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Cooperation at scale is critical for achieving a sustainable
future for humanity. However, achieving collective, coop-
erative behavior—in which intelligent actors in complex
environments jointly improve their well-being—remains
poorly understood. Complex systems science (CSS) pro-
vides a rich understanding of collective phenomena, the
evolution of cooperation, and the institutions that can
sustain both. Yet, much of the theory in this area fails
to fully consider individual-level complexity and environ-
mental context—largely for the sake of tractability and
because it has not been clear how to do so rigorously.
These elements are well captured in multiagent rein-
forcement learning (MARL), which has recently put focus
on cooperative (artificial) intelligence. However, typical
MARL simulations can be computationally expensive and
challenging to interpret. In this perspective, we propose
that bridging CSS and MARL affords new directions for-
ward. Both fields can complement each other in their
goals, methods, and scope. MARL offers CSS concrete
ways to formalize cognitive processes in dynamic environ-
ments. CSS offers MARL improved qualitative insight into
emergent collective phenomena. We see this approach as
providing the necessary foundations for a proper science
of collective, cooperative intelligence. We highlight work
that is already heading in this direction and discuss
concrete steps for future research.

cooperation | collective action | complex systems science |
multiagent reinforcement learning

Cooperation is the ability of a group to successfully and vol-
untarily act together toward a common interest, even when
short-term or individual gains make selfish behavior more
appealing to individuals (1). Such situations are commonly
referred to as social dilemmas. In a social dilemma, every
actor has the incentive to behave selfishly, yet everyone
would be better off if all behaved cooperatively. Cooperation
is required to maintain environmental commons, local and
global, e.g., fisheries, the atmosphere, and biodiversity,
but also social commons, such as public infrastructure,
education, and healthcare.

The study of whether, when, and how cooperation
emerges is an interdisciplinary pursuit involving research
fields as diverse as biology, physics, computer science,
engineering, and different branches of social sciences. Es-
tablished mechanisms to achieve and maintain cooperation
include outside authorities (2) and bottom–up arrange-
ments based on social reciprocity (3). External authorities
can resolve social dilemmas by installing a punishment

or reward scheme, e.g., via taxes and subsidies, that
makes selfish actions less attractive to individuals, whereas
bottom–up arrangements and social reciprocity find a way
to punish defecting behavior through peers (4). However,
the challenge of cooperation is far from being solved.

First, large collectives complicate the emergence and
robustness of cooperation. Although many mechanisms
have been identified that support its emergence and main-
tenance, it is also widely recognized that effective scaling
mechanisms are rare (5): in global public goods, such as the
climate, there is no single outside actor with sufficient en-
forcement power to ensure cooperation authoritatively. In
situations involving many, mostly anonymous, participants,
reciprocity mechanisms are hard to stabilize (6). Hence, a key
challenge for future research remains identifying principles
of collective information processing and collective action
that offer robust pathways to cooperation in large groups
and across scales of organization.

Second, the complexity and variety of human behavior
complicate the challenge of cooperation. A more com-
prehensive understanding of human behavior is required
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because of its importance in shaping future pathways to
sustainability (7). Securing a livable planet and the well-being
of future generations requires changes in policy, technology,
and, not least, individual behavior. Human decision-making
must be conceptualized as a multifaceted cognitive process
coevolving with local and global contexts (8). Furthermore,
situations involving diverse human actors with heteroge-
neous needs, preferences, and characteristics are critical
to sustainable futures and present a significant challenge
to cooperation (9). It is unknown how the diversity among
actors and the cognitive complexity within them can offer
robust principles for cooperation.

Third, the complexity of the environments in which the
actors are embedded makes stabilizing cooperation chal-
lenging (10). Challenges arise from 1) feedback (both gradual
and abrupt) between the environment and actors’ choices;
2) delayed or sparse consequences of actions; and 3) multi-
ple kinds of risks and uncertainties in the environment (11).
It is unresolved which factors of dynamic environmental
contexts offer robust pathways toward cooperation.

Fourth and last, transient dynamics complicate the chal-
lenge of cooperation. While many cooperation-promoting
mechanisms have been found, little attention has been
paid to transient phenomena toward cooperation (12). This
includes time scales on which cooperation is achievable,
the critical transition points at which cooperation becomes
viable, and the stability and resilience of a cooperative
arrangement. All these elements are crucial to consider for
sustainability transitions.

