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Abstract

Indirect reciprocity is a key mechanism for large-scale cooperation. This mechanism
captures the insight that in part, people help others to build and maintain a good reputa-
tion. To enable such cooperation, appropriate social norms are essential. They specify
how individuals should act based on each others’ reputations, and how reputations are
updated in response to individual actions. Although previous work has identified several
norms that sustain cooperation, a complete analytical characterization of all evolutionarily
stable norms remains lacking, especially when assessments or actions are noisy. In this
study, we provide such a characterization for the public assessment regime. This char-
acterization reproduces known results, such as the leading eight norms, but it extends

to more general cases, allowing for various types of errors and additional actions includ-
ing costly punishment. We also identify norms that impose a fixed payoff on any mutant
strategy, analogous to the zero-determinant strategies in direct reciprocity. These results
offer a rigorous foundation for understanding the evolution of cooperation through indirect
reciprocity and the critical role of social norms.

Author summary

Understanding how cooperation can evolve and be sustained is a central question in evo-
lutionary biology and social science. One prominent explanation is indirect reciprocity,
where individuals help others to build a good reputation and receive help in future.

For this mechanism to work, societies rely on social norms — shared rules that specify
how actions are judged and thereby how reputations are updated. Previous studies have
proposed specific norms that support cooperation. However, it has remained unclear
what general conditions make a norm evolutionarily stable. In this study, we develop a
mathematical framework to analytically derive such conditions. Our theory reproduces
well-known results, and it extends to more complex scenarios involving non-negligible
errors and costly punishment. These findings deepen our understanding of the evolution
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of cooperation and offer insights into how robust social norms can emerge and persist,
even in noisy environments.

1. Introduction

Cooperation is a crucial aspect of life, and indirect reciprocity is a key mechanism to pro-
mote cooperation in human societies [1-6]. In indirect reciprocity, individuals decide how
to treat others based on each other’s reputations, and they cooperate to maintain a good
reputation. Unlike direct reciprocity, in which individuals reciprocate based on their own
experiences with others, indirect reciprocity relies on reputations as signals of past behavior.
A concern for a good reputation may incentivize people to cooperate even with individuals
they are unlikely to encounter again, enabling cooperation on a larger scale. To promote coop-
eration through indirect reciprocity, it is essential to have a proper “social norm” Such norms
specify two components: an action rule, which prescribes how players should act based on
others’ reputations, and an assessment rule, which determines how reputations are updated
in response to players’ actions.

A major aim of this field is to identify evolutionarily stable norms, particularly those
that promote cooperation. Previous studies have identified a number of such cooperative
norms [7-21]. Among these, the so-called “leading eight” norms have received particular
attention [9,10] (see Table 1 for their definition). The leading eight are fully cooperative,
meaning that the population’s cooperation rate approaches one when they are universally
adopted. In addition, they are stable against invasion by any rare mutant strategy. They are
characterized by four guiding principles: (i) Maintenance of cooperation: Good donors

should cooperate with good recipients, and doing so should preserve their good reputation.
(ii) Identification of defectors: Donors who defect against good recipients should be classi-
fied as bad. (iii) Justified punishment: Good donors may defect against bad recipients with-
out harming their own reputation. (iv) Apology and forgiveness: Bad donors can restore
their reputation by cooperating with good recipients. Overall, human behavior seems to be
largely consistent with these principles, even though there is some mixed evidence on whether
people regard justified punishment as truly justified [22-24].

To investigate cooperative norms, researchers have often focused on deterministic social
norms, in which the assessment rule assigns reputations with certainty. Because the set of
deterministic norms is finite, one can systematically enumerate all possibilities and identify

Table 1. The prescriptions of the leading eight. The top row (X,Y) indicates the reputations of the donor and the recipient, respectively. For instance, (G,B) refers to
the case of a good (G) donor who meets a bad (B) recipient. The rules S, R(C), R(D) indicate the prescribed action, the assessment when cooperation (C) is observed,
and the assessment when defection (D) is observed, respectively. An entry of 1 means the donor is assessed as good and 0 means the donor is assessed as bad. Those
columns in which the leading eight differ from each other are highlighted in bold text.

(G,G) (G,B) (B,G) (B,B)
N R(C) R(D) S R(O) R(D) S R(C) R(D) S R(O) R(D)
L1 (Standing) C 1 0 D 1 1 C 1 0 C 1 0
L2 (Consistent Standing) |C 1 0 D 0 1 C 1 0 C 1 0
L3 (Simple Standing) Cc 1 0 D 1 1 C 1 0 D 1 1
L4 C 1 0 D 1 1 C 1 0 D 0 1
L5 C 1 0 D 0 1 C 1 0 D 1 1
L6 (Stern Judging) C 1 0 D 0 1 C 1 0 D 0 1
L7 (Staying) C 1 0 D 1 1 C 1 0 D 0 0
L8 (Judging) C 1 0 D 0 1 C 1 0 D 0 0
https://doi.org/10.1371/journal.pchi.1013584.t001
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those capable of sustaining cooperation under evolutionary pressure [7-21]. This approach
can also incorporate nonzero error rates, allowing for occasional mistakes in actions or
assessments. However, this enumerative method becomes infeasible for stochastic norms.

In stochastic norms, the assessment rule may assign reputations probabilistically, leading to
an uncountable number of possibilities [25,26]. To address this challenge, Murase et al. [26]
derived exact analytical conditions for evolutionarily stable strategies (ESS) that sustain coop-
eration in the limit of vanishing error rates. Nevertheless, the current theory on stochastic
norms remains limited to those that yield full cooperation in the vanishing-error limit. In this
regime, the population converges to a homogeneous cooperative state in which all individuals
are regarded as good and everyone cooperates. ESS conditions are then derived by analyzing
whether rare deviations from this cooperative baseline can be profitable.

In this work, we remove these restrictions. Our methodological innovation is to calculate
the long-term benefit of acquiring a good reputation, which in turn is the critical quantity
needed to assess evolutionary stability. This quantity is relatively easy to derive under second-
order social norms, where a donor’s reputation does not persist beyond a single round, and
it has been used to evaluate ESS [13,21,27]. Here, we extend the derivation to third-order
norms. By evaluating whether maintaining a good reputation yields a higher long-term pay-
off than losing it, we can derive the necessary and sufficient conditions for all evolutionar-
ily stable social norms, regardless of the cooperation level they sustain—an analysis that has
been lacking. Importantly, our framework does not require errors to be vanishingly rare;
it applies to arbitrary error rates. This generalization enables us to investigate more realis-
tic scenarios, in which mistakes in assessment, action, or perception can occur. We further
extend the framework to analyze additional actions beyond cooperation and defection, such
as costly punishment [13,21]. Finally, we identify a novel class of norms that enforce a fixed
payoff against any mutant strategy, reminiscent of zero-determinant strategies in direct reci-
procity [28].

The paper is organized as follows. In Sect 2, we introduce the model and establish use-
ful notation. Sect 3 develops our analytical framework and shows how to calculate the long-
term benefit of acquiring a good reputation. Using this framework, we obtain the following
main results: First, we derive necessary and sufficient conditions for the evolutionary stabil-
ity of third-order norms under various types of errors at arbitrary rates. Second, we extend
the framework to incorporate additional actions, focusing on costly punishment. Third, we
apply our results to investigate several special cases (Sect 4): (i) cooperative ESS in the limit of
vanishing errors, (ii) cooperative ESS with costly punishment in the limit of vanishing errors,
(iii) stability of the leading eight norms in the presence of various errors, and (iv) finally,
we characterize a novel class of norms, the “equalizer” norms, which enforce a fixed payoft
against any mutant strategy. The last section summarizes our findings and discusses their
implications.

2. Model

In this study, we follow the basic framework of Ohtsuki and Iwasa [9]. We consider an
infinitely large population of players who interact in pairwise donation games. In each round,
two players are randomly chosen as a donor and a recipient, respectively. The donor decides
whether to cooperate (C) or to defect (D). Cooperation incurs a cost c>0 for the donor and
results in a benefit b>c for the recipient. Defection leads to a payoff of zero for both players. If
the donation game is only played once, the donor is better off by defecting, creating a social
dilemma. However, here we assume that population members play many donation games,
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against different opponents. In that case, their actions can affect their reputation, which in
turn may influence how they are treated in future.

We assume reputations are binary and public. That is, the reputation of a player can be
either good (G) or bad (B), and it is known to all other players without any disagreement.
How players form reputations, and how they act based on these reputations, depends on their
social norm. In our study, a social norm consists of an action rule and an assessment rule, as
shown in Fig 1.

