if and only if

rn = 1 and rn−k ≤ 1−
k
n
·
c
b

for k ∈ {1, 2, . . . , n}. [3]

That is, for every defection of the opponent in memory, the
maximum cooperation probability needs to be reduced by c/(nb).
It is worth highlighting that this result is general. These strategies
are Nash equilibria even if players are allowed to deviate toward
strategies that do not merely count the coplayer’s cooperative
acts, or toward strategies that take into account more than the
last n rounds.

Further Analytical Results. In SI Appendix, we use our frame-
work to derive a number of additional results. Here, we provide
a brief summary. First, instead of partners we can equally use
our formalism to characterize “defector strategies”—reactive-n
strategies that lead to stable mutual defection. Following Stewart
and Plotkin (63), we can use this characterization to compare
the relative volume of partners and defectors. We find that for
sufficiently small cost-to-benefit ratios, the set of partners has
the larger volume. Moreover, the relative volume of partners
increases in n, both for reactive-n and for reactive-n counting
strategies (SI Appendix, Fig. S3 and Table S2). This finding has
interesting implications for the evolution of cooperation (28, 63).
If evolutionary processes generate mutant strategies at random,
larger memory lengths make it increasingly likely that mutants
adopt strategies in the vicinity of partner strategies, compared to
defectors.

Second, we use our formalism to explore the effects of
implementation errors (33). When such an error occurs (with
some exogenous probability "), players implement the opposite
action of what they intend to do. For this scenario, we derive two
sets of results. First, we assume errors to be vanishingly rare. In
that case, we find that almost all our previously described partner

strategies remain approximate Nash equilibria. That is, even if
there are profitable deviations, the respective payoff advantage
is guaranteed to be arbitrarily small, see SI Appendix, Fig. S2.
Second, we derive a result for donation games when the error
rate is strictly positive. In that case, we describe a subset of so-
called “equalizer” strategies (67), which can sustain cooperation
in equilibrium. Among the reactive-1 strategies, this set includes
a single strategy, GTFT. For n ≥ 2, we derive additional variants
of GTFT, which punish defection with some delay. While we
characterize the set of reactive-n equalizers explicitly, it remains
an open question whether they are the only partner strategies for
positive error rates.

Evolutionary Dynamics. With our previous equilibrium analysis,
we have identified the strategies that can sustain cooperation
in principle. In a next step, we determine whether these
strategies evolve in the first place. Here, we no longer presume
that individuals would play equilibrium strategies. Rather they
initially implement some random behavior. Over time, they adapt
their strategies based on social learning. To model this learning
process, we consider a population of individuals who update
their strategies based on pairwise comparisons. The efficacy of
the resulting learning process is determined by a strength of
selection parameter �. The larger �, the more likely individuals
imitate strategies with a higher payoff. In addition, mutations
occasionally introduce new strategies. We describe the exact
setup of this learning process in Materials and Methods. As we
explain there, the process is particularly easy to explore when
mutations are rare (68–71). In that case, the population is
typically homogeneous, such that all players adopt the same
(resident) strategy. Once a new mutant strategy appears, this
strategy fixes or goes extinct before the next mutation happens.
Evolutionary processes with rare mutations can be simulated
more efficiently because there is an explicit formula for the
mutant’s fixation probability (72).

The results of these simulations are shown in Fig. 4. First,
we explore which reactive-n strategies evolve for a fixed set of
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A C

B D

Fig. 4. Evolutionary dynamics of reactive-n strategies. To explore the evolutionary dynamics among reactive-n strategies, we run simulations based on the
method of Imhof and Nowak (68). This method assumes rare mutations. Every time a mutant strategy appears, it goes extinct or fixes before the arrival of the
next mutant strategy. (A and B) We run twenty independent simulations for reactive-n strategies and for reactive-n counting strategies. For each simulation, we
record the most abundant strategy (the strategy that resisted most mutants). The respective average cooperation probabilities are in line with the conditions
for partner strategies. (C and D) With additional simulations, we explore the average abundance of partner strategies and the population’s average cooperation
rate. For a given resident strategy to be classified as a partner by our simulation, it needs to satisfy all inequalities in the respective characterization. In addition,
it needs to cooperate after full cooperation with a probability of at least 95%. For all considered parameter values, we only observe high cooperation rates
when partner strategies evolve. Simulations are based on a donation game with b = 1, c = 0.5, a selection strength � = 1, and a population size N = 100,
unless noted otherwise. For n equal to 1 and 2, simulations are run for 107 time steps. For n = 3 we use 2 · 107 time steps.

game parameters. Here, we vary the strategies’ memory length
n, and whether mutations introduce all reactive-n strategies, or
counting strategies only. For twenty independent simulations,
Fig. 4 A and B displays the most abundant strategy for each
simulation run (those are the strategies that prevent the largest
number of mutants from taking over). We note that all the shown
strategies show behavior consistent with our characterization of
partners: If a coplayer fully cooperated in the previous n rounds,
these strategies prescribe to continue with cooperation. If the
coplayer defected, however, they cooperate with a markedly
reduced cooperation probability that satisfies the constraints in
Eqs. 1–3.

