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Abstract
Social dilemmas are collective-action problems where individual interests are at odds with group interests. Such dilemmas occur 
frequently at all scales of human interactions. When dealing with collective-action problems, people often act reciprocally. They 
adjust their behavior to match the previous behavior of the recipient. The literature distinguishes two kinds of reciprocity. According 
to direct reciprocity, individuals react to their immediate experiences with the recipient. They are more likely to cooperate if the 
recipient previously cooperated with them. According to indirect reciprocity, individuals react to the recipient’s general behavior, 
irrespectively of whether or not they benefited directly. In practice, the two kinds of reciprocity are often intertwined; people typically 
base their decisions on both direct experiences and indirect observations. Yet only recently have researchers begun to explore how 
the two kinds of reciprocity interact. So far, this research only addresses a single type of social dilemma, the donation game, where 
the effects of individual behaviors are independent. Instead, here we allow for all pairwise social dilemmas. By applying novel 
techniques to generalize the theory of zero-determinant strategies, we establish an important proof of principle: In all social 
dilemmas, socially optimal outcomes can be sustained as an equilibrium, using either direct or indirect reciprocity, or arbitrary 
mixtures thereof. These results neither require games to be repeated infinitely often, nor that individual opinions are synchronized. In 
this way, we considerably generalize the scope of models of reciprocity, and we build further bridges between the literatures on direct 
and indirect reciprocity.
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Significance Statement

Social dilemmas are decision-making problems in which there is a conflict between collective and individual interests. Two prominent 
approaches to resolve such dilemmas are direct and indirect reciprocity. In direct reciprocity, individuals react to their personal ex-
periences with others. In indirect reciprocity, they act based on others’ reputations. Although the two forms of reciprocity are inter-
twined in practice, most models study them in isolation. Our work combines both forms in a framework that applies to all social 
dilemmas. Based on this framework, we provide a general existence proof. We show that full cooperation can always be sustained 
as a Nash equilibrium, independent of whether games are discounted, whether opinions are synchronized, and whether individuals 
use direct or indirect reciprocity.
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Introduction
People frequently encounter situations in which individually opti-
mal behaviors diminish the welfare of others. Such social dilem-
mas may, for example, lead individuals to put too little effort 
into group projects, or to overuse public resources (1–4). These 
types of conflict can be analyzed using the mathematical frame-
work of (evolutionary) game theory (5–7). This framework 
provides tools to describe individuals who, consciously or 
subconsciously, make decisions that affect others’ well-being. In 

particular, this literature describes several mechanisms that 

help individuals to cope with their social dilemmas (8). One prom-

inent mechanism, especially in the context of pairwise interac-

tions, is reciprocity. According to this mechanism, individuals 

have more of an incentive to act in the interests of others if their 

actions today may be reciprocated in the future.
The literature on evolutionary game theory distinguishes 

several types of reciprocity. One type is direct reciprocity (9–12). 

Here, individuals decide how to act based on their previous 
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experience with the respective interaction partner. That is, when 
Alice decides how to treat Bob, she considers how Bob treated her 
in the past. Such conditional behaviors have primarily been ex-
plored in the context of the prisoner’s dilemma (13–16) (Fig. 1A). 
In this game, the socially optimal choice of cooperation is domi-
nated by defection. However, once individuals interact repeated-
ly, reciprocal strategies such as Tit-for-Tat (9) can help sustain 
cooperation. Even though the repeated prisoner’s dilemma has 
been the main model to study direct reciprocity, the very same 
mechanism can also be effective in weaker forms of social conflict 
(17, 18).

Another type of reciprocity is indirect reciprocity (19–22). Here, 
when Alice decides how to treat Bob, she takes into account Bob’s 
overall behavior, including how he acted towards Charlie or Dave. 
That is, she takes into account Bob’s general reputation. Unlike 
direct reciprocity, this mechanism does not require repeated 
interactions among the same two individuals. It merely requires 
that individuals repeatedly interact within a larger community. 
With a few exceptions (23, 24), researchers study this type of 
reciprocity with an even more restricted type of social dilemma, 
the donation game (a special case of the prisoner’s dilemma, see 
Fig. 1B). This literature suggests that cooperation can be sustained 
with a variety of strategies, most notably the “leading-eight” 
norms (25, 26).