Social norms are often categorized by their order, which reflects the information on which
actions and assessments are based. First-order norms assess the donor’s reputation based
solely on the donor’s action, without considering the context or the recipient’s reputation.
Second-order norms take into account both the donor’s action and the recipient’s reputation,
enabling distinctions such as justified vs. unjustified defection. The action rule depends only
on the donor’s reputation in first- and second-order norms. Third-order norms additionally
consider the donor’s own reputation, allowing for more nuanced assessments. Assessment
rules and action rules in third-order norms can depend on the reputations of both the donor
and the recipient. Following [26], we consider a stochastic version of third-order social norms
in this paper.

A social norm’s action rule S(X,Y) determines which action a player takes as a donor. This
choice might depend on the player’s own reputation X as well as on the reputation Y of the
recipient, where X, Y € {G, B}. The output S(X, Y) € {C, D} is the action that the donor takes.
Here, we assume that the action rule is deterministic (that is, donors cooperate with proba-
bility zero or one). This assumption is without loss of generality, since stochastic action rules
cannot be evolutionarily stable [26]: For a given context, the best response is uniquely deter-
mined except for the special cases where the expected payofs of the two actions are equal (in
which case neutral drift would be possible). In the following we exclude those special cases
from our analysis.

A social norm’s assessment rule R(X,Y,A) determines the probability that the donor is
assigned a good reputation after the interaction. This probability depends on the previous rep-
utation X of the donor, the previous reputation Y of the recipient, and on the donor’s action
A € {C, D} in the donation game. When the output of an assessment rule R(X,Y,A) is con-
strained to be either zero or one for any input (X,Y,A), the norm is deterministic; otherwise it
is stochastic.

Donor 1. the donor Recipient

decides their action
S(G,B)=D

2. the donor’s reputation is updated

R(G,B,D)
Fig 1. Schematic representation of the model. At each time step, two players are randomly chosen, one as the
donor and the other as the recipient. The donor chooses an action according to the action rule S(X,Y), which depends
on the reputation of the donor X and the reputation of the recipient Y. After the interaction, the assessment rule
R(X,Y,A) determines the donor’s new reputation. This reputation depends on the donor’s previous reputation X, the
recipient’s previous reputation Y, and the donor’s action A. The donor is assigned a good reputation with probabil-
ity R(X, Y, A), which is the effective assessment rule that accounts for errors in assessment. We repeat this process
indefinitely, and we are interested in the population’s long-term behavior.

https://doi.org/10.1371/journal.pcbi.1013584.9g001
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We introduce assessment errors, which occur when new reputations are assigned. With
probabilities u, the respective assignments are the opposite of the assignment prescribed by
the social norm. As a result, instead of their intended assessment rules, players implement the
effective assessment rules

R(X,Y,A)=(1-u)R(X,Y,A) + u[1-R(X,Y,A)]. (1)

In the presence of these errors, we obtain the constraint u < R(X, Y,A) <1-u. When
U >0, the reputation dynamics are ergodic. This means that over time, the system explores all
possible reputation states and that its long-term behavior becomes independent of the initial
reputation configuration [26].

In agreement with the seminal work of Ohtsuki and Iwasa [9,10], we consider a public
assessment model. That is, all players learn the same information and share the same assess-
ment of any given population member at any point in time. These shared assessments can
change in time, depending on the population members’ interactions. Herein, we assume play-
ers interact in sufficiently many donation games such that their reputation assignments reach
a stationary state.

In the remainder of this article, we focus on identifying which social norms are ESS. We
refer to the norm adopted by the majority of the population as the resident norm. For positive
error rates, we require the resident norm to form a strict Nash equilibrium: if an infinitesimal
minority of the population adopts a different norm, the minority receives a strictly lower pay-
off than the residents. Because in the public assessment model the reputation-updating mech-
anism is externally defined and shared at the population level, individual mutants cannot
change it. It is therefore sufficient to consider mutants with different action rules but identical
assessment rules as the resident. Note that under this framework, at most two different norms
can be present at any time. Thus, we do not consider scenarios in which multiple action rules
coexist simultaneously [29].

We also focus on the particularly important special case, already discussed, of social norms
that are not only ESS but also self-cooperative. When a self-cooperative norm is adopted by
everyone, the population’s cooperation rate approaches one in the limit of rare errors. We
refer to such norms as cooperative ESS (CESS) [10,14,26].

3. Results

To characterize all ESS, we first describe how reputations evolve over time. As a crucial mea-
sure, we obtain the equilibrium fraction of good players in the population (Sect 3.1). Using
this equilibrium fraction, we calculate the long-term benefit of acquiring a good reputation
(Sect 3.2). Based on these results, we derive necessary and sufficient conditions for a social
norm to be an ESS (Sect 3.3). These conditions are then naturally extended to account for

other types of errors (Sect 3.4) and for additional actions (Sect 3.5).

3.1. Description of the reputation dynamics

Consider a homogeneous population with action rule S(X,Y) and assessment rule R(X,Y,A),
which together define the resident norm. At any given time ¢, let 4(t) denote the fraction of
players with a good reputation. Similarly, 1 - h(t) is the fraction of players with a bad reputa-
tion. Then h(t) obeys the following differential equation,
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h(t) h()*Rs (G,G)

+ h(t) (1-112(t))[Rs(G,B)+RS (B,G)] @
+ (1-h(t)) Rs(B,B)
- h(1).
In this expression, R (X, Y) is the probability to assign a good reputation to the donor
if the donor’s and recipients initial reputations are X and Y, respectively. This probability is
defined as
Rs(X,Y)=R(X,Y,S(X,Y)). 3)

As t— o0, the proportion of good population members h(t) converges to a fixed point
h*€[0,1]. This fixed point is unique and stable, because the above equation is quadratic with
respect to h and because /1]5-; < 0 and ;..o > 0 when , > 0. By plugging / = 0 into Eq (2), the
stationary value is obtained as a solution to the quadratic equation

2
O +ch* +¢,=0, (4)
where c,, ¢, and ¢ are defined as

& =Rg (G, G) -Rg (G,B) - Rg (B,G) + Rg (B,B)
1 =Rs (G, B) + Rs (B,G) - 2Rs (B, B) - 1 . (5)
co=Rs(B,B)

The unique solution h* € [0, 1] to the quadratic equation (4) is

—c1-\/E-4c200

h* I when ) F 0 (6)

_%

o when ¢, = 0.

(The other solution to the quadratic equation is not in the unit interval [0,1]).
At the stationary state, the probability that a donor takes action A € {C, D} when interacting
with another member of the population is

P = 1234 (G, G) + h*(1-h") [xa(G, B) + xa(B,G)] + (1-h*)2 x4(B, B). 7)

Here, “res” refers to an individual following the resident norm, and the arrow denotes
res—res

donor — recipient. Thus, p'} is the probability that a resident donor takes action A toward
a resident recipient. Moreover, y, is an indicator function defined by:

1 ifS(X,Y)=A
xa(X,Y)= ) 8)
0 otherwise.
In particular, for the social norm to be self-cooperative, pi$*~ " must converge to one as
u—0.
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3.2. Long-term benefit of having a good reputation

In the following, we derive a necessary and sufficient condition for a social norm to be an
ESS. To this end, we first calculate the expected long-term payoff of a player who is currently
assigned a good or a bad reputation, respectively. We use this expression to check if the social
norny’s action rule is the unique best response in all possible contexts. Here, the possible con-
texts refer to all possible combinations of the donor’s and the recipient’s reputations, (G,G),
(B,G), (G,B), and (B,B).

Suppose there is a good player following the social norm (R,S). We consider the player’s
cumulative payoff for the subsequent T rounds,

T
v =3 ad). )

t=1

Here, (ﬂ(Gt)) is the expected payoff in the ¢-th round, given the player initially has a G rep-
utation. A round is defined as a single donation game, in which the player is the donor or
the recipient, each with probability 1/2. The cumulative payoft vl(;T) for a B player is defined
analogously.