To address these challenges, mathematical models are
essential. Process-based, mechanistic models allow for
theory building and in silico experimentation when experi-
mental approaches are either too costly or infeasible (13).
The complex systems science (CSS) approach has produced
a robust understanding of how interactions among sim-
ple identical agents can create macrolevel structures and
properties. Notable fields include swarm intelligence, evo-
lutionary games, and population dynamics. However, the
microscale individual level in biological, social, and artificial
systems consists of sophisticated entities with behaviors
and interactions that may not be well-characterized by
simplistic representations (14). It is an open question of
what collective behavior emerges when interacting entities
are capable of sophisticated cognition and embedded in an
environmental context.

Agent-based modeling and the field of artificial life allow
for complex individual decision rules and agent heterogene-
ity (15). Yet, this additional complexity often means that the
models cannot be analyzed analytically and must be sim-
ulated. In addition, many agent-based models suffer from
the well-documented criticism of “garbage-in-garbage-out”
because the models are easily overparameterized, and the
rules afforded to the agents are not necessarily principled
nor empirically grounded (16). Multiagent reinforcement
learning (MARL) can be viewed as a type of agent-based
modeling in which agent behavior does not have to be fixed
in advance with plausible heuristics (17). Instead, the agents
themselves learn how to behave. However, MARL simu-
lations are usually highly stochastic and computationally
expensive, and the often large number of free parameters
can make them challenging to interpret (18).

In this paper, we argue that bridging the communities
of CSS and MARL can help with these challenges. MARL
operationalizes complex individual cognition in dynamic
environments. Conversely, CSS enables a principled under-
standing of the emergence of cooperation, bringing rigorous
ideas about emergence and dynamics to MARL for improved
interpretation. This is how we understand Collective Coop-
erative Intelligence. Intelligence refers to the general ability
(mainly of a single actor) to achieve a diverse set of goals (19),
which is formalized in AI research. Collective intelligence is
the intelligence of a group of primarily simple individuals,
as primarily studied in CSS (20). Cooperative intelligence is
the ability to achieve cooperation in a wide range of contexts
(21). Thus, Collective Cooperative Intelligence is the ability of
a collective—composed of individuals capable of intelligent
decision-making—to act together to improve their common
welfare by solving or identifying problems posed by the
environment. With AI rapidly advancing, it is imperative to
bring these perspectives together (22). Creating tractable
models of collective reinforcement learning is crucial for
a better understanding of the fundamental principles that
drive the emergence of cooperation among complex agents
in dynamic environments. Such an understanding can help
researchers design more cooperative algorithms and en-
vironments and identify critical leverage points toward a
sustainable future.

Background

Here, we juxtapose CSS and MARL approaches to the
challenge of cooperation. Their relative differences are
summarized in Table 1 while SI Appendix provides more
details.

CSS. Complex systems are generally out of equilibrium with
many interacting components, feedback, and couplings
between components and levels (23). CSS has been in-
strumental in studying cooperation through formal mod-
els (24). The primary goal of CSS is to understand how
macrolevel cooperation emerges from and interacts with
simple microlevel processes, before intervening to improve
cooperation.

Typically, models aim to explain emerging cooperation
from simple yet plausible mechanisms where “cooperation”

Table 1. Comparison between CSS and MARL approaches to
the study of cooperation problems

CSS MARL

Goal First understand coop- First improve coopera-
eration, then improve it tion, then understand it

Scope 1) Low-dimensional 1) High-dimensional
environment environment

2) Cooperative behavior 2) Cooperative behavior
available to be learned

Typical 1) Level of cooperation 1) Total social welfare
performance 2) Mechanism plausibility 2) Algorithm scalability
criteria 3) Mechanism simplicity 3) Generalization

Methodological 1) Dynamics 1) Algorithm design
tools 2) Analytics 2) Simulations

Comparative 1) Analytically explainable 1) Agent heterogeneity
advantages 2) Computationally 2) Applicable to large-

lightweight scale environments
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is based on an atomic action with the property that
more cooperation translates to higher social welfare (25).
For example, the famous strategy tit-for-tat, which merely
reciprocates what the opponent did in the previous turn,
is surprisingly successful against much more complicated
strategies (26). CSS methods are diverse. Typical methods
used are evolutionary game theory (27), nonlinear dynamics
(28), and complex social network models (29). With its
academic origins in theoretical physics and mathematical
biology (30), the CSS approach to study cooperation is
rooted in dynamics and often captures the analytic con-
ditions for cooperation to emerge (31), which provides a
thorough and robust understanding of the cooperation-
promoting mechanisms at play. This is facilitated by mak-
ing the models as simple as possible, which yields low-
dimensional models compared to typical MARL simulations.

However, much of the existing theory in this field neglects
the complexity of individuals and environmental contexts
(14, 32). Humans are capable of foresight, have a theory
of mind, make inferences about their environment, and
can adapt their behavior correspondingly. There is a clear
interest in adapting CSS models to accommodate these
nuances (33–36). Considering how such models could be
informed by MARL has great potential to unleash novel ways
of modeling complex systems to tackle the challenges of
collective cooperation in more complex settings.