Although direct and indirect reciprocity are based on a similar 
premise, most theoretical and experimental studies (27–30) either 
consider one or the other. Such a reductionist approach is useful 
to clarify whether either mechanism can be effective on its own. 
At the same time, however, it renders many interesting research 
questions infeasible. For example, such models cannot explain 
how individuals would cope with conflicting pieces of evidence 
(e.g. when Alice’s personal impression of Bob runs counter to his 

public reputation (31, 32)). Similarly, such models cannot explain 
why in direct reciprocity, cooperation can be maintained with 
comparably simple strategies, whereas indirect reciprocity seems 
to require strategies of greater complexity (33–38). Only more re-
cently, researchers have begun to describe different types of reci-
procity within a single framework (39–42). The corresponding 
studies explore when people would rather adopt one type of 
reciprocity instead of the other. Unfortunately, however, these 
studies are restricted to the analysis of donation games only. As 
a result, they cannot capture synergistic interactions, as in the 
stag hunt game (43, 44) (Fig. 1C). Similarly, they cannot capture 
cases in which one individual’s cooperation crowds out the need 
for others to cooperate, as in the volunteer’s dilemma (45), the 
snowdrift game (46) or other classes of hawk-dove games 
(Fig. 1D). To describe the effects of reciprocity in full generality, 
it takes models that allow for all kinds of social dilemmas. We 
present such a model herein.

Such a generalization is not straightforward. In donation 
games, the payoff consequences of one individual’s cooperation 
are independent of whether or not their interaction partner coop-
erates too. This independence allows researchers to compute the 
players’ payoffs explicitly, by solving a low-dimensional system of 
linear recursions (42). Beyond donation games, this simple recur-
sion no longer applies. Hence, an analysis of direct and indirect 
reciprocity across all social dilemmas requires a different set of 
proof techniques, which we summarize below (and which we dis-
cuss in full detail in the Supplementary Information).

To characterize whether socially optimal outcomes can be sus-
tained with either direct or indirect reciprocity (or both), we ex-
tend the notion of so-called equalizer strategies. These strategies 
have been first introduced in the context of direct reciprocity 
(47, 48). By implementing an equalizer strategy, individuals can 
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Fig. 1. Illustration of the game dynamics. We consider populations of players who engage in pairwise social dilemmas with two actions A and B. A) In the 
prisoner’s dilemma, the best outcome for the group is for both players to choose A. Yet individually, B is a dominant action. B) The donation game is a 
special case of a prisoner’s dilemma. Here, action A can be interpreted as paying a cost c > 0 for the coplayer to receive a benefit b > c. Action B means to do 
nothing. In the depicted example, b = 3 and c = 1. C) The stag hunt game captures a dilemma in which players may fail to coordinate on the most profitable 
equilibrium. D) In the hawk-dove game, there are two (pure) equilibria. In each equilibrium, one player chooses A and the other one B. Each player prefers 
to be the one who chooses B. E) In general, payoffs are often denoted by the letters R, S, T, and P, respectively. F) The game unfolds over many rounds. Each 
round, two players are randomly drawn to interact with each other in the given social dilemma. G) Each of the players chooses action A or action B. Their 
choice might depend on their coplayer’s previous interactions.
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unilaterally set their opponent’s payoff to a fixed value. That is, 
opponents always get the same payoff, irrespective of their own 
behavior. Once all other players adopt an equalizer strategy, the 
remaining player thus neither has an advantage, nor a disadvan-
tage, from deviating. This property makes equalizers a useful tool 
to prove the abstract existence of Nash equilibria. The resulting 
set of equalizers includes several well-known strategies, such as 
Generous Tit-for-Tat (49, 50) and generalizations thereof (51). By 
building on these ideas, Schmid et al. (42) have shown that equal-
izers can also be used to sustain full cooperation in models of in-
direct reciprocity—provided the game at hand is a donation game. 
Herein, we characterize when such equalizers exist in arbitrary 
pairwise social dilemmas, for both direct and indirect reciprocity 
(and arbitrary mixtures). Along the way, we also prove that in gen-
eral, equalizers need to be more complex than previously appreci-
ated (in technical terms: in donation games, equalizers can be 
implemented with simple reactive strategies (42). For more general 
social dilemmas, it takes the richer set of memory-1 strategies 
instead).