To derive an explicit expression for the cumulative payoff v(Gt ), consider a focal player
with an initially good reputation. We distinguish two possible cases that could occur in the
player’s next game. (i) If the player happens to act as the recipient in the next game, this player
receives a benefit b with probability h* yc(G, G) + (1 - h*) yc(B, G), because the donor is G
with probability #* and B with probability 1 - h*. In that case, the player maintains their pre-
vious reputation. (ii) Alternatively, if the player acts as the donor, this player pays the cost
¢ with probability h* yc(G, G) + (1 - h*) xc(G, B). Now, the player’s reputation is updated
according to the assessment rule R. The donor is assigned a good reputation with probability
Rs (G, G) if they met a G recipient, and with probability Rs (G, B) if they met a B recipient. If

they obtain a good reputation, they obtain the payoft v(GTf Y'in the subsequent T-1 rounds. If

they obtain a bad reputation, their subsequent payoff is VgT_ Y Overall, the expected cumula-

tive payoff of a G player is

L e @0 (-]

+ % ' [_C[h*)(c(G’G) +(1-h") xc (G, B)]

+h"Rs (G, G) VE;T_I) +(1-h")Rs(G,B) VE;T_I) "
+h*[1-Rs(G,G)]v{™ + (1-h*)[1-Rs (G, B)] Vg”)].
Similarly, the expected payoff of a B player in the subsequent T rounds is
AP =2 b1 e (GB) + (1) xe (BB)] + ]
o 5[ elh e (B.6) + (1- ) e (B.B)] ”

IR (B,G) v + (1-") Rs (B,B) v
+ 1" [1-Rs (B,G)] vy ™ + (1- ") [1- Rs (B, B)] vV,

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013584 October 14, 2025 7123



https://doi.org/10.1371/journal.pcbi.1013584

PLOS COMPUTATIONAL BIOLOGY Exact conditions for evolutionary stability in indirect reciprocity under noise

The difference between these two expected payofts is

N % b[H e (G,A) + (1-H) xc (B.A)]
e [H e (AG) + (1-1*) xc (AB)] (12)

+ (V(GT_I) - ng‘l)) {1+h*Rs (A, G) + (1-h*)Rs (A, B)} |.

Here, we use the following definitions for X € {G, B}

Xc(X,A)=xc(X,G) - xc(X,B),
xc(AX) = xc(GX) - xc (B, X), (13)
Rs (A,X) = Rs (G,X) - Rs (B,X) .

As we saw in the previous section, the system converges to a stationary state where the frac-
tion of good players is h* irrespective of the initial reputation configuration. Therefore, the

expected payoffs in the #-th round, (ﬂ(Gt)) and (711(;) ), converge to the same value in the limit

(1y _ (T
G

as t - 0o0. Hence, the difference v, vy ) approaches a constant value as T becomes large. Let

us define the respective limit as
= 1i (1) _ (D)
Av= 711_{1;10 (vG -y ) . (14)

We can obtain an implicit equation for Av by taking the limit T— o0 in Eq (12). By solving
the resulting expression for Av, we obtain

_ bW xc (G A)+(1-h) xc (B.A)] - c [ xc (A, G)+(1-h") xc (A B)]

A
’ 1-1*Rs (A, G) - (1-h*)Rs (A, B)

. (15)

The first term in the numerator can be interpreted as the expected benefit a G player
obtains compared to a B player. The second term is the expected cost a G player addition-
ally pays compared to a B player. The denominator indicates how long the initial reputation
lasts. When it takes more time steps to recover from a bad reputation, R (A, G) and Rs (A, B)
tend to be larger. With such a “sticky” social norm, the denominator becomes smaller and
Av becomes larger. In other words, being assessed as G has a larger impact on the player’s
long-term payoff.

The expression simplifies considerably for second-order norms. In these norms, neither
the action nor the assessment depends on the donor’s reputation. As a result, Rs (A, G) =
Rs (A,B) =0and yc (A, G) = xc (A, B) =0 hold. If we further assume a discriminating action
rule, which prescribes cooperation for good recipients and defection for bad recipients, then
xc(G,A) = xc(B,A) = 1. In that case, Eq (15) reduces to the simple form

Av=b. (16)

That is, under such a norm, the long-run advantage of a good reputation is equivalent to
receiving an additional benefit b in one round.
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3.3. ESS conditions

A social norm is an ESS if and only if the resident action rule is the best response in all possi-
ble contexts, (G,G), (B,G), (G,B), and (B,B).

First, let us consider the context (G,G) as an example. For S(G, G) = C to be the best
response, the following condition must hold:

-c+R(G,G,C) Av>R(G,G,D) Av. (17)

The left-hand side of the equation is the expected payoff of a G player when they coop-
erate, and the right-hand side is the expected payoff when they defect. The equation can be
simplified as follows,

[R(G,G,C)-R(G,G,D)]Av>c. (18)

The left-hand side of the equation is the expected long-term benefit of having a good repu-
tation while the right-hand side is the immediate cost of cooperation. If this inequality holds,
S(G, G) = Cis the best response. Conversely, if the inequality is reversed, S(G, G) = D is the
best response. Similarly, we can analyze the other possible contexts. As a result, we obtain the
following characterization of ESS norms.

Theorem 1. A third-order social norm with assessment rule R(X,Y,A) and action rule S(X,Y)
is an ESS if and only if
[R(X,Y,C)-R(X,Y,D)]Av>c ifS(X,Y)=C (19)
[R(X,Y,C)-R(X,Y,D)]Av<c ifS(X,Y)=D

holds for all possible contexts (X, Y) € {(G,G), (G,B),(B,G),(B,B)}.

Consider ALLD (Always Defect: S(*, G) = S(*, B) = D) as an example. Under this norm,
Av=0because yc (G,A) = yc (B,A) = xc (A,G) = xc (A,B) =0. As a result, Eq (19) is satis-
fied for all contexts (X,Y) because the left-hand side evaluates to zero.

3.4. ESS conditions with perception and implementation errors

So far, we have considered only assessment errors. In the following, we show how the respec-
tive results can be applied to other types of errors, by rescaling the effective assessment rules
and the effective benefit and cost of cooperation.

First, we consider the case of misperception errors. Specifically, we assume that when
a player defects, the action is mistakenly perceived as cooperation with probability epc (it
is correctly perceived as defection with probability 1 —epc). This assumption may reflect,
for example, that defectors have a natural incentive to deceive bystanders and to misrepre-
sent their actions. In this case of such misperception errors, the effective assessment rule
becomes

R(X,Y,C)"=R(X,Y,C)
R(X,Y,D)" = (1-¢pc)R(X,Y,D) +epcR (X, Y, C),

for any X, Y € {G, B}. The ESS conditions for the case with the perception error is the
same as Eq (19), but now with the rescaled assessment rules. Similarly, we could also
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consider other types of perception errors, such as the case where cooperations are misper-
ceived as defections.

Implementation errors represent another type of error that is frequently studied in the
literature. When actions are subject to implementation errors, individuals who intend to
cooperate may sometimes defect, for example because of a lack of resources. Let (1, be the
respective (implementation) error rate. Note that here, we assume that defections are always
implemented perfectly, without errors. In the presence of such implementation errors, the
cooperation probabilities y¢ (X, Y) are rescaled as (1 - i) yc (X, Y). In the above analysis,
this rescaling in y¢ (X, Y) is equivalent to the rescaling of the effective assessment rules and
the effective benefit and cost of cooperation,

R(X,Y,C)"=(1-1)R(X,Y,C)" + w.R(X,Y,D)*
R(X,Y,D)*=R(X,Y,D)"

bi=(1-u)b

dF=1-u)e

1)

Here, the effective assessment rule R (XY, C)i indicates the probability that an X-donor
is assigned a good reputation, given they intended to cooperate with Y. In that case, the
donor pays the effective cost while the recipient receives the effective benefit. The ESS condi-
tion for the case with the implementation error is the same as Eq (19) but with the rescaled
parameters,

[’R (X,Y,C) ~R(X, Y,D)i] AvE> ¢ ifS(X,Y)=C,
(22)
[R(X.Y,0)F -R(X, v, D)*|avi <t if S(X,Y) =D.

Here, Av* is Av in Eq (15) with the appropriately rescaled parameters.
To gain insights into the effect of these errors, let us consider the L6 norm (Stern Judging)
as an example. According to Eq (22), L6 is an ESS if and only if

b 1

a0 () (L 20) =

As the error rates i, U, and €p¢ increase, the lower bound of b/c diverges and cooperation
gets harder to maintain. This reproduces the results in [21].