MARL. In a typical MARL setting, each agent observes (parts
of) the current state of the environment, then takes an
action, after which they observe (part of) the new state of the
environment and are provided with a reward indicating how
desirable the previous “state–action–state” transition was.
Over time, the agents update their strategies (a mapping
from observation histories to probability distributions over
their action space) to optimize the long-term amount of
reward they receive (37). Studies of cooperation in MARL
fall under the umbrella of Cooperative AI (21) with the
overarching aim to improve the cooperative capabilities
of advanced AI systems by prescribing how agents should
(learn to) act. Extending machine learning interpretability
techniques to MARL is an ongoing effort to advance also the
understanding of MARL systems (38).

In contrast to CSS studies, cooperation is typically not
readily available as an action. Instead, what constitutes
a cooperative strategy, and how such a behavior can be
implemented, must be learned from scratch (39) based on
the performance criterion of total social welfare. Further-
more, the learning algorithms developed in MARL should
generalize to novel situations and scale to high-dimensional
environments. Modern MARL is inspired by a number of
fields, including neuroscience, psychology, economics, and
machine learning (40–43). For example, the commonly used
idea of temporal-difference learning is based upon reward-
prediction errors, common to humans, other animals, and
machines. In recent years, these traditional ideas have
been combined with advances in deep learning, achieving
remarkable successes (18). Thus, the methodological focus
often lies in designing novel algorithmic features to improve
the cooperativeness of RL algorithms in large-scale com-
puter simulations.

However, MARL simulations—on their own—do not
facilitate analytically reliable insights into how collective
cooperation emerges from complex human and machine
behavior in dynamic environments. They often require
significant computational resources, while the space to
explore suffers from the curse of dimensionality. Moreover,
they are typically highly stochastic in nature, and results
can be difficult to interpret (18). We believe that a unified
approach that combines approaches from CSS and MARL
could fill this gap.

Building Bridges

Here, we discuss how CSS and MARL can complement each
other. First, we establish a shared language by treating
MARL as a complex dynamical system. Second, we illustrate
how CSS can offer MARL improved qualitative insight into
emergent collective learning dynamics via its mathemat-
ical toolbox. Third, we discuss the potential of MARL for
improving CSS approaches regarding formalizing collective
behavior from cognitive processes in dynamic environ-
ments. We highlight steps for future research throughout
the discussion, which we summarize in Box 3.

Collective Reinforcement Learning Dynamics (CRLD). Using
nonlinear dynamical systems to model MARL is an inter-
disciplinary pursuit involving perspectives from economics
(42, 45), sociology (46, 47) machine learning (48, 49), con-
trol theory and engineering (50, 51), statistical mechanics
(52, 53), and mathematical biology (54, 55). These fields have
diverse research goals. Economics focuses on convergence
to equilibrium solutions, whereas statistical mechanics is
interested in nonconvergence scenarios. Machine learning
and engineering care for the development of scalable
algorithms and evaluation metrics. Mathematical biology
and sociology view reinforcement learning as a model of
biologically plausible adaptation and study when and how
certain learning processes serve as a model of human
behavior. To overcome disciplinary divides, we summarize
the intersection of these approaches under the term CRLD
and present an exemplary illustration in Box 1.

However, the study of cooperation has not been at
the center of studies despite notable examples existing in
mathematical biology and sociology (see SI Appendix). Here,
we argue for putting the question of cooperation at the
center of a research agenda on collective cooperative intel-
ligence, accompanied by regarding learning as a biologically
plausible model of human and AI behavior and focusing on
the complex, transient learning dynamics. See Box 2 for a
minimal application example.

Methodologically, CRLD studies are characterized by
two forms of idealization. First, CRLD focuses on low-
dimensional environments compared to typical MARL stud-
ies. Often, just static games with two agents are investigated.
Second, CRLD simplifies the highly stochastic and compu-
tationally intense reinforcement learning algorithms into
deterministic (differential or difference) learning equations.
The connection between learning algorithms and equations
either stems from stochastic approximation theory (51),
or evolutionary game theory (28). The replicator dynamics
from mathematical biology describe not only evolutionary
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Box 1.

Collective Reinforcement Learning Dynamics.