Our model combines direct and indirect reciprocity within a 
single framework, irrespective of the considered social dilemma. 
This framework can serve as an important bridge to transfer in-
sights from one field to another. Herein, we use this bridge, for ex-
ample, to incorporate the well-known memory-one strategies 
from direct reciprocity into models of indirect reciprocity. In this 
way, we can prove that even in indirect reciprocity, fully coopera-
tive outcomes can be sustained as a Nash equilibrium. In the past, 
such rigorous results for indirect reciprocity have been difficult to 
establish; these difficulties have been especially pronounced in 
the case of “private information,” when individuals are allowed 
to disagree on each others’ reputations (52). Instead, here we 
prove the existence of such Nash equilibria for arbitrary social di-
lemmas, and for players who are allowed to discount the future— 
even when information is private.

Results
Game setup
We consider a population of n individuals, referred to as players. 
These players repeatedly interact in a pairwise interaction. More 
specifically, in each round, two players are selected at random 
(Fig. 1F). Each player then chooses one of two actions, A or B 
(Fig. 1G). Their choices determine the payoffs they get, according 
to the given payoff matrix (Fig. 1A–E). All other population mem-
bers observe the interaction, but they may independently misper-
ceive each player’s action with some probability ε <

1
2

. Instead of 
correctly identifying a player’s action as, say, action A, they per-
ceive it to be B, or vice versa. After the interaction has taken place, 
there is another round with continuation probability d. In that 
case, a new pair of players is randomly drawn to interact with 
one another. With the converse probability 1 − d, the game ends. 
The total payoff of each player is defined as the sum of the payoffs 
they obtained in each round, times a normalization constant. 
Equivalently, one may also interpret this setup as an infinitely re-
peated interaction in which players discount future rounds by a 
constant factor d. In the limit d→ 1, we recover the classical 
case of an infinitely repeated game without discounting, as for ex-
ample in Press and Dyson (48); see Methods for details.

The exact nature of the game played each round depends on 
the four entries R, S, T, P of the payoff matrix (Fig. 1E). In the fol-
lowing, we are particularly interested in games that can be inter-
preted as social dilemmas. Based on the “individual-based” 

interpretation in Kerr et al. (53), this means payoffs satisfy the fol-
lowing constraints. First, players prefer mutually choosing A to 
mutually choosing B, such that R > P (except for the degenerate 
case of R = P, this assumption is without loss of generality; other-
wise we just need to relabel the two actions). Second, players al-
ways prefer their coplayer to choose A, implying R > S and T > P. 
Third, in mixed pairs, the player who chooses B gets the higher 
payoff, such that T > S. Together these assumptions ensure that 
on a collective level, individuals have some incentive to choose 
A; yet on an individual level, they may want to choose B. 
Accordingly, we interpret action A as cooperation, and we associ-
ate B with defection (however, we use the more neutral letters A 
and B, rather than the usual letters C and D, to highlight that 
our framework is not restricted to the prisoner’s dilemma).

The notion of a social dilemma captures several classical 
games. (i) In the prisoner’s dilemma, payoffs satisfy the inequal-
ities T > R > P > S and 2R > T + S, as in Fig. 1A. (ii) The donation 
game additionally requires R + P = S + T, see Fig. 1B. Such games 
are sometimes called “additive” (54, 55). (iii) The stag hunt game 
satisfies R > T > P > S, as depicted in Fig. 1C. (iv) Finally, the hawk- 
dove game satisfies T > R > S > P , as in Fig. 1D. The exact payoff 
ranking determines the severity of the dilemma. Among the above 
examples, players arguably face the strongest conflict between 
cooperation and defection in the prisoner’s dilemma and the do-
nation game. However, also the other two games entail some con-
flict. Players may either have difficulties to coordinate on the 
equilibrium that is better for both (as in the stag hunt game), or 
they may prefer different equilibria altogether (as in the hawk- 
dove game).