3.5. ESS conditions when other actions are available

We can also extend the above analysis to the case where additional actions are available. As an
example, we consider the case that a player can exert costly punishment (P). In that case, the
donor reduces the recipient’s payoff by 8 > 0, at an own cost of & > 0. The resulting dynam-

ics of h* remains the same as Eq (2) and the solution for h* is the same as Eq (6). The anal-
ysis in Sect 3.1 is also valid for the case with punishment, except that now we need to con-
sider the additional action P. The expected payoff of a G player in the subsequent T rounds
becomes
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NOR % o0 26 (6,6) + (1~ 1) xc (B,6)]
—B[h* xp (G,G) + (1= h*) xp (B,G)] + V(GH)]
N % (-0 [ xc (G.G) + (1- ") xc (G, B)] (24)
—a[l* xp(G,G) + (1-h*) xp (G,B)]
+h*Rs(G,G) v\ + (1-h*) Rs (G, B) v
+h [1-Rs (G, O] + (1- 1) [1-Rs (G, B)] v ],

where yp (X, Y) is the punishing probability, defined analogously to Eq (8). The difference
between the expected payoffs of a G and a B player is now

1 . .
D (1 = S| TH e (G A) + (1-) e (B,8)]

-c[h* xc(A,G) + (1-H*) xc (A, B)]
—a[h* xp(G,A) + (1-h") xp (B,A)] (25)
-B[H xp(A,G) + (1-h") xp(A,B)]

+ (V(GT’” - vff*”) {1+h*Rs (A, G) + (1-h*)Rs (A, B)} |,

where yp (X,A) and yp (A, X) are defined analogously to y¢ (X, A) and yc (A, X), respec-
tively. The expected payoff difference Av is obtained by taking the limit of T — oo in Eq (25).

_bxc (W, A) - cxc (Ah*) - Bxe (H*,A) - axp (A, 1Y)

A , 26
! 1-1*Rs (A, G) - (1- h*)Rs (A, B) (26)
where we defined
Xc (W A)=h" xc (G A) + (1-h*) xc (B,A)

xp (W, A)=h*yp(G,A) + (1-h*) xp(B,A)
7 (AK)=h* xp(A,G) + (1-h*) xp(A,B).

Using Av, we can derive the ESS conditions for norms with punishment. The action pre-
scribed by the social norm is the unique best response for context (X,Y) if and only if both
other actions yield lower payoffs. For instance, the action rule S(X, Y) = C is the best response
if and only if

[R(X,Y,C)-R(X,Y,D)]Av>c and [R(X,Y,C)-R(X,Y,P)]Av>c-a. (28)

Similarly, the action rule S(X, Y) = D is the best response if and only if

[R(X,Y,D)-R(X,Y,C)]Av>-c and [R(X,Y,D)-R(X,Y,P)]Av>-a. (29)
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Finally, the action rule S(X, Y) = P is the best response if and only if
[R(X,Y,P)-R(X,Y,C)|Av>a-c and [R(X,Y,P)-R(X,Y,D)]Av>a. (30)

The social norm is an ESS if and only if the above conditions hold for all contexts
(X,Y) €{(G,G),(G,B),(B,G), (B,B)}. It is straightforward to generalize the above analysis
to the case where further actions are available.

4. Special cases

To illustrate the scope and power of our analytical framework, we next apply it to several spe-
cial cases that have been central to the literature on indirect reciprocity. First, we character-
ize cooperative ESS in the limit of vanishing errors, showing how our framework recovers
previous results (Sect 4.1). Second, we analyze the role of costly punishment in promoting
cooperation (Sect 4.2). Third, we study the stability of the leading eight norms in the presence
of errors (Sect 4.3). Finally, we identify a novel class of “equalizer” norms that enforce fixed
payoffs against any mutant strategy (Sect 4.4).

4.1. Self-cooperative ESS in the limit of vanishing error rates

In this section, we focus on cooperative ESS (CESS), which are a special subset of the ESS
norms. A norm is a CESS if it satisfies the following two conditions in the limit of vanishing
error rates,

(a) The social norm is fully self-cooperative, i.e., p*~" — 1 as i — 0*.
(b) The social norm is an ESS.

In the following, the effective assessment rule converges to the original assessment rule,
R(X,Y,A) - R(X,Y,A),as u— 0.

First, we show that for any such CESS, either #* = 1 or h* = 0 must hold. Assume to the
contrary that 0 < i < 1, such that there are both good and bad players in the population. For
the norm to be self-cooperative, the action rule then needs to prescribe cooperation in all pos-
sible cases. The resulting norm of unconditional cooperation, however, is not an ESS. As the
two labels G and B are interchangeable [9], we consider without loss of generality the case that
h* =1 in the following. When the respective social norm is adopted by the entire population,
we assume everyone is assigned a good reputation eventually.

First, we check the condition (a). To have h* = 1, the following conditions are necessary and

sufficient:
" h|h=1 :0
=11, . (31)
g <0
nl,_,

The first equation on the right hand side makes sure there is a fixed point at h = 1. The
second inequality indicates that this fixed point is stable. By Eq (2) these two requirements are
equivalent to the following conditions,

Rs(G,G) =1
5(G.6) )
Rg (G,B) + Rg (B, G) > 1.
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Given these conditions are satisfied, the social norm is self-cooperative if and only if
S(G,G) =C. (33)

We conclude that the self-cooperative norms in which all population members have a good
reputation are exactly those that satisfy conditions (32) and (33). For self-cooperative norms,
h* =1, Eq (15) simplifies to

_ bXC (G’A) -CXc (A> G)
1-Rs(,6)

Av (34)

Second, we check the ESS condition (b). To this end, we use Eq (19) for the contexts (G,G),
(G,B), (B,G), and (B,B) in the following.

1. For the context (X, Y) = (G, G), the ESS condition (19) is

[R(G,G,C)-R(G,G,D)]Av>c

[R(G,G,C)~R(G,GD)] {b[1 - xc (G.B)] ~c[1 - xc (B} > Ry (B,G),

where we used Egs (32) and (33) for the derivation of the second line. For this inequal-
ity to hold, y¢ (G, B) = 0 is necessary. Thus,

[R(G,G,C) ~R(G,G,D)] {b-c[1- xc(B.G)]} > Rs (B,G). (36)

2. For the context (X, Y) = (G, B) we have shown previously that the action rule must
prescribe S(G, B) = D. This is the best response if and only if

[R(G,B,D)-R(G,B,C)]Av>—c

[R(G,B,D) - R(G,B,C)] {b-c[1-xc(B,G)]}>-cRs (B,G). (37)

3. For the context (X, Y) = (B, G), the action rule may be either S(B,G) = Cor S(B,G) =
D. When S(B, G) = C, the best response condition is

[R(B,G,C)-R(B,G,D)]Av>c

38
[R(B,G,C)-R(B,G,D)]{b-c[1-xc(B,G)]} >cRs(B,G). (38)
When S(B, G) = D, the best response condition is
R(B,G,D)-R(B,G,C)|Av> -
[R( ) - R( )] Av>—c (39)

[R(B,G,D)-R(B,G,C)]{b-c[1-xc(B,G)]} >-cRs(B,G).
4. Finally, for the context (X, Y) = (B, B), the action rule S(B, B) = C is the best response if

[R(B,B,C) -R(B,B,D)]Av>c

[R(B,B,C) - R (B,B,D)] {b-c[1- xc(B,G)]} > cRs (B,G). (40)

When the inequality is reversed, S(B, B) = D is the best response.
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To summarize, a social norm constitutes a CESS if and only if one of two conditions is sat-
isfied. These conditions are distinguished based on the value of S(B,G), that is, based on the
action of a bad donor who encounters a good recipient.

When S(B, G) = C, the CESS condition is:

S(G,G)=C

S(G,B)=D

S(B,G)=C

R(G,G,C) =1

R(G,B,D) + R(B,G,C) > 1

[R(G,G,C) -R(G,G,D)]b>cR(B,G,C)

[R(G,B,C) -R(G,B,D)]b< cR(B,G,C)

[R(B,G,C) -R(B,G,D)]b>cR(B,G,C)

S8 B):{c if [R(B,B,C) - R(B,B,D)]b>cR(B,G,C)
’ D if [R(B,B,C)-R(B,B,D)]b<cR(B,G,C)

(41)

If the assessment rule is additionally assumed to be deterministic, this set of conditions

reproduces the leading-eight social norms, as shown in the top row of Table 2. They are stable
for b > ¢ [26].

When S(B, G) = D, the CESS condition is:

S(G,G)=C

S(G,B)=D

S(B,G) =D

R(G,G,C) =1

R(G,B,D) + R(B,G,D) > 1

[R(G,G,C)-R(G,G,D)] (b-c) > cR(B,G,D)

[R(G,B,C) - R(G,B,D)] (b-¢) < cR(B,G,D)

[R(B,G,C) - R(B,G,D)] (b-¢) < cR(B,G,D)

S(B.5) :{c if [R(B,B,C) - R(B,B,D)] (b-c)>cR(B,G,D)
D if [R(B,B,C)-R(B,B,D)] (b-c)<cR(B,G,D)

(42)

If the norm is deterministic, we recover the secondary-sixteen social norms, see the bot-
tom row of Table 2. They are stable for b>2c [26]. The leading eight and the secondary sixteen
are the only CESS when assessment rules are deterministic. In contrast, in the stochastic case
there exists a spectrum of CESS, characterized by the conditions (41) and (42).

