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Models of indirect reciprocity study how social norms promote cooperation. In these
models, cooperative individuals build up a positive reputation, which in turn helps them
in their future interactions. The exact reputational benefits of cooperation depend on
the norm in place, which may change over time. Previous research focused on the
stability of social norms. Much less is known about how social norms initially evolve
when competing with many others. A comprehensive evolutionary analysis, however,
has been difficult. Even among the comparably simple space of so-called third-order
norms, there are thousands of possibilities, each one inducing its own reputation
dynamics. To address this challenge, we use large-scale computer simulations. We
study the reputation dynamics of each third-order norm and all evolutionary transitions
between them. In contrast to established work with only a handful of norms, we find
that cooperation is hard to maintain in well-mixed populations. However, within
group-structured populations, cooperation can emerge. The most successful norm in
our simulations is particularly simple. It regards cooperation as universally positive, and
defection as usually negative—unless defection takes the form of justified punishment.
This research sheds light on the complex interplay of social norms, their induced
reputation dynamics, and population structure.

social norms | indirect reciprocity | evolution of cooperation | evolutionary game theory

Humans exhibit a remarkable capacity for cooperation (1). We cooperate with friends
and family members, but also with strangers we are unlikely to ever meet again (2). When
people cooperate beyond their own social circle, they often follow social norms. These
norms can be seen as a set of simple principles that tell people how they should act, and
how they should assess other people’s actions (3, 4). Importantly, such norms can be
subject to evolutionary change. They persist as long as individuals have an incentive to
respect them. They get replaced once individuals find profitable ways to deviate. The
question of which social norms are stable and which lead to cooperation has given rise
to an active research area called indirect reciprocity (5–12).

To get a first quantitative understanding of social norms, it has become common to
study models with two possible reputations only (13–15). Individuals can either be, say,
“good” or “bad.” One purpose of a social norm, then, is to help people classify who they
should regard as good. Depending on the social norm’s complexity, there are different
ways to do so (16). In the simplest case of a “first-order norm”, reputations only depend
on what an individual did. For example, according to the norm “image-scoring” (17),
cooperators should be regarded as good and defectors as bad. Although this norm is a
reasonable first approximation of human morality (18), it is unstable (19, 20). Stable
norms do not only need to incentivize individuals to cooperate. They also need to allow
them to defect against bad interaction partners. This logic is incorporated in “second-
order norms”. Here, reputations do not only depend on what an individual did, but also
to whom. One example is “Stern Judging” (21). Here, individuals are regarded as good
as long as they cooperate with well-reputed group members and defect against the bad
ones. Next comes the class of “third-order norms”. Here, people also take into account
the focal individual’s previous reputation when assigning a new one. This hierarchy of
social norms can be further extended ad infinitum (22).

Whether or not a social norm is stable, however, does not only depend on its
complexity. It also depends on how information spreads in a population, and how
individuals form their opinions. Traditionally, many models study the case of “public
assessment” (21–38). These models assume that people unanimously agree on which
reputation should be assigned to each other. For example, if Alice thinks Bob deserves a
good reputation, then so does Carol, Dave, and Eve (and anyone else). The assumption
of public information is useful because it makes models more mathematically tractable.
This allowed Ohtsuki & Iwasa to fully characterize a class of third-order norms that
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can sustain full cooperation, called the “leading-eight” (23).
However, the assumption of public assessment can be overly
restrictive. After all, individuals may have access to different pieces
of information, they may misinterpret a given interaction, or they
may apply different social norms altogether. As a result, they
may hold different views. In corresponding models with “private
assessment” (39–52), Alice might think of Bob as good even
though both Carol and Dave disagree. Mathematically, these
models are more challenging. While the individuals’ opinions
might still be correlated, they are no longer correlated perfectly.
As a consequence, analytical results only exist in certain limiting
cases (51–57).

To date, there are two main approaches to study models with
private assessment (for a detailed overview of the literature, see
SI Appendix). The first approach is a local stability analysis.
Here, researchers consider a resident population with a given
norm, and test its stability against an (infinitesimally) small
number of deviating “mutants” (42, 57). This approach allows for
analytical results, but it is essentially static. The other approach
allows mutants to become more common, and to eventually
replace the resident norm (45–54). This approach, however,
typically considers a restricted set of possible mutant norms.
In many cases, the set of mutant norms only contains the most
extreme possibilities, “Always Cooperate (ALLC)” and “Always
Defect (ALLD)”. A more complete view of the evolution of
social norms would require a global analysis that includes all
possible norms of a given complexity class. So far, however,
a global analysis has been infeasible. Even for the comparably
simple space of third-order norms, there are K = 2,080 distinct
possibilities. Taking into account all possible transitions between
them, in a population of size N , gives rise to approximately
NK 2 different cases. Each case requires its own simulation to
compute the resulting reputation dynamics. So far, the respective
computational costs have been prohibitive.

Herein, we report the results of such a global analysis, obtained
by running the necessary simulations on a supercomputer
(Materials and Methods). In contrast to previous studies with
a limited set of mutant norms, we find that in well-mixed
populations, cooperation is unlikely to emerge. This result,
however, does not mean that cooperation through indirect
reciprocity is impossible altogether. As a proof of principle, we
also study social interactions in group-structured populations.
For those interactions, we find that cooperation evolves reliably.
Our analysis highlights the importance of one particular leading-
eight norm, L1, which previously received little attention. This
norm is similar to image scoring, but with one crucial difference:
It permits good individuals to defect against bad group members,
without harming their own reputation. Overall, these results
highlight how the interplay of social norms and population
structure can facilitate the emergence of indirect reciprocity.