Reactive and memory-1 strategies
When playing the above games, players make their decisions 
based on their strategies. Strategies are recipes that tell the player 
what to do, depending on the outcome of previous interactions.

In order to allow for an explicit analysis, researchers often con-
sider a restricted space of strategies. For example, Schmid et al. 
(42) consider strategies of the form σ = (p0, pA, pB, λ). Here, the first 
parameter p0 is a player’s cooperation probability against an un-
known coplayer. The next two parameters pA (pB) give the player’s 
cooperation probability against a coplayer who cooperated (de-
fected) in their last relevant interaction. Finally, the parameter λ 
determines which previous interactions of the coplayer are 
deemed relevant. When λ = 0, only direct interactions matter. 
For example, if Bob previously defected against Alice (played B), 
but then cooperated with Charlie (played A), Alice would use co-
operation probability pB against Bob. That is, Alice implements a 
strategy of direct reciprocity (Fig. 2A). In contrast, when λ = 1, play-
ers take into account all their coplayers’ interactions equally, even 
interactions with third parties. As a result, such players base their 
decision on the very last action of the coplayer, independently of 
whether or not they were personally involved. In the above ex-
ample, if Bob defected against Alice (played B), but then cooper-
ated with Charlie (played A), Alice’s cooperation probability 
against Bob is pA. Now, Alice uses a strategy of indirect reciprocity 
(Fig. 2B). The model also allows for intermediate values of 
λ ∈ (0, 1). In that case, Alice takes into account third-party interac-
tions with probability λ (Fig. 2C). As the above strategies merely re-
spond to the coplayer’s previous behavior, they are called reactive 
(7) (Fig. 2D). The set of reactive strategies includes Always 
Cooperate σ = (1, 1, 1, λ), Tit-for-Tat σ = (1, 1, 0, 0), and its indirect 
reciprocity analog Simple Scoring (56) σ = (1, 1, 0, 1), among 
others.
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In the context of direct reciprocity, it is also common to consider 
a slightly more general strategy set, called memory-1 strategies. Here, 
a player does not only take into account the coplayer’s last action. 
Rather the player takes into account the entire context of the 
coplayer’s previous interaction, including the action of the co-
player’s opponent (Fig. 2E). Memory-1 strategies take the form 
σ = (p0, pAA, pAB, pBA, pBB, λ). The interpretation of the entries p0 

and λ is the same as before. However, now pxy is a player’s cooper-
ation probability given that in the coplayer’s last relevant inter-
action, the coplayer used action y whereas the coplayer’s 
opponent used action x. Within the set of memory-1 strategies 
we can represent reactive strategies as those strategies for which 
pAA = pBA and pAB = pBB. Here, only the coplayer’s last relevant ac-
tion matters. A well-known example of a nonreactive memory-1 
strategy is Win-Stay Lose-Shift (57), σ = (1, 1, 0, 0, 1, 0). Here, a 
player would only cooperate with a coplayer if in their previous 
joint interaction either both cooperated, or no one did (57).

Partner strategies
In the following, we are interested in whether mutual cooperation 
can be sustained by either direct or indirect reciprocity. To this end, 
we study strategies σ with two properties. First, the strategy ought 
to be nice (9). That is, if σ is adopted by everyone, the entire popula-
tion cooperates indefinitely in the absence of errors. Second, the re-
spective strategy ought to be a Nash equilibrium: if adopted by 
everyone, no single player has an incentive to deviate (Fig. 2F). In 

the context of direct reciprocity, strategies that satisfy both proper-
ties are called partners (58). The answer to the question whether 
partners exist turns out to be trivial in the stag hunt game or in 
the so-called harmony game (17). In those games, payoffs satisfy 
R > T. Therefore, mutual cooperation is a Nash equilibrium even 
if the game is only played once. It trivially follows that mutual co-
operation can also be sustained within our repeated setup—play-
ers merely need to use the strategy Always Cooperate. In the 
following, we will thus focus more on the other two game classes, 
the prisoner’s dilemma and the hawk-dove game.