4.2. Self-cooperative ESS norms with punishment

Next we consider the CESS norms when punishment is available. Suppose the action rule is

S(G,G)=C

S(G,B) = Agp € {D, P}
S(B,G) = Ay € {C, D, P}
S(B,B) = Ags € {C, D, P},

(43)
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Table 2. Deterministic CESS in the limit of vanishing errors. The CESS can be categorized into two classes, the
leading-eight norms (top) and the secondary-sixteen norms (bottom), respectively. In this table, the left most column
indicates the original reputations of the donor and the recipient. The second column then shows the norm’s action
rule and the third and fourth column its assessment rule. The rightmost column gives the condition for the norm

to be a CESS. The symbol * indicates that the respective value can be either 0 or 1. In this table, the assessment rule
for context (B,B) is not shown as it can be arbitrary. Given the respective entries R(B,B,*) and the environmental
conditions {b, c}, the optimal action S(B,B) is uniquely determined.

Reputation update condition
(Donor rep, Recipient rep) Action rule based on action
(X,Y) S(X,Y) C D
(G,G) C 1 0 b>c
(G,B) D * 1
(B,G) C 1 0
(G,G) C 1 0 b>2c
(G.B) D * 1
(B,G) D * 1

https://doi.org/10.1371/journal.pchi.1013584.t002

Note that S(G,G) must be C and S(G,B) must not be C for the norm to be a CESS. In the
following, the two actions other than Agg are denoted as {AEB,AEB}. For instance, if Agg = D,
then ATGB =Cand ATG]; = P (or vice versa). We define A;G, Ayc, A;B, and AE; similarly. The
social norm is a CESS norm if and only if the following conditions are met,

R(G,G,C)=1
R(G, B)AGB) + R(B, G,AB(;) >1

[R(G,G,C) —R(G,G,D)]AV>§C—§D
[R(G,G,C) —R(G,G,P)]A‘V>§C—§p
[R(G,B,Acs) - R(G,B,Alp) | Av>Lagy =Lt
[R(G.B,Acs) - R(G,BAL) | Av>Cag, o (44)
[R(B,G,Asc) - R(B, G, Af) | Av>Cape =Lt
[R(B,G, Asc) - R(B, G, Ajg) | Av>Cape =yt
[R(B,B, Ags) = R (B, B, Ay ) | Av> Capy =t
[R(B,B, Ags) = R (B, B, A ) | Av> Capy = e
Here, {4 is defined as the instantaneous cost of action A,
c ifA=C
(a=40 ifA=D (45)
a ifA=P.
The marginal long-term payoff Av is
b/R(B,G,C) if (Agp,Apg) = (D, C)
(b+‘3)/R (B, G, C) if(AGBaABG) Z(P,C)
b-¢)/R(B,G,D if (Agp,Apg) = (D,D
Ave (b-c)/R( ) if (Agp, Apc) = (D, D) (46)
(b—C+‘3)/R (B, G,D) if(AGBaABG) Z(P,D)
(b—C+C()/R(B,G,P) if(AGB,ABG):(D,P)
(b—C+C(+‘8)/R(B,G,P) if(AGB,ABG)Z(P,P).
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As special cases, the deterministic CESS norms with punishment, summarized in S1
Appendix, fall into six classes.

4.3. Leading-eight norms with non-vanishing error rate

We can also derive the ESS conditions for the leading-eight norms when the error rates are
non-vanishing. Naturally, errors make the conditions for these norms to be ESS more strin-
gent; but how does it depend on the error rates? The leading-eight norms have

xc(GA)=1
(B,A) = 0 forL1,L2
xCA> 1 for L3-8
Xxc(A,G)=0
(A,B) = -1 forLl1l,L2
xS 0 forL3-L8
Rs(A,G) =0
47
pe (1 =€pc) (1 -2u) for L1 “7)
(Me = €pc = pe€pc) (1 -2u)  for L2
0 for L3
€ 1-2 for L4
Rs (A, B) = pe (1-2u) or
-epc (1-2u) for L5
0 for L6
1-2u for L7
(1-¢epc) (1-2u) for L8
Plugging those into Eq (15), we obtain
bh* +c(1-h")
020 for L1
e 1-
() (120 (e epo ey 107 12
b for L3
b
Ay = 1—(1—h*)(b1—2/4)eDc for L4 (48)
TR (200 for L5
b for L6
b
O (20 for L7
b
T (20 (1e00) for 1.8

Except for the second-order norms L3 and L6, these analytical expressions for Av con-
tain h*. While /™ is analytically solvable as a root of the quadratic equation, the expression is
not simple enough to provide intuition. However, for L3 and L6 we can derive a simple ESS
condition based on Eq (19):

b 1
¢ (1-2u)(1-pe) (1-€pc)”

(49)
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As u increases from zero to one half, or . increases from zero to one, or €pc increases
from zero to one, the right-hand side diverges, indicating that the ESS condition becomes
increasingly hard to satisfy.

Interestingly, while many previous studies concluded that L6 is the most successful norm
among the leading eight in evolutionary simulations [5,12,30,31], L6 has exactly the same
ESS condition as L3. This theoretical prediction is accurately reproduced in numerical calcu-
lations, as shown in Fig 2. Moreover, Eq (48) shows that the Av of L6 is always smaller than
or equal to those of L4, L7, and L8, indicating that L6 has a smaller ESS parameter region.
These results suggest that L6 is not the best norm in terms of its ESS parameter region. The
evolutionary advantage of L6 over L3 cannot be explained by the size of the ESS parameter
region.

Instead, the advantage of L6 over L3 may come from a larger payoft difference between
residents and mutants. In Fig 3, we show the average payoff of the mutants over all pos-
sible deterministic action rules other than the residents’ action rule. Since L6 has a larger
payoft difference, it is better able to resist invasion by the mutants, despite having the same
ESS condition as L3.

For completeness, the results for the other leading-eight norms are shown in S1 Fig 1. We
compare the numerically calculated results with the theoretical predictions obtained from
Eq (48), which again shows perfect agreement. According to this figure, L7 has the widest ESS
region, indicating its robustness against errors.

4.4. Equalizer norms

Our analysis also allows us to identify a special class of norms that enforce the mutant’s payoff
to be the same as the payoft of the residents, irrespective of the mutant’s action. We call such a
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Fig 2. ESS conditions for L3 and L6 under non-vanishing error rates. To obtain numerical evidence, we systematically vary the assessment error rate (),
the perception error rate (€pc), and the implementation error rate (U.), for a game with benefit b = 1 and cost ¢ = 0.8. The respective process is described in

S1 Appendix. Regions where the ESS conditions are satisfied are shown in blue, while regions where they are not satisfied are shown in red. The solid white
line represents the theoretical prediction based on Eq (23). In each case, the theoretical prediction accurately reproduces the numerical results, confirming the
validity of our analysis. The figure also highlights that the ESS conditions for L3 and L6 are identical. We repeat the same analysis for the other leading-eight
norms, L1, L2, L4, L5, L7, and L8. The respective results are shown in S1 Fig 1.

https://doi.org/10.1371/journal.pchi.1013584.g002
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Fig 3. Payoff differences between residents and mutants for L3 and L6 norms. We analyze the robustness of the
leading norms L3 and L6 by setting each as the resident norm and considering all 15 possible mutant deviations in
the action rule. For each case, we compute the expected payoff of the resident and compare it to the average payoft of
the mutants, plotting the difference. We do this for two cooperation cost scenarios: low (0.2) and high (0.6). In both
scenarios, deviations from L6 result in larger payoft differences than deviations from L3, suggesting that it is more
costly to deviate from L6 than from L3. Parameters: b= 1,and i = U, = €pc = 0.1.

https://doi.org/10.1371/journal.pchi.1013584.9g003
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Fig 4. Equalizer norms. Equalizer norms impose a fixed payoff on any mutant norm. We demonstrate this property using
a numerical example with two resident norms: Generous Scoring (left) and Cautious Scoring (right; defined in Eq (53)).
Both norms are first-order and use the discriminator (DISC) action rule, S(s, G) = C and S(*, B) = D. For the mutant,

we consider three deterministic deviations in the action rule: ALLC (Always Cooperate: S(s, G) = S(*,B) = C), ALLD,
and anti-discriminator (ADISC: (%, G) = D, S(, B) = C). As expected, the mutant’s payoff equals that of the resident.
Parameters: b= 1, ¢=0.1, 4 = 0.01, and U, = €pc = 0.0.

https://doi.org/10.1371/journal.pchi.1013584.9004

norm an “equalizer”, in analogy of the respective class of zero-determinant strategies in direct
reciprocity [28].
To describe these norms formally, a social norm is an equalizer if and only if

[R(X,Y,C)-R(X,Y,D)]Av=c (50)

holds for all possible contexts (X,Y) € {(G, G),(G,B),(B,G),(B,B) } When this condition
holds, cooperation and defection yield identical expected payofts. Therefore, the mutant’s
payoff no longer depends on the mutant’s action. Such equalizer norms thus form a Nash
equilibrium (but they are not an ESS since they allow for neutral invasion).
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The norms described by (50) represent a generalization of the Generous
Scoring (GSCO) norm described by Schmid et al [25]. GSCO is a first-order norm defined by

S(*,G) =C,
S(*,B) =D,
R(*,%,C) =1, (51)
R(%,%,D)=1 ¢
(1-2u)b

It is straightforward to show that GSCO is an equalizer. Irrespective of the applied norm of
the mutant, its payoff exactly matches the payoff of the residents.