Model

Modelof IndirectReciprocity. Our analysis follows an established
framework for indirect reciprocity (46–48). We consider a well-
mixed population of size N , as illustrated in Fig. 1A. The
population members are referred to as players. Players engage
in a sequence of donation games as follows. Each round, two
players are randomly drawn from the population, one as a donor
and the other as a recipient. The donor decides whether or
not to provide a benefit b to the recipient at a personal cost
of c, with 0 < c < b. These two possible actions are referred
to as cooperation (C , providing the benefit) and defection

(D, doing nothing). This process is iterated over many rounds,
by consecutively drawing random donor-recipient pairs.

During this sequence of donation games, players form opinions
about each other. The opinion player i holds about j is denoted
as mij (players have an opinion about everyone, including
themselves). Opinions are good (G) or bad (B), and they
can change over time. Each donation game is observed by
all other population members simultaneously. Accordingly, we
speak of a “simultaneous observation model” (results for a more
general model are in SI Appendix). Based on their respective
information, each observer independently assesses the donor.
The way observers make these assessments depends on their
assessment rule (R). The way donors decide whether to cooperate
in the donation game is determined by their action rule (P). Both
of these rules are specified in more detail below. Importantly,
different players may use different action and assessment rules.
In the following, we refer to a combination of an action and
assessment rule as a player’s strategy (the term “social norm”
is often used synonymously; in the following, we prefer to use
“strategy” to indicate that this is a property of the individual, not
of the population).

Action and Assessment Rules. Herein, individuals make their
decisions based on third-order strategies (22, 23). The first
component of a strategy, its action rule, determines whether
or not donors cooperate with a given recipient. For third-order
strategies, this decision may depend on both the donor’s and
the recipient’s reputation. As a result, when donor i is matched
with recipient j, the donor’s action Aij∈{C,D} depends on both
mii and mij, Aij =Pi(mii, mij). As an example, suppose the donor
wishes to cooperate if and only if she deems the recipient as good.
In that case, Pi(mii, G) =C and Pi(mii, B) =D, irrespective of
the donor’s self-image mii.

The donor’s decision is observed by all other population mem-
bers (Fig. 1B). Each observer k then independently updates their
opinion about donor i according to the other component of the
strategy, the assessment rule. The updated opinion m′ki ∈{G, B}
depends on the observer’s previous opinion mki of the donor, her
previous opinion mkj of the recipient, and the donor’s action Aij.
That is, m′ki = Rk(mki, mkj, Aij). For example, according to
image scoring, a player’s assessment only depends on the donor’s
action. Cooperation is deemed as good, Rk(mki, mkj, C) = G,
and defection is evaluated as bad, Rk(mki, mkj, D) = B for all
mki, mkj. In general, when two observers differ in their initial
assessment of a donor, they may also disagree on the donor’s
updated assessment, even if both use the same strategy and
observe the same interaction. For a few examples of important
strategies, Table 1 defines the “leading-eight.” This is a set of
strategies that can maintain cooperation in a public information
setting (23).

Since G and B are merely two labels, strategies remain
unchanged if we invert the meaning of these labels (23). Taking
this symmetry into account, there are 2,080 distinct third-order
strategies (Materials and Methods). We denote that set by S3.
For comparison, we also consider the set of the second-order
rules, S2, whose size is 36. For those norms, the action rule only
depends on the donor’s opinion about the recipient. In addition,
the assessment rule only depends on the observer’s opinion about
the recipient, and on the donor’s action. Among the leading-
eight, L3 (Simple Standing) and L6 (Stern Judging) are the only
second-order strategies.

Herein, we define ALLD as the class of all strategies that always
defect regardless of reputation, P(X, Y ) = D for any (X, Y ).
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Fig. 1. A schematic overview of our computational framework to study indirect reciprocity. (A) We consider a population of players. Different players may
adopt different strategies (social norms). That is, they may differ in how they evaluate each other’s actions, and how they decide with whom to cooperate. In
the short run, these strategies are fixed. (B) Players engage in a series of donation games. Each round, a donor and a recipient are randomly drawn. The donor
decides whether to cooperate or to defect. All population members observe the donor’s decision. Based on these observations, they update their opinion of
the donor. (C) The population’s current state can be summarized by an image matrix. For each pair of players i (row) and j (column), this matrix describes i’s
opinion about j. This opinion can be either good (white) or bad (black). (D) Based on the dynamics of this image matrix, we compute the expected payoff of each
strategy. (E) In the long run, players’ strategies are allowed to change. We assume the change of strategies follows an evolutionary process based on imitation
events and mutations. (F ) Here, we present results when mutations are rare. In that case, the evolutionary dynamics can be described by a Markov chain. The
transitions of this Markov chain correspond to the transitions from one homogeneous population to another. (G) By computing the invariant distribution of
this Markov chain, we assess how often each strategy is played in the long run.

All these strategies behave identically, independent of their
respective assessment rules. There are 136 and 10 ALLD
strategies in S3 and S2, respectively. Similarly, there is the same
number of ALLC strategies, which always cooperate regardless of
reputations, P(X, Y )=C for any (X, Y ).