To show existence of partner strategies in those games, we 
characterize a particular subset of Nash equilibria, those based 
on equalizer strategies. Such strategies do not only ensure that 
no player can unilaterally improve their payoff; they ensure every 
deviating player gets the same payoff (Fig. 2G). For direct reci-
procity (λ = 0), the existence of equalizers has been shown by 
Boerljist et al. (47) and Press and Dyson (48). Their result applies 
to the infinitely repeated prisoner’s dilemma without errors 
(d = 1 and ε = 0). For indirect reciprocity (λ = 1), the existence of 
equalizers follows from the work of Schmid et al. (42), but only 
for the restrictive case of donation games (but arbitrary d and ε). 
Instead, here we characterize equalizers for all social dilemmas, 
for direct and indirect reciprocity, and for all continuation prob-
abilities and error rates. All details and proofs are in the 
Supplementary Information. Below we summarize the respective 
results. For a visual representation of previous work and our con-
tribution, see Fig. 3.

A

B
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D

E

F

G

Fig. 2. Strategies of direct and indirect reciprocity. Strategies of reciprocity differ in whether or not players (here, Player 1) take into account third-party 
interactions (here, between players 2 and 3). A) According to direct reciprocity, Player 1 ignores third-party interactions. B) According to indirect 
reciprocity, Player 1, takes such third-party interactions into account. C) Our framework also allows for intermediate cases, where player 1 considers 
third-party interactions with some fixed probability λ. D) For our model, we consider strategies of different complexity. When using a reactive strategy, 
players condition their behavior on the last observed action of the coplayer. E) When using a memory-1 strategy, they condition their behavior on the 
entire outcome of the coplayer’s last interaction. This also involves the action of the coplayer’s last opponent. F) A strategy is a Nash equilibrium if it is a 
best response to itself. The effect of such strategies can be represented graphically. The large area shaded in gray represents all feasible payoffs in the 
respective game. The smaller area, shown in blue, represents the payoffs that are still feasible if every player adopts the same fixed resident strategy, 
except for one deviating mutant. In this example, the resident strategy yields a payoff of three against itself (indicated by the upper right dot). According 
to the blue area, no mutant strategy yields a higher payoff. Hence, the given resident strategy is a Nash equilibrium. G) An equalizer strategy is a special 
case of a Nash equilibrium. Here, the mutant’s payoff is always the same, regardless of the mutant’s strategy.
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Reactive strategies in the donation game
To better motivate our contribution, let us first recapitulate the re-
sults of Schmid et al. (42). They considered a similar setup as ours, 
but restricted to the donation game and to players with reactive 
strategies. Payoffs of the donation game are given by R = b − c, 
S = −c, T = b, and P = 0, where b and c are the benefit and cost of 
cooperation. Schmid et al. show that for full cooperation to be 
sustainable, the pairwise continuation probability δ needs to 
be sufficiently large (this is the probability that a given pair 
of players will interact again given it just interacted; this proba-
bility is directly related to the population-wide probability d, see 
Supplementary Information). The exact threshold for δ depends 
on the players’ indirectness parameter λ. For direct (λ = 0) and in-
direct reciprocity (λ = 1), the respective thresholds are

δ0 =
c
b

and δ1 =
c

b + (n − 2)((1 − 2ε)b − c)
. (1) 

In particular, indirect reciprocity makes it easier to sustain cooper-
ation (compared to direct reciprocity) if the population is large and 
errors are rare. Either way, once the respective threshold is reached, 
mutual cooperation can be enforced with an equalizer strategy. In 
case of direct reciprocity, the respective equalizer is Generous 
Tit-for-Tat (50). In case of indirect reciprocity, it is Generous 
Scoring (42).