There are other examples of equalizer norms. For example, for second-order norms with a
perfectly discriminating action rule, we have Av = b, see Eq (16). Such a norm is an equalizer

if and only if
c
R(%,Y,C)-R(%Y,D)= —— 52
(4 ¥,C)-R(x Y.D) = (5o 62)
for any Y € {G, B}. In particular, the following is an equalizer,
S(%,G)=C,
S(*,B) =D,
R(*,G,C) =1,
c
R(,G,D) = (53)
(*G.D) -
R(%,B,C
(B0 = a0
R(#,B,D) =0.

To demonstrate the properties of equalizers, we present numerical examples in Fig 4. In
these examples, residents and mutants with different action rules receive exactly the same
payoffs.

Discussion

In this paper, we focus on indirect reciprocity under public assessment. Within this setting,
we analytically characterize all third-order evolutionarily stable norms (ESS). Previously, most
studies focused on ESS that are fully cooperative when error rates were sufficiently small. Our
analysis generalizes these results to cases where the population is not fully cooperative and
errors are no longer small. In this way, we establish a more comprehensive foundation for the
theory of indirect reciprocity. This broader framework enables us to study a wider range of
social norms and to investigate their stability for arbitrary error rates. Moreover, it allows us
to explore the effects of additional actions beyond cooperation and defection - such as costly
punishment.

Based on this framework, we obtain several important insights. First, in the limit of vanish-
ing error rates and deterministic norms, our results recover the well-known leading-eight and
the secondary-sixteen norms [9,10,26]. Second, we systematically derive all cooperative ESS
for the case when a costly punishment option is available. The corresponding results success-
tully reproduce previous findings for second-order social norms [13,21]. Third, we analyze
the robustness of the leading-eight norms under varying error rates. This analysis shows that
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the two second-order norms L3 and L6 have exactly the same critical benefit-to-cost ratio,
even though L6 is more punitive against mutants than L3. Finally, we describe a novel class
of norms, termed ‘equalizers, which unilaterally fix a mutant’s payoft to match that of the
residents, regardless of the mutant’s strategy. This is a generalization of the Generous Scor-
ing (GSCO) norm [25] and is reminiscent of the zero-determinant strategies of direct reci-
procity [28]. All of these analytical findings are further supported numerically (see also S1
Appendix).

As the main methodological innovation of our study, we focus on a key variable: the long-
term benefit of having a good reputation, denoted Av [13,21,27]. This quantity captures the
advantage of maintaining a good reputation instead of getting a bad one. It provides the crit-
ical basis for deriving necessary and sufficient conditions for all ESS, regardless of the coop-
eration level they sustain. In the following, we discuss how this quantity is related to previous
approaches. In reinforcement learning, the value of being in a certain state, referred to as the
“state value function’, is calculated using the Bellman equation. Ohtsuki et al. [13] apply the
Bellman equation to calculate the value of being good V(GT) in the context of costly punish-
ment (a
similar approach is used in the context of repeated games, where it is often referred to as the
continuation payoff). While this method is versatile, a discount factor must be introduced
to ensure that the continuation payoff converges. A simpler approach is to calculate the dif-
ference between the values of being good and bad (our Av), which is sufficient to determine
whether a norm is an ESS. Even if V(GT) and vl(gT) both diverge, the difference Av remains finite,
and no discount factor is needed.

In Ref. [21], the relationship Av = b is derived for second-order norms. This relationship
is then used to calculate the ESS conditions when there is also a costly punishment option.
Ref. [26] derives the ESS conditions for fully cooperative norms. There, a quantity akin to Av
is computed assuming that the population mostly consists of good players. The present paper
extends those previous analyses to general third-order norms. Our framework allows for ana-
Iytical solutions, even when error rates do not vanish and when the population is not fully
cooperative. Still, our analysis relies on the assumption of binary reputations. When reputa-
tions are not binary [20,32,33], analytical approaches become significantly more complex. We
leave this extension for future work.

For direct reciprocity, it is possible to identify four classes of equilibrium behavior among
memory-1 strategies of the repeated prisoner’s dilemma [34]. In equilibrium, players are
either fully cooperative, fully defective, they engage in alternating cooperation, or they
apply equalizers. A natural question is whether the ESS norms of indirect reciprocity can be
categorized similarly. Our analysis, however, shows that such a classification with a hand-
ful of distinct categories is infeasible. Instead, ESS norms of indirect reciprocity can sup-
port arbitrary levels of cooperation. To illustrate this point, consider a second-order norm
using a discriminating action rule. The respective ESS conditions, as given by Eq (19), are
[R(*,G,C) -R(%,G,D)]b>cand [R (%, B,C) -R(%,B,D)]b < c. These inequalities constrain
the differences in assessment values (e.g., [R (*, G,C) - R (%, G, D)]), but not their absolute
values. As a result, a wide range of average cooperation levels can be realized in an ESS.

In our analysis, we assume that the population is monomorphic, i.e., all individuals use
the same social norm, and we explore whether this norm is stable against invasion by rare
mutants. While this is one of the most standard approaches to assess the stability of social
norms, it is also important to consider the evolutionary dynamics of polymorphic popula-
tions, where players with multiple action rules may coexist. Furthermore, another interesting
direction would be to investigate multiple social norms coexisting in a population. Although
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we leave these for future work, it would be valuable to analyze the evolutionary dynamics of
polymorphic populations extending the framework developed in this paper.

Finally, we note that our analysis is based on the assumption of “public assessments”. That
is, all individuals are assumed to agree on each others’ reputations. This, of course, is a strong
idealization. Many real-world social interactions may be more accurately described by a “pri-
vate assessment” model, where individuals are allowed to disagree on how they view oth-
ers [35-47]. Still, the public assessment model often serves as a useful reference point for the-
oretical exploration. Moreover, as a recent study has shown, the public assessment model and
the private assessment model are not completely independent; rather, they can be unified
within a single framework [35]. In light of this recent progress, we believe our analysis offers
a solid foundation for advancing the understanding of indirect reciprocity, including in the
context of private assessments.

Acknowledgments

CH acknowledges generous support from the European Research Council Starting
Grant 850529: E-DIRECT. YM acknowledges support by JSPS KAKENHI Grant Number
JP25K07145.

Supporting information

S1 Appendix. S1 Appendix details the numerical verification of ESS conditions and pro-
vides a complete classification of deterministic CESS norms with punishment. For each
case, we present the norms that satisfy the CESS criteria and the corresponding parameter
regimes.

(PDF)

S1 Fig. ESS conditions of the leading eight strategies under non-vanishing error rates.
Similar to Fig 2 of the main text, we show numerical examples of the ESS conditions for the
leading eight norms when error rates can be positive. Regions where the ESS conditions are
satisfied are shown in blue, and those where they are not satisfied are in red. The theoretical
predictions are shown as solid white line. Parameters: b=1 and ¢=0.8.

(EPS)

Author contributions

Conceptualization: Yohsuke Murase.

Formal analysis: Nikoleta E. Glynatsi, Yohsuke Murase.
Investigation: Nikoleta E. Glynatsi, Yohsuke Murase.

Methodology: Nikoleta E. Glynatsi, Christian Hilbe, Yohsuke Murase.
Software: Nikoleta E. Glynatsi, Yohsuke Murase.

Validation: Nikoleta E. Glynatsi, Christian Hilbe, Yohsuke Murase.
Visualization: Nikoleta E. Glynatsi.

Writing - original draft: Yohsuke Murase.

Writing - review & editing: Nikoleta E. Glynatsi, Christian Hilbe, Yohsuke Murase.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013584 October 14, 2025 21/ 23



https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013584.s001
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013584.s002
https://doi.org/10.1371/journal.pcbi.1013584

PLOS COMPUTATIONAL BIOLOGY Exact conditions for evolutionary stability in indirect reciprocity under noise

References

1.