Reputation Dynamics. In the short run, we take each player’s
strategy to be fixed. Given the players’ strategies and their initial
reputations, we can describe the current state of the population by
an image matrix M =(mij), see Fig. 1C. At any given round, this
matrix summarizes the opinions that players have of each other

Table 1. The leading-eight strategies describe a set of third-order strategies that can maintain cooperation under
public assessment (23)

(G,G) (G, B) (B, G) (B, B)

P R(C) R(D) P R(C) R(D) P R(C) R(D) P R(C) R(D)

L1 C G B D G G C G B C G B
L2 (Consistent Standing) C G B D B G C G B C G B
L3 (Simple Standing) C G B D G G C G B D G G
L4 C G B D G G C G B D B G
L5 C G B D B G C G B D G G
L6 (Stern Judging) C G B D B G C G B D B G
L7 (Staying) C G B D G G C G B D B B
L8 (Judging) C G B D B G C G B D B B

In this table, the Top row (X, Y) indicates the reputations of the donor and the recipient, respectively. For instance, (G, B) means a good donor meets a bad recipient. The rules P, R1(C),
R1(D) indicate the prescribed action, the assessment when cooperation (C) is observed, and the assessment when defection (D) is observed, respectively. The entries that are different
from each other are highlighted in bold.
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(i.e., the reputations they assign to each other). The image matrix
changes after each donation game. The new matrix depends on
which player has been chosen as the donor, the donor’s action,
and how this action is assessed by all other population members.
Here, we allow assessments to be subject to errors: An observer
who would usually assign a good reputation to a given donor
assigns a bad one with probability " (and vice versa). For ">0, the
reputation dynamics becomes ergodic. As a result, the reputation
dynamics reaches a stationary state after sufficiently many rounds.
This long-run dynamics is independent of the players’ initial
reputations. This allows us to compute how often people deem
each other as good in the long run, and how often they cooperate
with each other. Based on this, we compute the players’ average
payoffs over the entire sequence of donation games, see Fig. 1D.

Evolutionary Dynamics. On a larger time scale, players can
change their strategies. To model the evolution of strategies,
we use a pairwise comparison process (58). In each time step of
the process, one player is randomly chosen. With probability �, a
mutation occurs. In that case, the player adopts a random strategy,
uniformly among all strategies in S3 (or S2, respectively). With
the remaining probability 1−� the focal player i chooses a random
role model j from the population. Player i then imitates j’s strategy
with probability 'in

i→j, which is an increasing function of the
payoff difference between j and i (Materials and Methods). In
particular, the more profitable j’s strategy, the more likely j is
imitated.

For our evolutionary simulations, we consider the low mu-
tation rate limit (59, 60). That is, mutations are rare enough
such that typically only a single resident strategy is present
in the population. Only occasionally, a mutant appears. This
mutant reaches fixation or goes extinct before the next mutant is
introduced. The mutant’s fixation probability can be computed
explicitly (61). It depends on the players’ payoffs for any
possible population configuration consisting of the mutant
and the resident strategy (Fig. 1E). The overall evolutionary
dynamics among all strategies can then be described by a
Markov process. The possible states correspond to the different
homogeneous resident populations. The transition probabilities
from one state to another depend on the respective fixation
probabilities (Fig. 1F ). By computing the stationary distribution
of this Markov process, we can calculate how frequently each
strategy is played in the long run (Fig. 1G).

When only three different strategies compete (as in many
previous studies), it is straightforward to calculate the stationary
distribution (e.g. ref. 46). However, once all strategies in S3
compete, the situation is more challenging. Now, we need to
calculate fixation probabilities for all combinations of third-
order strategies. Given there are K = 2,080 such strategies,
the number of pairwise fixation probabilities is K (K − 1).
For each of these, we need to calculate the long-term payoffs
of the respective residents and mutants for N − 1 different
population configurations (as illustrated in Fig. 1E). For each
configuration, we need to simulate the reputation dynamics
for a sufficiently long time. Here, we use N = 50 and take
n = 5 independent samples for each parameter. Overall, we
conduct nK (K−1)(N−1)/2 ≈ 5.5×108 simulations, each one
recording the outcome of 106 donation games. To deal with these
computational requirements, all calculations are parallelized and
run on a supercomputer (Materials andMethods). In the following
sections, we present our findings for a specific set of parameters.
Results for other parameter values are qualitatively similar, as
shown in SI Appendix.

Results

Evolutionary Dynamics in Three-Strategy Systems. To get a
first overview of the evolutionary performance of different
strategies, we study a restricted setup. Following earlier work
(45–54), we explore different three-strategy systems, where a
focal strategy X competes with ALLC and ALLD. In each case,
we compute X ’s self-cooperation level pc(X ) (the cooperation
level of a homogeneous X population). In addition, we compute
the strategy’s abundance f Δeq (X ) in the resulting stationary
distribution. If X is to maintain cooperation, both quantities
should be close to one. However, our simulations show that
most strategies have pc(X ) ≈ 0 or f Δeq (X ) ≈ 0, see Fig. 2 A
and B. Intuitively, in order to have a high self-cooperation rate,
the strategy must be generous enough to maintain cooperation
in the presence of errors. But to reach a high abundance, the
strategy must be strict enough to prevent invasion by ALLC and
ALLD. Within the second-order strategies, no strategy can solve
this trade-off (Fig. 2A). Even L3 and L6, the two leading-eight
strategies in S2, do not perform well. While L3 has a high self-
cooperation rate, it is rarely adopted when competing with ALLC
and ALLD. L6 is weak with respect to both dimensions.

L3’s low abundance may come as a surprise, because this
strategy has recently been shown to be evolutionarily stable
(56, 57). However, evolutionary stability only takes into account
how a strategy performs when common. For a more compre-
hensive view of a strategy’s performance, it is also important to
consider how likely that strategy can invade when rare. L3 is bad
at invading ALLD. The respective fixation probability �ALLD→L3
is close to zero. Moreover, the dynamics between L3 and ALLC
is almost neutral �L3→ALLC ≈ 1/N . Consistent with previous
simulation studies (46, 48), we thus find that L3 does not evolve,
despite being evolutionarily stable.