Interestingly, however, the evolving strategies exhibit an
interesting asymmetry. For example, for reactive-2 strategies, we
observe that players’ strategies tend to satisfy pCD < pDC . That
is, they are more likely to defect if their opponent defected last
round, rather than two rounds ago. In light of our equilibrium
analysis, this result is surprising. After all, according to our
partner condition Eq. 1, the two cooperation probabilities are
completely interchangeable. This asymmetry arises because our
evolutionary process with uniform mutations does not introduce
perfect partner strategies (with pCC = 1). Rather, it introduces
strategies in the respective neighborhood (with, say, pCC = 0.99).
Among these noisy partner strategies, we show that strategies are
more resilient when they punish defection without delay (for
more details, see SI Appendix, Figs. S4–S6 and Table S3).

In a next step, we systematically explore the impact of
several key parameters: the cost-to-benefit ratio c/b, the selection
strength �, and the memory length n (Fig. 4 C and D). In
addition, we vary the error rate " in SI Appendix, Fig. S7. In
each case, we record how these parameters affect the abundance
of partner strategies and the population’s average cooperation
rate. Overall, the effect of each parameter is as expected. In
particular, interactions are most cooperative when cooperation is
comparably cheap. This effect is magnified for stronger selection
strengths. Two results, however, are particularly noteworthy.

First, the curves representing evolving cooperation rates align
with the prevalence of partner strategies. This observation
suggests that partner strategies are indeed crucial for the evolution
of cooperation. Second, the positive effects of larger memory
are most pronounced for reactive-n strategies. In contrast,
for counting strategies any positive effect of increasing n is
considerably dampened.

We repeat these simulations for the more general sets of
memory-n strategies and memory-n counting strategies (SI
Appendix). Again, among memory-n strategies, larger values of n
lead to more cooperation. But even among counting strategies,
longer memory has a positive, albeit smaller, effect (SI Appendix,
Fig. S6). We conclude for the considered strategy spaces that the
timing of cooperation can be important, even in additive games
such as the donation game.

Discussion

Direct reciprocity is a key mechanism for cooperation, based on
the intuition that individuals are more likely to cooperate when
they meet repeatedly (8). To capture the logic of reciprocity,
most previous theoretical studies focus on a subset of strategies,
the memory-1 strategies (21–31). This set is comparably easy
to work with: The number of deterministic memory-1 strategies
is manageable; most strategies are easy to interpret; and payoffs
can be computed efficiently (9). At the same time, however, this
strategy space leaves out many interesting reciprocal behaviors
that are of theoretical or empirical relevance. For example,
already simple behaviors such as Tit-for-Two-Tat (7) are not
representable with one-round memory. This shortcoming is
particularly consequential for noisy games, where higher-memory
strategies are important (54). In such games, individuals often
take into account information from previous rounds to make
sense of a coplayer’s defection in the last round. That is, the
earlier history of play provides an important context to interpret
the coplayer’s last-round behavior.
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To make progress, we consider an easily interpretable set of
strategies with higher memory. These reactive-n strategies take
into account a coplayer’s moves during the past n rounds. They
capture the basic idea of conditional cooperation: People are
responsive to the previous actions of their interaction partners.
For reactive-n strategies, we derive a convenient method to
characterize all “partner strategies”—strategies that sustain full
cooperation in a Nash equilibrium (29, 66). We show that
for a reactive-n strategy to be a Nash equilibrium, it is not
necessary to check all possible deviations. It suffices to only check
deviations toward (deterministic) self-reactive-n strategies. Self-
reactive players are particularly simple to describe. They only take
into account their own previous moves. In particular, the future
behavior of a self-reactive player is independent of the coplayer.
We use this insight to characterize the reactive-n partner strategies
(and the defector strategies) in the repeated prisoner’s dilemma.
But the same insights should be applicable to other contexts.
For example, we expect that similar techniques can be used to
characterize the equilibria of other repeated games, such as the
snowdrift game (73) or the volunteer’s dilemma (74). In this
way, some of our technical results represent useful tools to make
further progress on the theory of repeated games, similar to Press
and Dyson’s insight that any memory-1 strategy has a memory-1
best response (25).