To derive the above results, both the restriction to donation games 
and to reactive strategies turns out to be crucial. Because the dona-
tion game satisfies the additivity property R + P = S + T, the payoff of 
each player can be decomposed into a sum of two terms. The first 
term only depends on the statistical distribution of the coplayers’ ac-
tions (affecting whether or not I receive a benefit b). The other term 
only depends on the statistical distribution of the own action (affect-
ing whether or not I pay the cost c). That is, the players’ actions affect 

payoffs independently. Furthermore, for reactive strategies, the dis-
tribution of a player’s own actions affects the distribution of the co-
players’ actions by a linear relationship. Based on these two 
observations, one can derive a simple linear recursion for the play-
ers’ likelihood to cooperate with each other in any given round. 
With this recursion, it becomes straightforward to compute payoffs. 
Unfortunately, once either the game is nonadditive, or players use 
more complex strategies, the above approach is no longer viable. 
Hence, for the results below we rely on proof techniques that do 
not require us to compute the players’ payoffs explicitly.

Memory-1 strategies in the donation game
To make progress, we first explore whether cooperation in the 
donation game is easier to sustain when players are allowed to 
use memory-1 strategies. More specifically, we ask whether 
there are memory-1 equalizers that can sustain full cooperation 
even when the respective condition in (1) is violated. The answer 
is negative. We find that for all game parameters and any indir-
ectness λ, memory-1 equalizers exist if and only if reactive 
equalizers exist (Supplementary Information Corollary 5). This 
result resonates with earlier work on direct reciprocity. For the 
infinitely repeated donation game, it was shown that reactive 
strategies can enforce all linear payoff relationships that are 
theoretically possible (59). Thus at least in the donation game, 
allowing for more complex strategies does not provide any add-
itional advantage with respect to implementing equalizer strat-
egies (Fig. 3B).

Reactive strategies in general social dilemmas
Given the strong properties of reactive strategies in donation games, 
we ask whether they can also sustain full cooperation in other social 

Fig. 3. Summary of our results. Herein, we derive results on the existence of “equalizer strategies” in pairwise social dilemmas. The right half of the figure 
represents the space of all such dilemmas graphically. Here, we keep the two payoff parameters R and P fixed (with R > P). We vary the remaining payoffs T 
and S. The region shaded in orange indicates all games that satisfy the conditions of a social dilemma. The blue dashed line indicates the subspace of 
“additive games,” which includes the donation game. All previous models that combine direct and indirect reciprocity focus on this blue subspace (39–42). 
For the general space of social dilemmas, the existence of equalizers has only been established for direct reciprocity (48), but not for indirect reciprocity or 
any mixtures.
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dilemmas. Surprisingly, the answer is negative. To describe this re-
sult more formally, we introduce the notion of a degenerate strat-
egy. A reactive strategy is degenerate if it exclusively relies on 
direct reciprocity (λ = 0), or if it acts unconditionally (pA = pB). That 
is, degenerate strategies completely ignore any third-party interac-
tions. Similarly, we say an equilibrium is degenerate if it requires 
players to use degenerate strategies. Using this notion, we can for-
mulate the main result of this section as follows: In any nonadditive 
game with more than two players (n > 2) and positive error rates 
(ε > 0), any Nash equilibrium in reactive strategies is degenerate. 
In other words, if players are in a Nash equilibrium that entails at 
least some indirect reciprocity (λ > 0), players must be using uncon-
ditional strategies such as Always Defect. (The above result also im-
plies that for λ > 0, there are usually no equalizer strategies, because 
unconditional strategies are in general not equalizers (59).) This 
finding suggests that earlier results on the donation game (42) are 
sensitive to the exact payoff values. Once the payoff matrix is slight-
ly perturbed, reactive partner strategies that entail some indirect 
reciprocity cease to exist (Fig. 3D).

The proof of the above result is constructive: We show that for 
any such reactive resident strategy, one can construct a deviat-
ing strategy that gets a strictly higher payoff. Interestingly, the 
deviating strategy is not reactive. Rather, it is a higher-memory 
strategy that takes into account the joint distribution of previ-
ous actions across different pairs of players. We show that 
such strategies have a payoff advantage when the process in-
volves at least some randomness (e.g. when there are errors). 
We provide a description of the deviation strategies in the 
Methods, and a proof of their superiority in the Supplementary 
Information.