Within the third-order strategies, L1, L2, and L7 have both a
high self-cooperation rate and a high abundance (Fig. 2B). Here,
the good performance of L1 may appear counterintuitive. After
all, L1 is almost identical to L3 (Table 1). They mostly disagree on
how to evaluate a bad donor who defects against a bad recipient.
While L1 would assign a bad reputation, L3 assigns a good one.
This difference affects how successful the two strategies are at
invading ALLD (Fig. 2 C and D). When L3 competes with
ALLD, a substantial fraction of defectors is regarded as good
(see Inset of Fig. 2E). These good reputations arise when bad
ALLD donors defect against other bad ALLD recipients. Because
those donors then gain a good reputation, ALLD gets a moderate
average payoff (Fig. 2E). In contrast, when L1 competes with
ALLD, defectors are systematically evaluated as bad. As a result,
ALLD’s average payoff is always close to the theoretical minimum
(Fig. 2F ). This result resonates with previous work (48) arguing
that L1, L2, L7, and L8 are most successful among the leading-
eight because they all have R(B, B,D)=B.

Evolutionary Dynamics for Complete Strategy Spaces. Next,
we explore the evolutionary dynamics when all strategies of a
given complexity class compete. As one may expect from the
previous results, we find that among the second-order strategies,
cooperation does not evolve (Fig. 3A). Here, the most frequent
strategies are various variants of ALLD. Strategies with a high self-
cooperation level, such as L3, are rare (Fig. 3C ). For the space
of third-order strategies, there is slightly more cooperation, but
average cooperation levels are still below 20% (Fig. 3B). Here,
we find several cooperative strategies among the most abundant
strategies, such as L1 to L5, L7, and related variants (Fig. 3D).
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A C E

B D F

Fig. 2. Evolutionary dynamics when only three strategies compete. In line with some of the previous literature (45–51, 53, 54), we first explore the dynamics
when a focal strategy competes with ALLC and ALLD. For the focal strategy, we consider all second-order norms (S2, Top row), and all third-order norms (S3,
Bottom row). (A and B) For each X , we first compute the strategy’s self-cooperation level pc(X). This value reflects how cooperative a homogeneous population
with that strategy is. In addition, we compute the strategy’s abundance fΔeq(X) according to the evolutionary process with ALLC and ALLD. For a strategy to
maintain cooperation, both values should be close to one. (C and D) We also record which strategies are most likely to invade in a resident population of
defectors. Those having the highest fixation probabilities are shown in descending order. The color indicates the self-cooperation level of the mutant strategies.
The dashed line indicates the neutral fixation probability of 1/N. As indicated by the figure, no self-cooperative strategies can invade ALLD within S2. Some
self-cooperative strategies can invade ALLD within S3. The parameters used here are b = 5 and " = 0.01. (E and F ) Payoffs of two different leading-eight
strategies, when competing with ALLD. The total population size is N = 50 and the horizontal axis indicates the number of ALLD players. The Inset shows a
snapshot of the image matrices M=(mij) from the viewpoint of the leading-eight strategy. Here, half of the population are leading-eight players and the other
half are ALLD players. White and black dots indicate good and bad reputations, respectively. Parameters are b=5 and "=0.02.

However, if we look at the same figure more broadly, as shown
in the Inset, ALLD and other noncooperative strategies are still
adopted for a substantial amount of time.

Interestingly, the set of most frequent strategies includes L3 to
L5, which have not been successful in the three-strategy system
(Fig. 2B). In fact, none of these strategies is good at invading
ALLD (Fig. 2D). Once other third-order strategies are available,
these strategies can be reached through alternative evolutionary
pathways. L3 and L4 can selectively invade L2 residents. In
addition, they can invade L1 and L7 through (almost) neutral
drift (Fig. 2 E and F ). Similar pathways exist for L5. Therefore,
these strategies can evolve once other leading-eight strategies are
present. This pairwise invasion analysis also explains why cooper-
ation is rare overall (Fig. 3G). After ALLD is replaced by strategies
like L1, L2, and L7, these strategies are—directly or indirectly—
susceptible to (almost) neutral invasion by ALLC. Compared to
the leading-eight, ALLC is more robust with respect to errors.
Once ALLC is common, it is easily replaced by ALLD. These
new evolutionary pathways can render cooperation unstable in
the complete space of third-order strategies, even though some
members of S3 are successful in three-strategy competitions.

We can make sense of these evolutionary transitions by
studying the similarities between strategies. The leading-eight
can be classified into three types (53): Type I (L1, L3, L4, L7),
Type II (L2, L5), and Type III (L6, L8). This classification is
also reflected in the pathways in Fig. 3G. Strategies of different
types differ in how quickly they can resolve disagreements (46).
This affects how good they are at maintaining cooperation in the
presence of errors, and how easily they resist invasion by ALLC.

Type I strategies have R(G, B, C) = G. This allows them
to effectively contain disagreements (46). To see why, suppose
everyone agrees that the donor is good, but players disagree about
the recipient’s reputation. In that case, observers agree that the
cooperating donor should keep a good image, irrespective of their
differing views of the recipient. In this way, Type I strategies
prevent disagreements from spreading. As a result, they have the
highest self-cooperation levels, but they are also susceptible to
neutral invasion by ALLC.