CRLD provides a bridge between CSS and MARL
based on the mathematical framework of MARL:

At each point in time, each agent i ∈ {1, …, N} can
choose an action from its action set Ai . These agents
are embedded in a (physical, ecological, or social)
environment with possible states S. States change
according to the environmental transition function:
a probability of entering the next state s′, for each
state s and each combination of agents’ actions a.
Agents receive external rewards: a numeric value for
each agent i, for each transition from s via action a
to state s′. Instead of RL algorithms, CRLD uses a set
of dynamical equations, modeling the learning of the
agents. As with algorithms, many variants exist. Here,
we illustrate the dynamic equations of temporal-
difference learning (44):

X it+1(s, a) = 1
ZiX t (s)

X it (s, a) exp
(
�i · �iX t (s, a)

)

The joint strategy, i.e., the probability of each agent
i choosing action a in state s, X it+1(s, a), is updated by
the product of the previous strategy, X it (s, a), and the
exponent of the previous strategy-average temporal-
difference error, �iX t (s, a), multiplied with the effective
learning rate �i , and properly normalized, 1/ZiX t (s),
to yield a probability distribution. �iX t (s, a) tells the
agents how to adapt their strategy to gain more
reward over time, averaging out all randomness
due to the stochasticity of agents’ strategies and
environmental transitions. See SI Appendix for all
details. The benefits of this framework are described
below for MARL in Complex Phenomena and for CSS
in Cognition in Contexts.

processes but also individual learning processes (56). The
relationship between the two fields is as follows: one
population with a distribution over phenotypes in the
evolutionary setting corresponds to one agent with a dis-
tribution over actions in the learning setting (57). Crucially,
unlike other dynamical system methods that describe the
macroscopic behavior of many agents in a low-dimensional
dynamical system, CRLD can also describe the idealized
learning behavior (58) of a single or few reinforcement
learning agents.

What is still missing is an integrated theory of CRLD
(Box 3), which explains from what principles different

individual learning schemes arise, how they are related, and
which algorithmic details matter on the collective level. Such
a CRLD theory would enable us to summarize the idealized
learning behavior of a broad set of algorithms. See refs. 51,
59, and 60 for promising starting points.

Complex Phenomena. Statistical mechanics provides a for-
mal framework to derive emergent phenomena from mi-
croscopic rules for systems that are too complex to analyze
directly (61). The critical advantage of CRLD is the ability
to uncover complex emergent phenomena within a MARL
system in a computationally fast and lightweight manner. In
this section, we highlight how a CSS perspective enriches the
study of cooperation among intelligent agents in complex
environments in MARL, using the framework outlined in
Box 1 and paving the way toward a “strategic statistical
mechanics” (62).
Multistability. MARL studies typically report learning success
over time. CSS aims to analyze the whole dynamics emerg-
ing from agents learning in the environment. This can
be done by visualizing (projections of) the joint strategy
space. For example, Fig. 1A shows the phase space in the
prosperous state for the environmental example of Box 2
with the exemplary learning dynamics of Box 1. Each arrow
represents the average effective reward-prediction error
the agents perceive at this strategy point. They, therefore,
give an intuition about the direction in which the collective
will learn.

A phase space perspective highlights the stability land-
scape, e.g., indicating whether the current situation exhibits
more than one equilibrium. For example, the blue learning
trajectories in Fig. 1A enter the mutual-cooperation strategy
equilibrium point. The red learning trajectories go to mutual
defection. Assuming an equal likelihood of initial strategies,
the size of the so-called basin of attraction for a given
equilibrium indicates how likely the equilibrium will occur.

Multistability in collective learning has exciting appli-
cations. First, the size of the basin of attraction of the
mutually cooperative solution is a valuable measure of
collective (cooperative) intelligence (63). Second, stability
landscapes and basins of attraction are instrumental to the
study of social–ecological resilience (64), which make CRLD
an ideal candidate to advance this field (65). Third, entering
one over other possible equilibria is a form of storing
information and thus can be seen as a form of emergent
collective memory (66). This perspective can explain social
conventions like technical standards, cultural norms, and
moral rules. Applying it to engineering MARL systems offers
the potential to outsource cognitive functions onto the
collective. Fourth and last, the relative size of attraction
basins offers a valuable perspective for ad hoc teamwork
(67). If provides a geometric view of how new agents impact
equilibria selection in groups of agents trained a priori
when new agents—possibly with strategies hardcoded in a
particular way (68)—are introduced in the system.

Around the basin of attraction’s edge, also known as
“separatrix” (dashed purple line in Fig. 1A), the transient
dynamics before entering equilibria show complex phe-
nomena. For example, the fine-grained bundle of learning
trajectories shows that, at the separatrix, only a tiny differ-
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Box 2.

Example environment.

Here, we illustrate an environment that allows for the
study of collective action under ecological tipping.