Memory-1 strategies in general social dilemmas
The above result raises the question whether beyond the simple 
donation game, nondegenerate equalizers exist at all. To explore 
that question, we search the space of memory-1 strategies. 
There, we find that the answer is positive. For any social dilemma 
and any indirectness λ, there exist equalizer strategies for suffi-
ciently large continuation probabilities and sufficiently small er-
ror rates (Fig. 3E, see Supplementary Information). Similar to (1) 
for the donation game, the minimum continuation probability 
can be computed explicitly. For example, assuming ε = 0 and 
T > R, we find that fully cooperative equalizers with indirectness 
λ exist if and only if the pairwise continuation probability exceeds 
the threshold [2],

δλ = 1 + (1 + (n − 2)λ)
min {T, R} − max {P, S}
max {|T − R|, |P − S|}

 −1

. (2) 

A few remarks are in order. First, for social dilemmas, this thresh-
old is strictly smaller than one. Hence, the condition can be satis-
fied for sufficiently large δ. Second, for any population size n > 2, it 
is easy to verify that threshold (2) is strictly lower for indirect reci-
procity than for direct reciprocity. This is a consequence of our as-
sumption that there are no errors. Once the error rate becomes 
positive, direct reciprocity may become the more favorable mech-
anism for full cooperation (Fig. 4). Third, in the special case of the 
donation game, the threshold simplifies to the following values for 
direct (λ = 0) and indirect reciprocity (λ = 1):

δ0 =
c
b

and δ1 =
c

b + (n − 2)(b − c)
. (3) 

That is, we recover the earlier conditions in (1) for reactive strat-
egies for ε = 0.

In the more general case of an arbitrary prisoner’s dilemma and 
of the hawk-dove game (with T > R), we show that once the condi-
tion (2) is satisfied, one can always find equalizer strategies that 
enforce the mutual cooperation payoff R (see Supplementary 
Information, Proposition 5). Again, our proof is constructive. In 
the Methods, we provide an algorithm that produces an optimal 
equalizer strategy for all social dilemmas (even for positive error 
rates). For games with T > R, this algorithm produces nice strat-
egies (i.e. p0 = pAA = 1). Together with our earlier observation 
that cooperation is trivial to sustain in the stag hunt and the har-
mony game (with T < R), we conclude that stable cooperation can 
always be achieved with memory-1 strategies, based on direct or 
indirect reciprocity, or any arbitrary mixture of the two.

Overall, the above results represent a considerable generaliza-
tion of previous work. We recover the seminal results of Press & 
Dyson (48), when we restrict our framework to direct reciprocity 
in infinitely repeated games (λ = 0 and d = 1). Similarly, we recover 
the results of Schmid et al. (42), when we restrict our framework to 
reactive strategies, and to donation games only (see Methods for 
details).

Simulation results
To further illustrate the above results, we have explored the game 
dynamics when n − 1 players act according to a given equalizer 
strategy (produced by Algorithm 1 in the Methods section). For 
the remaining player, we have sampled N = 100 random “mutant” 
strategies. To approximate the players’ resulting payoffs, we si-
mulated many independent instances of the game dynamics, sep-
arately for each mutant strategy (in contrast to previous work on 
reactive strategies in donation games (42), there is no known for-
mula to compute the players’ payoffs explicitly). Figure 5 shows 
the results. We depict the residents’ and the mutant’s average 
payoff for three different social dilemmas (the prisoner’s di-
lemma, the stag hunt game, and the hawk-dove game). In each 
case, we find that the simulated payoffs indeed form a straight 
horizontal line, the characteristic property of an equalizer strat-
egy (Fig. 2G). In particular, in each case the produced resident 
strategy is a Nash equilibrium: Once adopted by everyone, no mu-
tant strategy has a selective advantage.