Type II strategies have R(G, B, C) = B, which makes them
more susceptible to disagreements caused by errors. On the
other hand, they have R(B, B, C) = G, which helps to resolve
disagreements. When some observers consider both the donor
and the recipient as good, while others consider both to be bad,
they all evaluate the cooperating donor as good. Since this event is
less likely to occur than disagreements about the recipient only,
this recovery path is somewhat less effective. Overall, Type II
strategies still have fairly high self-cooperation levels, and they
are good at resisting invasion by ALLC. However, they are easily
invaded by Type I strategies.

Type III consists of the remaining leading-eight strategies L6
and L8. Under private assessment, both of these strategies are
highly susceptible to errors (39, 46). Hence they cannot maintain
cooperation, as also illustrated in Fig. 2B.

Evolutionary Dynamics in Group-Structured Populations. The
previous results suggest that indirect reciprocity is unlikely to
evolve in well-mixed populations. However, natural popula-
tions are rarely well mixed. They have some intrinsic structure.
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A

B D
G

C
E F

Fig. 3. Evolutionary dynamics when all strategies of similar complexity compete. As possible strategy spaces, we again consider all second-order strategies
(S2, Top row) and all third-order strategies (S3, Bottom row). (A and B) We display the evolving average cooperation level for different benefits of cooperation
and different error rates. Error bars are not shown since they are smaller than the symbol size. The cooperation levels in (A) are almost zero for all ". (C and D)
Most frequent strategies according to the stationary distribution of the evolutionary process. Colors indicate the self-cooperation level of the strategies. Names
of the leading-eight (L1 . . . L8) and their variants (L1′ . . . L8′) are shown just above the bars. Here, we defined a variant of the leading-eight as a strategy that has
the same assessment rule but a different action at P(B, B). In the Inset of (D), a broader range of strategies is shown. (E and F ) Here, we show the strategies that
are most likely to invade either a L1 or a L2 resident population. The color indicates the self-cooperation level of the mutant strategies pc(X). (G) A schematic
diagram of the transitions between the major strategies in S3. Solid arrows indicate transitions with fixation probabilities � significantly larger than 1/N (here
we use � > 2/N as the threshold). Dashed arrows indicate approximately neutral transitions (1/(4N) < � < 2/N). These values are shown in more detail in
SI Appendix, Table S2. The parameters are b=5 and "=0.01.

Individuals are more likely to interact within their own commu-
nities. To explore whether cooperation can, in principle, evolve
in structured populations, we consider a population divided into
G groups. For a specific model, we use the setup of Hauert and
Imhof (62, 63), which has previously been used to study direct
reciprocity (64, 65). Each group consists of N = 50 players (we
obtain similar results for other group sizes, see SI Appendix).
Players have all their games within their group. There, the
reputation dynamics is the same as before. For the evolutionary
dynamics, we assume that most of the time, players update their
strategies by imitating other group members. Only occasionally
do they engage in out-group imitation or adopt new strategies by
mutation, as shown in Fig. 4A. As a result, groups are typically
homogeneous. However, different groups may adopt different
strategies. As a result, strategies of more cooperative groups are
more likely to be adopted during out-group imitation. As we
increase the number of groups G →∞, we can describe the
resulting dynamics with a differential equation, see Materials and
Methods. We explore this equation for different benefit values b
and different error rates ".

Fig. 4B shows the results when players choose among all
second-order strategies. Compared to well-mixed populations,
we see more cooperation, even though cooperation levels still
tend to be below 50%. Looking at a typical time trajectory, we
observe that most groups adopt ALLD; only a minority of groups
use one of the leading-eight (Fig. 4D).

The dynamics, however, change dramatically as we allow for
all third-order strategies. Here, almost full cooperation evolves
for a wide range of parameters (Fig. 4C ). As we look at a
typical trajectory, we often observe ALLD to dominate in the
beginning (Fig. 4E). But over time, more and more groups switch
to L1 and to a variant of L1 (this variant differs from L1 by having
P(B, B)=D). Later, depending on parameters, also other Type I
strategies such as L3 and L7 may increase in frequency. The

competition among different Type I strategies occurs at a much
longer time scale, because these strategies are almost neutral.
On the other hand, Type II strategies are rare, because they are
selectively invaded by Type I strategies. These results suggest that
within our framework of structured populations, access to third-
order strategies is key for the evolution of cooperation (see also
SI Appendix, Figs. S6 and S7 for results for other parameters).

In contrast to the case of well-mixed populations, groups of
Type I strategies no longer give rise to the evolution of ALLC.
These neutral invasions are now prevented because there is
still sufficient variety among the groups in the population. In
particular, ALLD no longer goes completely extinct. Rather a
small fraction of ALLD groups remain, which prevent ALLC
from overtaking the entire population. This coexistence of
different groups is crucial; as a result, the number of groups
G needs to be sufficiently large. To confirm this intuition, we
conduct Monte Carlo simulations for finite values of G. As G
increases, there is a transition from a noncooperative state to
a cooperative one (SI Appendix, Fig. S8). We observe similar
results as we vary other key parameters of the model, such
as the group size, or how likely errors occur (SI Appendix,
Fig. S3). Overall, these results suggest that heterogeneity can
help to stabilize cooperation, similar to previous models of direct
reciprocity (65, 66).