2.

10.

1.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

Melis AP, Semmann D. How is human cooperation different?. Philosophical Transactions of the
Royal Society B. 2010;365:2663—74.

Rand DG, Nowak MA. Human cooperation. Trends Cogn Sci. 2013;17(8):413-25.
https://doi.org/10.1016/j.tics.2013.06.003 PMID: 23856025

Nowak MA. Five rules for the evolution of cooperation. Science. 2006;314(5805):1560-3.
https://doi.org/10.1126/science.1133755 PMID: 17158317

Okada I. A review of theoretical studies on indirect reciprocity. Games. 2020;11(3):27.
https://doi.org/10.3390/911030027

Santos FP, Pacheco JM, Santos FC. The complexity of human cooperation under indirect
reciprocity. Philos Trans R Soc Lond B Biol Sci. 2021;376(1838):20200291.
https://doi.org/10.1098/rstb.2020.0291 PMID: 34601904

Frean M, Marsland S. Score-mediated mutual consent and indirect reciprocity. Proc Natl Acad Sci
U S A. 2023;120(23):€2302107120. https://doi.org/10.1073/pnas.2302107120 PMID: 37253000

Nowak MA, Sigmund K. Evolution of indirect reciprocity by image scoring. Nature.
1998;393(6685):573—7. htips://doi.org/10.1038/31225 PMID: 9634232

Leimar O, Hammerstein P. Evolution of cooperation through indirect reciprocity. Proc Biol Sci.
2001;268(1468):745-53. https://doi.org/10.1098/rspb.2000.1573 PMID: 11321064

Ohtsuki H, lwasa Y. How should we define goodness?—reputation dynamics in indirect reciprocity. J
Theor Biol. 2004;231(1):107-20. hitps://doi.org/10.1016/}.itbi.2004.06.005 PMID: 15363933

Ohtsuki H, Iwasa Y. The leading eight: social norms that can maintain cooperation by indirect
reciprocity. J Theor Biol. 2006;239(4):435—-44. https://doi.org/10.1016/}.itbi.2005.08.008 PMID:
16174521

Nowak MA, Sigmund K. Evolution of indirect reciprocity. Nature. 2005;437(7063):1291-8.
https://doi.org/10.1038/nature04131 PMID: 16251955

Pacheco JM, Santos FC, Chalub FACC. Stern-judging: a simple, successful norm which promotes
cooperation under indirect reciprocity. PLoS Comput Biol. 2006;2(12):e178.
https://doi.org/10.1371/journal.pcbi.0020178 PMID: 17196034

Ohtsuki H, Iwasa Y, Nowak MA. Indirect reciprocity provides only a narrow margin of efficiency for
costly punishment. Nature. 2009;457(7225):79-82. https://doi.org/10.1038/nature07601 PMID:
19122640

Nakamura M, Masuda N. Indirect reciprocity under incomplete observation. PLoS Comput Biol.
2011;7(7):e1002113. hitps://doi.org/10.1371/journal.pcbi. 1002113 PMID: 21829335

Nakamura M, Masuda N. Groupwise information sharing promotes ingroup favoritism in indirect
reciprocity. BMC Evol Biol. 2012;12:213. https://doi.org/10.1186/1471-2148-12-213 PMID:
23126611

Masuda N. Ingroup favoritism and intergroup cooperation under indirect reciprocity based on group
reputation. J Theor Biol. 2012;311:8—-18. hitps://doi.org/10.1016/}.jtbi.2012.07.002 PMID: 22796271

Sigmund K. Moral assessment in indirect reciprocity. J Theor Biol. 2012;299(5):25-30.
https://doi.org/10.1016/].jtbi.2011.03.024 PMID: 21473870

Santos FP, Santos FC, Pacheco JM. Social norms of cooperation in small-scale societies. PLoS
Comput Biol. 2016;12(1):e1004709. https://doi.org/10.1371/journal.pcbi.1004709 PMID: 26808261

Clark D, Fudenberg D, Wolitzky A. Indirect reciprocity with simple records. Proc Natl Acad Sci U S
A. 2020;117(21):11344-9. https://doi.org/10.1073/pnas.1921984117 PMID: 32398366

Murase Y, Kim M, Baek SK. Social norms in indirect reciprocity with ternary reputations. Sci Rep.
2022;12(1):455. https://doi.org/10.1038/s41598-021-04033-w PMID: 35013393

Murase Y. Costly punishment sustains indirect reciprocity under low defection detectability. J Theor
Biol. 2025;600:112043. https://doi.org/10.1016/}.jtbi.2025.112043 PMID: 39805340

Hamlin JK, Wynn K, Bloom P, Mahajan N. How infants and toddlers react to antisocial others. Proc
Natl Acad Sci U S A. 2011;108(50):19931-6. https://doi.org/10.1073/pnas.1110306108 PMID:
22123953

Swakman V, Molleman L, Ule A, Egas M. Reputation-based cooperation: empirical evidence for
behavioral strategies. Evolution and Human Behavior. 2016;37(3):230-5.
https://doi.org/10.1016/j.evolhumbehav.2015.12.001

Yamamoto H, Suzuki T, Umetani R. Justified defection is neither justified nor unjustified in indirect
reciprocity. PLoS One. 2020;15(6):0235137. https://doi.org/10.1371/journal.pone.0235137 PMID:
32603367

Schmid L, Chatterjee K, Hilbe C, Nowak MA. A unified framework of direct and indirect reciprocity.
Nat Hum Behav. 2021;5(10):1292—-302. https://doi.org/10.1038/s41562-021-01114-8 PMID:
33986519

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013584 October 14, 2025 22/ 23



https://doi.org/10.1016/j.tics.2013.06.003
http://www.ncbi.nlm.nih.gov/pubmed/23856025
https://doi.org/10.1126/science.1133755
http://www.ncbi.nlm.nih.gov/pubmed/17158317
https://doi.org/10.3390/g11030027
https://doi.org/10.1098/rstb.2020.0291
http://www.ncbi.nlm.nih.gov/pubmed/34601904
https://doi.org/10.1073/pnas.2302107120
http://www.ncbi.nlm.nih.gov/pubmed/37253000
https://doi.org/10.1038/31225
http://www.ncbi.nlm.nih.gov/pubmed/9634232
https://doi.org/10.1098/rspb.2000.1573
http://www.ncbi.nlm.nih.gov/pubmed/11321064
https://doi.org/10.1016/j.jtbi.2004.06.005
http://www.ncbi.nlm.nih.gov/pubmed/15363933
https://doi.org/10.1016/j.jtbi.2005.08.008
http://www.ncbi.nlm.nih.gov/pubmed/16174521
https://doi.org/10.1038/nature04131
http://www.ncbi.nlm.nih.gov/pubmed/16251955
https://doi.org/10.1371/journal.pcbi.0020178
http://www.ncbi.nlm.nih.gov/pubmed/17196034
https://doi.org/10.1038/nature07601
http://www.ncbi.nlm.nih.gov/pubmed/19122640
https://doi.org/10.1371/journal.pcbi.1002113
http://www.ncbi.nlm.nih.gov/pubmed/21829335
https://doi.org/10.1186/1471-2148-12-213
http://www.ncbi.nlm.nih.gov/pubmed/23126611
https://doi.org/10.1016/j.jtbi.2012.07.002
http://www.ncbi.nlm.nih.gov/pubmed/22796271
https://doi.org/10.1016/j.jtbi.2011.03.024
http://www.ncbi.nlm.nih.gov/pubmed/21473870
https://doi.org/10.1371/journal.pcbi.1004709
http://www.ncbi.nlm.nih.gov/pubmed/26808261
https://doi.org/10.1073/pnas.1921984117
http://www.ncbi.nlm.nih.gov/pubmed/32398366
https://doi.org/10.1038/s41598-021-04033-w
http://www.ncbi.nlm.nih.gov/pubmed/35013393
https://doi.org/10.1016/j.jtbi.2025.112043
http://www.ncbi.nlm.nih.gov/pubmed/39805340
https://doi.org/10.1073/pnas.1110306108
http://www.ncbi.nlm.nih.gov/pubmed/22123953
https://doi.org/10.1016/j.evolhumbehav.2015.12.001
https://doi.org/10.1371/journal.pone.0235137
http://www.ncbi.nlm.nih.gov/pubmed/32603367
https://doi.org/10.1038/s41562-021-01114-8
http://www.ncbi.nlm.nih.gov/pubmed/33986519
https://doi.org/10.1371/journal.pcbi.1013584

PLOS COMPUTATIONAL BIOLOGY Exact conditions for evolutionary stability in indirect reciprocity under noise

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

a1,

42.