Two agents play a standard public goods game.
Everyone is better off by cooperating but each agent
has an immediate incentive to exploit the other. How-
ever, here, the agents are embedded in a dynamic
environment consisting of two states, a prosperous
and a degraded one. Each defecting agent increases
the probability of collapse by an amount qc / 2. When
collapsing to the degraded state, each agent suffers
from the collapse by a negative impact m at each
time point until they recover to the prosperous state,
governed by the recovery probability pr . For Figs. 1–3,
we use m = −5, qc = 0.2, qr = 0.01.

ence in the first agent’s initial cooperativeness is decisive for
where both agents will end up (Fig. 1B). Near the bifurcation
point, the learning dynamics may separate into fast and slow
directions. Fig. 1C shows the two closest learning trajectories
to the bifurcation. Both appear to have converged after
≈180 time steps and remain stable for over 200 time steps
until they head off to drastically different strategies. This
phenomenon occurs due to the underlying geometry of the
strategy space being a so-called saddle node (purple cross
in Fig. 1A). At the unstable saddle-node equilibrium, there
are stable and unstable directions in strategy space. Along
the stable directions, learning evolves on a slower timescale
toward the saddle point. Once the agents are “past” the
(unstable) equilibrium and enter the unstable directions,
they diverge.

Finally, CRLD’s overall convergence time also depends
on the initial strategies. Close to the separatrix, the conver-
gence time is up to an order of magnitude larger than far
away from it in our example (Fig. 1D). This phenomenon is
known as critical slowing down, describing the increase in
the system’s typical timescale close to a critical point. Here,
the concept of convergence becomes less relevant, and
a careful investigation of the transient learning dynamics
is vital—especially when external parameters change and
transitions between stable equilibria occur.

Critical transitions. When small changes in external param-
eters have significant consequences for the system’s be-
havior, CSS speaks of a critical transition. Other terms for
this phenomenon are regime shifts, bifurcations, tipping
elements, or phase transitions. Some CRLD studies have
already investigated such critical transitions in collective
learning (53, 55, 69–72). External parameters in the MARL
framework consist of the learning hyperparameters and the
parameters defining the environment. Hyperparameters
denote the parameters of the learning process, as opposed
to parameters used to encode an agent’s strategy. An
example of an agent’s hyperparameter is its learning rate,
which determines the extent newly obtained information
overrides old information. Parameters defining the envi-
ronment shown in Box 2 are the severity and likelihood of
collapse, m, and qc . The analogy to phase transitions from
classical statistical mechanics is as follows: a system (such as
water) can exist in multiple stable forms (liquid, ice, steam)
depending on external parameters (such as pressure and
temperature). For standard room pressure, the transitions
between these stable forms happen around the critical tem-
perature points of 0 and 100 ◦C. Fig. 2A shows the transition
from complete defection to full cooperation by varying the
agents’ discount factor, denoting how much the agents care
for their future wellbeing. For discount factors below 0.7,
full defection is globally stable (i.e., reached for any initial
condition), and for those above 0.85, full cooperation is
globally stable. In between, they are in a bistable regime
where both full cooperation and full defection are stable

A

B
C

D

Fig. 1. Multistability in CRLD (Box 1) applied to the ecological tipping envi-
ronment (Box 2). (A) Phase space of the prosperous state. (B) Detailed bundle
of learning trajectories. (C) Emergent timescales with abrupt transitions in
transient dynamics. (D) Critical slowing down around the critical point. See
SI Appendix for details.
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A

B

Fig. 2. Critical transitions in CRLD (Box 1) applied to the ecological tipping
environment (Box 2). (A) Cooperation levels and final rewards. (B) Time steps
to convergence show a critical slowing down around the critical point. For
each discount factor, both plots show a histogram of converged results from
250 random initial conditions by a color map, their mean by large markers,
their median by small markers, and the range between lower and upper
quartiles by the shaded regions. See SI Appendix for details.

(as in Fig. 1A). This can be seen by the abrupt change in
the quartiles in Fig. 2A, whereas the smooth change in the
average indicates a continuously shifting basin of attraction
from full defection to full cooperation.

Near the critical region, the phenomenon of critical
slowing down can be observed again. For discount factors
of around 0.75, learning takes approximately twice as
long as for small discount factors and about an order of
magnitude longer than for high discount factors (Fig. 2B).
While this phenomenon emphasizes the need to focus more
on the transient learning dynamics, it also offers a potential
application. So-called “early warning indicators” from CSS
(73) could be utilized in collective learning processes to
detect and proactively address nearby transition points.