Discussion

Direct and indirect reciprocity are both key explanations for co-
operation among nonkin (1, 2). Direct reciprocity describes how
people cooperate in stable pairs. Indirect reciprocity extends the
respective principle of conditional cooperation to a population
level (3). While the two kinds of reciprocity follow a similar
logic, respective models vastly differ in their computational
complexity. Because direct reciprocity unfolds among two players
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A B

C E

D

Fig. 4. Evolutionary dynamics in group-structured populations. (A) To complement our previous model in well-mixed populations, here we consider a setup
in which individuals interact in their own subgroups. Players update their strategies by in-group imitations, out-group imitations, and mutations. Here, we
assume that in-group imitations are far more frequent than the other two events. As a result, each group is homogeneous most of the time. However, different
groups may have different strategies. (B and C) Cooperation levels at the stationary distribution of the evolutionary process for second-order and third-order
strategies. Error bars are shown although they are smaller than the symbol size for most data points. We note that especially for higher error rates, cooperation
levels can vary nonmonotonically as a function of the benefit. SI Appendix, Figs. S6 and S7 illustrate the evolving strategies in more detail, but the effect does
not seem to be driven by any particular strategy. (D and E) Here, we show a typical time series for b=3 and "=0.02, to illustrate which strategies are most likely
to emerge.

only, the game dynamics can often be described by a simple
Markov chain (14). This allows for an explicit calculation of the
players’ payoffs. The resulting dynamics of direct reciprocity can
be simulated easily even when the number of strategies is large
(64–67).

For indirect reciprocity with private assessment, the situation is
different. Here, the game takes place among an entire population
of players. Corresponding models need to keep track of who
thinks what about whom at each point in time. This makes it
more difficult to compute payoffs. Results can still be derived
with certain approximations (51–57) or simulations [e.g. see
SI Appendix for more details 46–48]. Typically, however, an
evolutionary approach is only feasible when the number of
strategies is small. While the respective mechanistic models with a
few representative strategies can be very insightful, they may also
be misleading. For example, a social norm’s performance against
unconditional cooperators and defectors (46–48) may only
give an incomplete picture of the norm’s overall performance.
Similarly, a norm’s performance when it is common (57) may
not indicate whether the norm can increase in frequency when
it is rare. In some cases, it can also be difficult to determine
beforehand which set of norms can be considered representative
in the first place. By manually selecting a specific set of norms,
we risk overlooking norms that would play an important role
if they only were permitted. Here is where it becomes useful to
take a systematic approach that involves all strategies of a given
complexity class.

In our study, we consider the class of all second-order and
third-order strategies. Among those, we find that cooperation
rarely evolves when populations are well mixed. This finding may
be surprising. After all, a recent study suggests that already among
the second-order strategies, evolutionarily stable cooperation is
possible (57). Although the respective strategy L3 is robust when
common, we find that it cannot emerge when rare (Fig. 2). In
addition, those strategies that are good at replacing defectors
are often vulnerable to invasion by other strategies, such as
ALLC (Fig. 3G).

Despite this negative result, we find that indirect reciprocity is
still feasible. To make this point, we consider a particular setup
of a group-structured population that has been studied earlier
(62–65). In such a structured population, cooperation evolves
when strategies are allowed to be sufficiently complex (Fig. 4C ).
When these conditions are met, cooperation is often sustained by
the leading-eight strategy L1. Although L1 has been found to be
effective in a previous study based on the replicator equation (9),
it has not received much attention since. Among the leading-
eight, L1 is the most context-independent. Cooperation is always
considered as good. Defection is typically considered as bad,
except when it represents an instance of “justified punishment”
(where a good individual defects against a bad one). This context
independence makes it easier for group members to reach a
consensus. It diminishes the negative effects of disagreements
that private assessment models are susceptible to (40, 41, 46).
While our simulations suggest that L1 performs well in structured
populations, it would be desirable to have a more analytical
understanding of its properties. A natural starting point is to
describe the strategy’s (local) robustness against invasions, as done
in previous work (52, 53, 57).

The group structure we consider is different from the one in
a recent study by Kessinger et al. (51). In our study, we assume
that games are only played within each group. The population’s
group structure only affects how strategies propagate. In contrast,
Kessinger et al. (51) assume that games can take place among
players from different groups. There, population structure is
meant to capture the formation of “gossip groups.” Within these
groups, opinions are fully synchronized. In this way, their model
essentially becomes one with public assessments. As a result, they
find that evolution favors the strategy L6 (Stern Judging), which
we found to be ineffective. Generally, Stern Judging is only suc-
cessful when opinions are perfectly synchronized (21, 22, 51, 68).
Once players disagree about how they assess third parties, Stern
Judging tends to amplify these disagreements. Often, this can
lead to a complete breakdown of cooperation (40, 46, 57).
Combined, these results suggest that indirect reciprocity either

PNAS 2024 Vol. 121 No. 33 e2406885121 https://doi.org/10.1073/pnas.2406885121 7 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
hr

is
tia

n 
H

ilb
e 

on
 A

ug
us

t 8
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

14
1.

5.
9.

25
4.

https://www.pnas.org/lookup/doi/10.1073/pnas.2406885121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2406885121#supplementary-materials


requires a high degree of synchronization, which could be
achieved through exchanging gossip (51, 52, 69), empathy (49),
or institutions (50). Or it requires norms that are particularly
robust with respect to disagreements, such as the norm L1
highlighted in our work. Most crucially, the two norms L1 and L6
differ in how people think of good donors who cooperate with bad
recipients. Thus, these situations would serve as natural test cases
for empirical work to distinguish between the two norms. One
recent experiment finds that individuals are typically evaluated
as good when they cooperate with bad group members (70).
However, there seems to be conflicting evidence when similar
experiments are performed with infants (71). This again suggests
that the stability of any given social norm might be context-
dependent.