Especially for small memory lengths, the conditions for partner
strategies are intuitive. For example, for the donation game with
n = 2 rounds of memory, we end up with three conditions,
see Eq. 1. (i) If the coplayer cooperated twice, continue to
cooperate; (ii) If the coplayer cooperated once, cooperate with
a slightly reduced probability of 1 − c/(2b) on average. (iii) If
the coplayer did not cooperate at all, reduce the cooperation
probability even further, to 1− c/b. As we increase the memory
length to n ≥ 3, or as we consider more general games, there
are more conditions to satisfy, and the conditions become
harder to interpret. However, the three simple conditions do
generalize to larger n if we focus on the set of counting strategies.
These are the reactive-n strategies that react to how often the
coplayer cooperated during the last n rounds. For counting
strategies, we show that for each defection of the coplayer in
memory, a partner reduces its cooperation probability by c/(nb).
A partner’s generosity decreases in proportion to their opponent’s
selfishness.

While in practice, people’s cooperative decisions often depend
on the outcome of their last encounter, they rarely depend on
that last encounter only. Overall, our results suggest a way how
individuals can integrate information from previous interactions
to cooperate most effectively.

Materials and Methods

Our study combines two independent approaches, an equilibrium analysis and
evolutionary simulations.

Equilibrium Analysis. Here, we only summarize our approach; all details are
in SI Appendix. There, we formally introduce the three relevant strategy spaces,
memory-n strategies, reactive-n strategies, and self-reactive-n strategies. Then
we provide an explicit algorithm for computing these strategies’ payoffs. This
algorithm uses a Markov chain approach. The states of the Markov chain are the
possible combinations of n-histories of the two players. Given the players’ current
n-histories and their strategies, we can compute the likelihood of observing each
possible state one round later.

In a second step, we explore the partner strategies among the reactive-n
strategies. To this end, we first generalize some well-known reactive-1 partner
strategies: Tit-for-Tat (7) and Generous Tit-for-Tat (64, 65). In a next step, we derive
a general algorithm to check whether a given reactive-n strategy is a partner.
We use this algorithm to characterize all reactive-n partners for n ∈ {1, 2, 3}, for
both the donation game and the prisoner’s dilemma. For counting strategies in
the donation game, we characterize partners for all n.

Evolutionary Analysis. For our simulations, we consider a population of size N.
Initially all members are of the same strategy (in our case, they are unconditional
defectors). In each elementary time step, one individual switches to a new
mutant strategy. The mutant strategy is generated by independently drawing
each individual cooperation probability from the unit interval [0, 1] uniformly at
random. If the mutant strategy yields a payoff of�M,k , where k is the number of
mutants in the population, and if residents get a payoff of�R,k , then the fixation
probability�M of the mutant strategy can be calculated explicitly (72),

�M =
(

1 +

N−1∑
i=1

i∏
j=1

e−�(�M,j−�R,j)
)−1

. [4]

The parameter � ≥ 0 reflects the strength of selection. It measures the
importance of relative payoff advantages for the evolutionary success of a
strategy. When � is small, � ≈ 0, payoffs become irrelevant, and a strategy’s
fixation probability approaches�M ≈ 1/N. The larger the value of �, the more
strongly the evolutionary process favors the fixation of strategies with a high
payoff. Depending on �M, the mutant either fixes (becomes the new resident)
or goes extinct. Afterward, the process repeats, and another mutant strategy is
introduced to the population.

We iterate this elementary population updating process for a large number of
mutant strategies. At each step, we record the current resident strategy and the
resulting average cooperation rate, indicating how often the resident strategy
cooperates with itself. Additionally, we assess how many resident strategies
qualify as partner strategies in our simulation. For a resident strategy to be
classified as a partner, it must satisfy all inequalities in the respective definition
of partner strategies. In addition, it must cooperate with a probability of at least
95% after full cooperation.

Data, Materials, and Software Availability. The source code used to
reproduce the results of this study is available on the online GitHub
repository: Nikoleta-v3/conditional-cooperation-with-longer-memory (75). The
simulation data have been archived on Zenodo and can be found at
zenodo.org/records/10605988 (76).
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