Overall, the occurrence of critical transitions in multia-
gent learning makes CRLD a promising modeling tool for
studying emergent social tipping points in social–ecological
systems and human–environment interactions.
Hysteresis. If we revert the external parameter after a crit-
ical transition, but the system does not follow the same
trajectory back, we observe the phenomenon known as
“hysteresis” (74–77). Fig. 3 shows hysteresis in CRLD. In
contrast to Fig. 2, where the CRLD system was simulated
to convergence for each parameter point independently, in
Fig. 3, the external parameter (here, the discount factor)
changes slowly within the simulation. Around a discount
factor of 0.83, the CRLD system tips from defection to
cooperation. It remains there until the discount factor
decreases again until 0.7 when it tips again back to full
defection. For discount factors between 0.7 and 0.83, the
agents’ strategy depends on where the discount factor was
before. More complex phenomena might arise when the
timescales of external parameter changes approach the
internal timescale of the learning dynamics (78).

Hysteresis means that the system’s state is dependent on
its history of external parameter changes, i.e., it can store
information. Thus, hysteresis in MARL presents another
form of collective memory. Future work on (large-scale)
MARL systems can benefit from more explicitly considering
the complex networks between agents to outsource cog-
nitive functions between the agents. For instance, in the
line of work on autocurricula, a changing distribution of
environments might endow (collectives of) agents with (co-
operative) skills that robustly persist even as the distribution
of environments changes over the course of learning.

Taken together, the complex emergent phenomena
around multistability, critical transitions and hysteresis plus
a plurality of possible dynamic regimes as shown in the
SI Appendix in CSS offer great potential for analyzing and
designing MARL systems. These phenomena are observable
in CRLD, making it highly likely that they can also be found
within high-dimensional MARL systems. However, it is still
an open research question to systematically investigate the
conditions for the occurrence and the potential use cases
for emergent phenomena in MARL (Box 3).

Cognition in Contexts. Last, we discuss how ideas from
MARL can enrich CSS regarding the three challenge areas
of individual cognition, collective behavior, and dynamic
environments.
Cooperation from individual cognition. First, we explore how co-
operation might emerge from individual cognition and what
is needed to move CRLD to a position able to investigate this
question.

CSS’s dominant interpretation of how successful strate-
gies spread is by agents copying the strategies of more
successful agents. This approach has been very influential
in capturing the key elements of cultural evolution (79).
However, this form of social learning assumes that agents
share the same success criteria and can observe both strate-
gies and the success of others, making it difficult to apply
to asymmetric interactions. There is clear interest within
CSS in extending this paradigm to other forms of cognition
and learning (32, 80). The various cognitive mechanisms
explored in CSS do not explain how to integrate them into
one coherent model. Such integration, however, is neces-
sary to examine their interplay and relative importance for
emerging collective cooperation in dynamic environments.
Moreover, cognition is general-purpose and must, there-
fore, be examined across different environments.

Fig. 3. Hysteresis in CRLD (Box 1) applied to the ecological tipping environ-
ment (Box 2). The discount factor changes while the agents keep on learning.
The size and color of the dots represent the time, from dark to light and from
big to small as from past to future. See SI Appendix for details.
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MARL offers a comprehensive framework for studying
the interplay among learning, representation, and decision-
making between multiple actors (81), offering an integrating
platform to test hypotheses on how different cognitive
mechanisms may affect collective cooperation in dynamic
environments. For example, intrinsic motivations guide
learning without relying on externally supplied rewards for
improved exploration, control, and homeostasis (82). Being
explicitly prosocial and including the rewards of others
in one’s own reward function (i.e., having other-regarding
preferences) clearly promotes cooperation (83). In general,
however, it is nonobvious how other common types of
intrinsic motivations affect cooperation, e.g., being curious
(84), being cautious or risk-taking (85), being controlling (86),
or being predictive (87). Even less is known about how other
cognitive functions affect collective cooperation in dynamic
environments. For example, a key component in single-
player deep RL is experience-replay, bearing some resem-
blance to the replay events observed in the hippocampus
(88). Other cognitive mechanisms are employed to learn

Box 3.

Open research strands.

The following open research areas are intended to
cross-fertilize progress on collective cooperative
intelligence between CSS and MARL:
1. CRLD Theory. What are the principles that give

rise to different RL update schemes? How are they
related? Which algorithmic details matter on the
collective level and which do not?

2. Complex dynamic phenomena. What are the
conditions for the occurrence of and the potential
use-cases for complex emergent and transient
phenomena, such as multistability, abrupt tran-
sitions, hysteresis, and dynamic regimes in CRLD
and large-scale MARL?

3. CRLD with cognition. How can cognitive mech-
anisms such as representational learning, world
models, intrinsic motivations, and theory of mind
be integrated into CRLD? What are their effects on
the learning of cooperation? What is the role of
intrinsic noise in CRLD?