More broadly, our study emphasizes the value of large-scale
computational studies for evolutionary game theory. In our
opinion, such studies naturally complement the strengths of
analytical approaches based on simpler mechanistic models. Ana-
lytical approaches are important to form intuitions. Often times,
these intuitions are more valuable than the actual numerical
results, because the intuitions may also apply to other scenarios
that have not been modeled explicitly. Computational methods,
on the other hand, can test these intuitions in more complex
environments. They can also reveal unexpected relationships that
can be studied analytically later on. In our view, it takes both
approaches to effectively advance the field.

Materials and Methods

Model of Indirect Reciprocity. We consider a well-mixed population of size
N. The members of this population (the players) repeatedly engage in donation
games, see Fig. 1 A and B. Players have their own opinions about each other,
which are updated each round. The state of the system is described by the image
matrix M. Its elements mij represent the opinion of player i about player j. Each
round, a donor and a recipient are randomly drawn from the population. The
donor then decides to either cooperate (C) or defect (D) according to her strategy.
When the donor cooperates, the donor pays a cost c while the recipient gets a
benefit b, with 0 < c < b. When the donor defects, the payoffs of both players
remain unchanged. The donor’s action is observed by all population members
(including the donor and the recipient) with observation probability q. They all
update their opinions about the donor independently, which leads to an update
of the i’th column of the image matrix. This elementary process is repeated
sufficiently many times, for changing donor-recipient pairs. In the main text,
we set the observation probability to q = 1. However, our further results in
SI Appendix suggest that the qualitative results remain the same as we vary q.

A strategy of player i is a combination of an action rule and an assessment
rule, (Pi, Ri). We consider third-order strategies. This means that the action rule
Pi(X, Y) and the assessment rule Ri(X, Y, Aij) are dependent on the donor’s
reputation X, the recipient’s reputation Y , and the donor’s action Aij. The action
Aij∈{C, D}of donor i against recipient j is determined by the donor’s action rule,
Aij =Pi(mii, mij). An observer k’s updated opinion about donor i is determined
by her assessment rule, m′ki = Rk(mki, mkj, Aij). Assessments are subject to
errors. Each assessment is flipped with probability ".

There are 28 = 256 different assessment rules and 24 = 16 action rules.
Because G and B are merely labels for two reputational states, strategies remain
unchanged by swapping these labels. By removing duplicates and taking
“mirror symmetries” into account, the number of unique strategies is reduced
from 212 = 4,096 to 2,080 (23). (Since 64 strategies are mirror-symmetric to
themselves, there are (4,096−64)/2+64 = 2,080 distinct strategies). We
denote this set of strategies asS3. For comparison, we also consider the set of the
second-order rules, S2. These are the strategies whose action and assessment
rules are independent of the donor’s reputation. The number of independent
strategies inS2 is (64−8)/2+8=36, taking mirror symmetries into account.

Among the leading-eight, L3 (Simple Standing) and L6 (Stern Judging) are the
only second-order strategies. All other six are third-order.

The players’ long-term payoffs are defined as the average payoffs throughout
all donation games:

�i =
1
T

T∑
t=1

�(t)
i . [1]

Here, T is the total number of time steps and�(t)
i is the payoff of player i at time

t. To this end, we define the unit of time as N donation games so that on average,
each player is involved in two interactions per unit of time, one as a donor and
the other as a recipient. Because there is no closed analytic formula for the
long-term payoffs, we calculate them numerically by Monte Carlo simulations.
We run MC simulations for Tinit + T steps. Here, Tinit is the number of steps for
the system to reach a stationary state, and T is the number of steps for which the
long-term payoffs are measured. We use Tinit = 104 and T = 104, which are
sufficient for an accurate computation of the long-term payoffs.

The self-cooperation level pc(X) of a strategy X is defined as the average
cooperation level in a homogeneous population in which everyone adopts
strategy X. Thus, the long-term payoff of a player i in such a homogeneous
population is �i =pc(X) (b−c).

Evolution in Well-Mixed Populations. At a longer time scale, players update
their strategies according to an evolutionary process. In each time step, one
individual is randomly chosen. With probability �, the individual switches to
a randomly chosen strategy, chosen uniformly from the respective strategy set
(S3 orS2). With the remaining probability 1−�, the focal individual i chooses
a random role model j from the population. Then i imitates j’s strategy with a
probability given by the Fermi rule,

'in
i→j =

1
1 + exp[−�(�j − �i)]

. [2]

Here, �j and �i are the average long-term payoffs of j and i, according to Eq. 1.
In particular, the larger the payoff of j is compared to the payoff of i, the more
likely i is to switch. The parameter � is the selection strength. It characterizes
how sensitive players are to payoff differences. When � = 0, the imitation
probability is 1/2 regardless of the payoff difference; as a result, imitation
occurs at random. When � → ∞, the imitation probability is 1 if �j > �i
and 0 if �j < �i. Hence, imitation becomes essentially deterministic. For the
simulations in the main text, we use a default value of �=1.

We consider the low mutation rate limit. In this limit, the probability that
a mutant strategy q fixes in a population of residents with strategy p can be
computed explicitly (61),

�p→q =
1

1 +
∑N−1

l′=1
∏l′

l=1 exp
{
−�

[
�q (l)− �p (N− l)

]} . [3]

Here,�p(N−l)and�q(l)are the long-term payoff of a resident and of a mutant,
provided that the population has N− l residents and l mutants, respectively.
Using Eq. 3, the selection-mutation equilibrium of the evolutionary process can
be computed by considering a reduced Markov chain with K states, where K is the
number of available strategies (59). The probability to move from statep to state
q is Tp→q = �p→q/(K−1). The stationary distribution of this Markov chain
is a measure for how often each strategy is adopted in the long run, after many
evolutionary transitions from onestrategy toanother. By theergodic theorem,the
time average of any individual trajectory approaches this stationary distribution
eventually. The exact time until convergence depends on the Markov chain’s
mixing time (which itself depends on the model parameters). We calculate the
stationary distribution as the principal eigenvector of the transition matrix, using
the power iteration method.