43.

44.

45.

46.

47.

Murase Y, Hilbe C. Indirect reciprocity with stochastic and dual reputation updates. PLoS Comput
Biol. 2023;19(7):e1011271. https://doi.org/10.1371/journal.pcbi.1011271 PMID: 37471286

Ohtsuki H, Iwasa Y, Nowak MA. Reputation Effects in Public and Private Interactions. PLoS
Comput Biol. 2015;11(11):e1004527. https://doi.org/10.1371/journal.pcbi.1004527 PMID: 26606239

Press WH, Dyson FJ. lterated Prisoner’s Dilemma contains strategies that dominate any
evolutionary opponent. Proc Natl Acad Sci U S A. 2012;109(26):10409—13.
https://doi.org/10.1073/pnas.1206569109 PMID: 22615375

Ohtsuki H, Iwasa Y. Global analyses of evolutionary dynamics and exhaustive search for social
norms that maintain cooperation by reputation. J Theor Biol. 2007;244(3):518-31.
https://doi.org/10.1016/].jtbi.2006.08.018 PMID: 17030041

Chalub FACC, Santos FC, Pacheco JM. The evolution of norms. J Theor Biol. 2006;241(2):233-40.
https://doi.org/10.1016/].jtbi.2005.11.028 PMID: 16388824

Santos FP, Santos FC, Pacheco JM. Social norm complexity and past reputations in the evolution
of cooperation. Nature. 2018;555(7695):242-5. https://doi.org/10.1038/nature25763 PMID:
29516999

Lee S, Murase Y, Baek SK. Local stability of cooperation in a continuous model of indirect
reciprocity. Sci Rep. 2021;11(1):14225. https://doi.org/10.1038/s41598-021-93598-7 PMID:
34244552

Yamamoto H, Suzuki T, Umetani R. Justified defection is neither justified nor unjustified in indirect
reciprocity. PLoS One. 2020;15(6):e0235137. https://doi.org/10.1371/journal.pone.0235137 PMID:
32603367

Stewart AJ, Plotkin JB. Collapse of cooperation in evolving games. Proc Natl Acad Sci U S A.
2014;111(49):17558—63. hitps://doi.org/10.1073/pnas.1408618111 PMID: 25422421

Murase Y, Hilbe C. Indirect reciprocity under opinion synchronization. Proc Natl Acad Sci U S A.
2024;121(48):e2418364121. https://doi.org/10.1073/pnas.2418364121 PMID: 39570309

Hilbe C, Schmid L, Tkadlec J, Chatterjee K, Nowak MA. Indirect reciprocity with private, noisy, and
incomplete information. Proc Natl Acad Sci U S A. 2018;115(48):12241-6.
https://doi.org/10.1073/pnas.1810565115 PMID: 30429320

Schmid L, Shati P, Hilbe C, Chatterjee K. The evolution of indirect reciprocity under action and
assessment generosity. Sci Rep. 2021;11(1):17443. https://doi.org/10.1038/s41598-021-96932- 1
PMID: 34465830

Schmid L, Ekbatani F, Hilbe C, Chatterjee K. Quantitative assessment can stabilize indirect
reciprocity under imperfect information. Nature Communications. 2023;14(1):2086.

Fujimoto Y, Ohtsuki H. Reputation structure in indirect reciprocity under noisy and private
assessment. Sci Rep. 2022;12(1):10500. hitps://doi.org/10.1038/s41598-022-14171-4 PMID:
35732644

Fujimoto Y, Ohtsuki H. Evolutionary stability of cooperation in indirect reciprocity under noisy and
private assessment. Proc Natl Acad Sci U S A. 2023;120(20):e2300544120.
https://doi.org/10.1073/pnas.2300544120 PMID: 37155910

Fujimoto Y, Ohtsuki H. Who is a leader in the leading eight? Indirect reciprocity under private
assessment. PRX Life. 2024;2(2). https://doi.org/10.1103/prxlife.2.023009

Lee S, Murase Y, Baek SK. A second-order stability analysis for the continuous model of indirect
reciprocity. J Theor Biol. 2022;548:111202. https://doi.org/10.1016/}.jtbi.2022.111202 PMID:
35752284

Okada I. Two ways to overcome the three social dilemmas of indirect reciprocity. Sci Rep.
2020;10(1):16799. https://doi.org/10.1038/s41598-020-73564-5 PMID: 33033279

Radzvilavicius AL, Kessinger TA, Plotkin JB. Adherence to public institutions that foster
cooperation. Nat Commun. 2021;12(1):3567. https://doi.org/10.1038/s41467-021-23783-9 PMID:
34117236

Kessinger TA, Tarnita CE, Plotkin JB. Evolution of norms for judging social behavior. Proc Natl
Acad Sci U S A. 2023;120(24):€2219480120. https://doi.org/10.1073/pnas.2219480120 PMID:
37276388

Kawakatsu M, Kessinger TA, Plotkin JB. A mechanistic model of gossip, reputations, and
cooperation. Proc Natl Acad Sci U S A. 2024;121(20):e2400689121.
https://doi.org/10.1073/pnas.2400689121 PMID: 38717858

Murase Y, Hilbe C. Computational evolution of social norms in well-mixed and group-structured
populations. Proc Natl Acad Sci U S A. 2024;121(33):€2406885121.
https://doi.org/10.1073/pnas.2406885121 PMID: 39116135

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013584 October 14, 2025 23/ 23



https://doi.org/10.1371/journal.pcbi.1011271
http://www.ncbi.nlm.nih.gov/pubmed/37471286
https://doi.org/10.1371/journal.pcbi.1004527
http://www.ncbi.nlm.nih.gov/pubmed/26606239
https://doi.org/10.1073/pnas.1206569109
http://www.ncbi.nlm.nih.gov/pubmed/22615375
https://doi.org/10.1016/j.jtbi.2006.08.018
http://www.ncbi.nlm.nih.gov/pubmed/17030041
https://doi.org/10.1016/j.jtbi.2005.11.028
http://www.ncbi.nlm.nih.gov/pubmed/16388824
https://doi.org/10.1038/nature25763
http://www.ncbi.nlm.nih.gov/pubmed/29516999
https://doi.org/10.1038/s41598-021-93598-7
http://www.ncbi.nlm.nih.gov/pubmed/34244552
https://doi.org/10.1371/journal.pone.0235137
http://www.ncbi.nlm.nih.gov/pubmed/32603367
https://doi.org/10.1073/pnas.1408618111
http://www.ncbi.nlm.nih.gov/pubmed/25422421
https://doi.org/10.1073/pnas.2418364121
http://www.ncbi.nlm.nih.gov/pubmed/39570309
https://doi.org/10.1073/pnas.1810565115
http://www.ncbi.nlm.nih.gov/pubmed/30429320
https://doi.org/10.1038/s41598-021-96932-1
http://www.ncbi.nlm.nih.gov/pubmed/34465830
https://doi.org/10.1038/s41598-022-14171-4
http://www.ncbi.nlm.nih.gov/pubmed/35732644
https://doi.org/10.1073/pnas.2300544120
http://www.ncbi.nlm.nih.gov/pubmed/37155910
https://doi.org/10.1103/prxlife.2.023009
https://doi.org/10.1016/j.jtbi.2022.111202
http://www.ncbi.nlm.nih.gov/pubmed/35752284
https://doi.org/10.1038/s41598-020-73564-5
http://www.ncbi.nlm.nih.gov/pubmed/33033279
https://doi.org/10.1038/s41467-021-23783-9
http://www.ncbi.nlm.nih.gov/pubmed/34117236
https://doi.org/10.1073/pnas.2219480120
http://www.ncbi.nlm.nih.gov/pubmed/37276388
https://doi.org/10.1073/pnas.2400689121
http://www.ncbi.nlm.nih.gov/pubmed/38717858
https://doi.org/10.1073/pnas.2406885121
http://www.ncbi.nlm.nih.gov/pubmed/39116135
https://doi.org/10.1371/journal.pcbi.1013584

	Exact conditions for evolutionary stability in indirect reciprocity under noise
	Introduction
	Model
	Results
	Description of the reputation dynamics
	Long-term benefit of having a good reputation
	ESS conditions
	ESS conditions with perception and implementation errors
	ESS conditions when other actions are available

	Special cases
	Self-cooperative ESS in the limit of vanishing error rates
	Self-cooperative ESS norms with punishment
	Leading-eight norms with non-vanishing error rate
	Equalizer norms

	References