4. CRLD in large collectives. What are the assump-
tions that result in mean-field approaches to
MARL? How do they relate to each other and to
CRLD? And what are the principles in CRLD from
which cooperation can emerge in large collectives
composed of intelligent individuals, particularly
heterogeneous ones? How can these principles be
transferred to large-scale MARL systems?

5. CRLD in dynamic environments. How do
environments of different levels of abstraction
relate to each other? What techniques are suitable
for scaling environments up and down? Which
environmental properties promote or hinder the
learning of cooperation? How do these properties
influence large-scale MARL systems?

efficient representations of high-dimensional observations
(89) and internal models of the world (90). These mecha-
nisms are crucial for agents to update their behavior in a
robust and efficient way.

The benefit of CRLD is that it combines the integrating
platform of classical MARL for testing hypotheses regard-
ing cognition (Box 1) with the analysis toolbox of CSS.
Deterministic CRLD model agents learn in the theoretical
limit of an infinite memory batch (91) or as if they have a
perfect model of the current environment (58). It is such
abstractions that make these models useful. By comparing
the deterministic CRLD dynamics with the stochastic MARL
simulations, it has been shown that the intrinsic stochasticity
of the MARL process is highly beneficial for the learning
of cooperation (92). Lenient CRLD dynamics make agents
forgiving to initial mismatched teammate actions, which
result in a higher likelihood of converging to the cooperative
solution. CRLD with partial observability can learn to cooper-
ate through inaccurate representations of the environment
(93). However, future research is needed to examine the
role of more refined notions of cognition, such as adaptive
intrinsic representations, world models, motivations, and
theory of mind in the learning of cooperation, in general,
and of intrinsic noise in the emergence of cooperation in
dynamic environments by means of stochastic dynamical
systems (94), in particular (Box 3).
Cooperation in large collectives. Next, we discuss the challenge
of cooperation in large collectives of self-learning agents in
dynamic environments and how CRLD can investigate this
problem.

In CSS, the canonical approach assumes a large collective
of homogeneous and/or simple individuals, and there is
a long tradition of describing the phenomena emerging
from such collectives (28). For example, the famous repli-
cator equation describes the evolutionary dynamics of a
population containing an infinite number of individuals (95)
and many works have investigated the preconditions for
cooperation under this paradigm. Refining this paradigm
transforms evolutionary dynamics from infinite to finite (but
still large) populations (96).

In MARL, large collectives are much harder to study
because of the exponentially increasing joint state-action
space and the associated computational demands that
come with it. However, some notable examples exist (97,
98). They manage the computational demands by careful
software engineering, exploiting agent similarities through
parameter sharing or using transfer learning mechanisms
while progressively increasing the number of agents. Yet,
little is known about cooperation in large collectives from a
MARL perspective.

In CRLD, a few works have begun to explicitly treat a
collective of RL agents as a nonlinear dynamical system,
deriving a Fokker–Planck equation to describe the idealized
learning behavior of a MARL collective. They focus on
repeated symmetric games (49), population games (99),
stochastic effects and incomplete information (100), regret
minimization (101), and regular social network structures
(102). There is an apparent similarity here with so-called
mean-field approaches to MARL. MARL is often very high-
dimensional and highly stochastic, making it computation-
ally challenging and difficult to understand. Mean-field
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approaches, originally from theoretical physics, attempt to
solve this problem by approximating the original system
with a simpler model by averaging over certain degrees of
freedom. It is, therefore, an ideal tool for gaining conceptual
clarity about collective cooperation in complex settings.
However, being a research frontier, mean-field approaches
to RL are not yet consolidated, and different variants exist.
Most prominently, mean-field games (103) consider the
large-agent limit in a situation where each agent has an
individual state associated with it. Other works consider the
mean action of a local neighborhood of agents (104), which
allows the study of a finite number of agents. All variants pri-
marily focus on obtaining convergence guarantees. Future
work is needed to distill the emergent phenomena, transient
dynamics, and principles that lie behind cooperation in large
collectives composed of intelligent individuals, particularly
heterogeneous ones from a CRLD perspective. To do so,
it will be vital to consolidate these different mean-field
approaches, contrast the assumptions from which these
arise, and refine them to heterogeneous and structured
populations (Box 3).
Cooperation in dynamic environments. Last, we explore the
challenge of cooperation in dynamic, stateful environments
and what is required to leverage the most out of the CRLD
approach.

In CSS, recent years have seen a growing interest in
moving from evolutionary dynamics in stateless games
to dynamic environments. Here, the term “dynamic” can
mean external fluctuations (105), a varying population
density (106), spatial network structure (107), or coupled
systems of evolutionary and environmental dynamics. Cou-
pled systems may be categorized into those with continuous
environmental state spaces (108) or discrete ones (109).
These examples reflect a diverse understanding of the
term “environment.” However, agents typically remain in the
paradigm of social learning in these works.