In order to calculate the fixation probability �p→q according to Eq. 3, we
need to compute the expected payoff of a resident player and a mutant player
for l = 1, . . . , N − 1. Thus, for each l, we run the Monte Carlo simulations
of the reputation dynamics for Tinit +T steps. Since �p→q and �q→p can be
calculated simultaneously, we run the Monte Carlo simulations for K(K−1)/2
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pairs of strategies. We repeat the above process for all possible combinations of
strategies. In total, K(K−1)(N−1)/2 Monte Carlo simulations are conducted,
each of which requires Tinit + T steps. This process needs to be repeated for
different parameters, such as" and q. (However, results for different b and� can
be obtained from a single simulation. They follow from the recorded cooperation
probabilities between mutants and residents).

Evolution in Group-Structured Populations. In addition to evolution in
well-mixed populations, we also consider evolution in group-structured
populations (62–65). To this end, the population is subdivided into G groups of
size N. Players interact with all other group members. Thus, the calculation of
payoffs within a group is the same as in the well-mixed population.

Each player updates its strategy according to the following evolutionary
process. At each time step, a player i is chosen randomly as the focal player. This
player is then given a chance to adapt its strategy, either by intragroup imitation
(with probability �in), out-group imitation (with probability �out), or mutation
(with probability �), as in Fig. 4A. In particular, �in + �out + � = 1.

In the case of intragroup imitation, the focal player randomly selects a role
model from her own group. The focal player switches to the role model’s strategy
as in the case of well-mixed populations, using Eq. 2. The case of out-group
imitation follows an analogous procedure. Here, the focal player i randomly
selects a role model j from a different group (with all other groups being equally
likely). The focal player adopts the role model’s strategy with the same probability
as before,

'out
i→j =

1
1 + exp[−�(�j − �i)]

. [4]

Out-group imitation plays a similar role as migration in genetic models of
evolution. It allows strategies to move from one group to another.

The above elementary updating process is iterated for many time steps. This
gives rise to a stochastic process on the space of all population compositions. In
contrast to other multilevel selection models in which one group may replace
another (e.g. refs. 72 and 73), selection always operates on the individual
level. For our analysis, we assume that intragroup imitations occur much
more frequently than mutations and out-group imitations. Specifically, while
mutations and out-group comparisons happen on a similar time scale, both
are rare compared to intragroup comparison, �in � �out and �in � �. In
this limit, all groups can be assumed to be homogeneous. However, different
groups might use different strategies, because mutations might introduce novel
strategies faster than out-group imitation can lead to the establishment of a
single strategy.

When the number of groups G is sufficiently large, the evolutionary dynamics
can be described by an ordinary differential equation (64). Let xp be the fraction
of groups that employ strategy p. Over time, these fractions can change, either
because new strategies are introduced into groups by out-group imitation (and
reach fixation), or they are introduced by mutations (and reach fixation). In the
limit of G→∞, the dynamics is described by the following equation,

ẋp = (1− r)
∑
q6=p

�q→pxqxp + r
∑
q 6=p

xq�q→p − xp�p→q

K
. [5]

Here, r ≡ �/(�+�out) is the relative mutation probability compared to out-
group imitation events. In this study, we use r = 0.05. The right-hand side
of Eq. 5 consists of two parts. The first sum describes changes triggered by
out-group imitation. The coefficient

�q→p ≡
�q→p

1 + exp
[
�
(
�q − �p

)] − �p→q

1 + exp
[
�
(
�p − �q

)] [6]

describe the flow from strategy q to strategy p. Here,�p is the long-term payoffs
of a player in a homogeneous group of strategy p. The denominator of the first
term on the right-hand side describes the likelihood that a q-player switches
to p due to out-group imitation. The numerator describes the likelihood that
subsequently, p reaches fixation due to in-group imitation. The interpretation
of the second term in Eq. 6 is similar; it describes the possibility that a p-group
makes the converse transition toward q.

The second sum in Eq.5 describes changes triggered by mutations. Here, the
term xq�q→p/K describes the probability that a player in aq-group is mutating
into p and subsequently takes over the group. The other term xp�p→q/K
describes the outgoing flow from p-groups due to mutations. We note that
the sum

∑
p xp = 1 by definition. Hence the equation is defined on the

K-dimensional simplex.
We solve the above K-dimensional dynamical system numerically. Starting

from an initial condition where every strategy is equally distributed, we integrate
the differential equations until the system reaches a stationary state. We
numerically confirmed that the dynamics are asymptotically stable. After a
sufficiently long time (≈3 × 105), the system reaches a stationary state,
where the fractions of strategies are time-independent. The population-wide
cooperation level is calculated as the average fraction of cooperation in the
stationary state:

pc =
∑
p

pc(p)xp. [7]

The sum is taken over all strategies inS2 orS3.

Data, Materials, and Software Availability. All other data are included in
the manuscript and/or SI Appendix. The source code for this research is available
in Github (74). OACIS is used for the management of simulation results (75).
The generated numerical data are available in Zenodo (76).
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