The MARL setting employs large, dynamic, and uncertain
environments via the framework of (partially observable)
stochastic games. Sequential social dilemmas form a bridge
between high-dimensional environments and the simple,
stateless games primarily used to study cooperation in CSS
(39, 83). They share simple games’ mixed incentive structure
but require agents to learn cooperation strategies on their
own, i.e., cooperation is not a single atomic choice but a
temporally extended sequence of actions. See SI Appendix
on how to define “cooperation” in stateful environments. For
such complex environments, deep MARL can also be used to
generate predictions of human behavior, where traditional
game-theoretic methods are no longer amenable (110).

Some CRLD works already consider dynamic environ-
ments via learning in (partially observable) stochastic
games (44, 111). To leverage their strengths in abstraction,
CRLD studies should focus on comparably low-dimensional
stochastic games with few environmental states to combine
the best of both worlds: analytical tractability and environ-
mental complexity. For example, our guiding example (Box
2) is a stochastic game with only two states. Nevertheless,
it is sufficient to highlight a range of complex phenomena
(see above) and calculate analytically when the level of
caring for future rewards can turn the tragedy of the

commons into a comedy—where cooperation prevails—
without requiring any form of social reciprocity (91). Fu-
ture work is required to explore more generally which
environmental conditions favor or hinder the learning of
cooperation (Box 3). Factors to consider are environmental
uncertainty, delayed and sparse rewards, the coupling
of local and global environmental states, environmental
tipping points, and spatial extendedness. To do so, a
better understanding of how environments on different
abstraction levels are related. Empirical Game Theoretic
Analysis downscales a high-dimensional environment to
a stateless game via heuristic strategies (112). Intuitively,
this technique complements the sequential social dilemma
concept (39), reducing an environmentally complex situa-
tion to its core. Future work should aim to downscale a high-
dimensional environment not necessarily to a single envi-
ronmental state but to a few significant states to preserve
the essential environmental context (see also SI Appendix).
For this purpose, conceptual links to temporally extended
substrategies of hierarchical reinforcement learning may be
fruitful (113).

Conclusions

Collective cooperation—in which intelligent actors in com-
plex environments seek ways to improve their joint well-
being—is critical for a sustainable future, yet unresolved.
Mathematical models are essential to solve this challenge.
Here, we argue that building bridges between CSS and
MARL offers a more robust understanding of the drivers,
mechanisms, and dynamics of collective cooperation from
intelligent actors in dynamic environments. Both fields
complement each other in their goals, methods, and
scope.

CSS offers MARL improved qualitative insight into emer-
gent collective learning dynamics via its analysis toolbox.
Based on the existing body of works that models MARL as
nonlinear dynamical systems, we highlighted what kinds of
insights a CSS perspective on complex, emergent phenom-
ena and dynamics offers. In our guiding example (Box 2),
all three elements of cognition, collective, and environment
are represented in their most minimal form.

By way of return, MARL offers CSS concrete ways to
formalize cognitive processes in dynamic environments.
We portrayed the current state of cooperation research
along the three elements of cognition, large collectives,
and dynamic environments. Box 3 summarizes the five
open research strands we identified. Ultimately, by shar-
ing the same mathematical framework, MARL and CSS
complement each other in their scope. CSS can focus on
more qualitative, conceptual models with comparable low-
dimensional environments. In contrast, MARL can focus on
scaling cooperation-promoting principles to more quanti-
tative, realistic models with comparable high-dimensional
environments.

This complementary view of MARL and CSS can also
strengthen the role of theory. It enables the formulation
of integrated theories around the dynamics of cooperation
in large collectives from individual cognition in environ-
mental contexts. The connection between empirical data
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is threefold. 1) On the behavioral level, theory predictions
can be compared with behavioral experiments or field
observations. In addition to procedures with human or
nonhuman animal subjects, large language models (LLMs)
offer innovative ways to investigate various phenomena
in human-machine ecologies. 2) On the neurological level,
stylized theoretical representations of neural information
processing could be compared with natural or artificial brain
data (as obtained, e.g., in neuroeconomics). 3) Biophysical
and socioeconomic data can be used to parameterize
the model environment. The resulting learning dynamics
offer projections of future socioeconomic pathways, and
the distance to critical points in parameter space gives a
measure of their resilience.

We believe that the approach of building bridges between
CSS and MARL provides the necessary foundations for a
genuine science of collective, cooperative intelligence and
invite everyone to join forces.

Data, Materials, and Software Availability. All supplementary infor-
mation in fully reproducible form is available here (114) or in the SI Appendix.
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