Discussion
Direct and indirect reciprocity are important determinants of hu-
man behavior in social dilemmas (8). They are arguably among 
the key mechanisms to explain our exceptionally high cooperation 
rates (60). Yet despite the many similarities between the two kinds 
of reciprocity, they are typically studied independently. Even worse, 
respective models often differ substantially. Models of direct reci-
procity tend to study the prisoner’s dilemma (9–12), whereas indir-
ect reciprocity models are often based on the narrower class of 
donation games (19–22). Similarly, individuals in direct reciprocity 
models are typically assumed to adopt reactive or memory-1 strat-
egies (7, 61). In contrast, models of indirect reciprocity focus on sub-
sets of “third-order social norms” (26), which do not map easily onto 
either class of direct reciprocity strategies. These differences make 
it difficult to compare the two mechanisms directly. Moreover, they 
make it difficult to generalize insights from one field to the other. To 
address these problems, we join recent efforts to study a unified 
framework (39–42), in which individuals themselves choose which 
kind of reciprocity they use.

Previous models that combine direct and indirect reciprocity 
are based on the smallest common denominator of the two 
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literatures, the donation game. This game is the simplest meta-
phor of cooperation: individuals pay some cost to provide a benefit 
to someone else. This simplicity promotes a mathematical ana-
lysis, and it permits an intuitive interpretation of the results. 
However, this game rules out possible interdependencies between 
the individuals’ actions. Neither is it particularly beneficial if indi-
viduals cooperate at the same time, nor is it particularly damaging 
if they all defect simultaneously. This assumption makes it im-
possible to study games in which mutual cooperation yields syn-
ergistic benefits, as in the stag hunt game. Similarly, it rules out 
interactions in which individual actions are strategic substitutes, 
as the volunteer’s dilemma (45) or the snowdrift game (46). Even 
among all prisoner’s dilemmas, donation games only represent 
a negligible subset of measure zero. These considerations high-
light a need to study models that allow for more general types 
of social dilemmas. We present such a model herein.

We use this model to characterize strategies that can sustain 
full cooperation. Our results show that these strategies do not 
need to be overly complex. Instead, it suffices that individuals 
take into account the last interaction of the respective group 
member (e.g. to consider memory-1 strategies). Our results also 
show that simpler strategies (reactive strategies) in general do 
not suffice to support cooperation. In fact, the only domain in 
which these strategies suffice are the donation games considered 
earlier (39–42). Together, these two observations represent a 
nice characterization of the complexity of strategies that is neces-
sary and sufficient to ensure stable cooperation for all social 
dilemmas.

While the basic setup we consider is thus similar to earlier uni-
fied frameworks of reciprocity (39, 41, 42), the mathematical tools 
we apply are vastly different. Earlier work exploited the advantage 
that payoffs of reactive players in the donation game can be 

A B

C D

Fig. 4. Feasibility of equalizer strategies across all social dilemmas. We graphically represent whether or not equalizer strategies exist. To this end, we 
consider four different cases. The cases depend on whether individuals use direct (left) or indirect reciprocity (right), and on whether or not there are errors 
(top vs. bottom). In each case, we consider the space of all social dilemmas (as in Fig. 3). For each possible game, we depict how large the pairwise continuation 
probability δ needs to be for equalizers to exist. Low values of δ (blue, near the center) indicate that the conditions for equalizers are easy to satisfy. Higher 
values of δ (red, near the boundary) suggest that equalizer strategies only exist for rather high continuation probabilities. A, B) The figure shows that without 
errors, indirect reciprocity is more favorable to the existence of equalizers. C, D) Once third-party observations are subject to errors, there are regions in which 
direct reciprocity allows for equalizers whereas indirect reciprocity does not. An expanded view of the same graph is shown in Fig. S1 in the Supplementary 
Information.
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computed explicitly. Instead, for our results we focus more on the 
notion of equalizer strategies, as introduced by Boerljist et al. (47) 
and Press and Dyson (48). These strategies have the remarkable 
property that they can unilaterally control the coplayer’s payoff, 
independent of the coplayer’s strategy (Fig. 2G). This makes 
them extremely useful tools to construct Nash equilibria. Once 
every population member adopts an equalizer strategy, no single 
player has an incentive to deviate. Interestingly, however, devia-
tors suffer no harm either. In particular, Nash equilibria based 
on equalizer strategies do not satisfy the stronger notion of evolu-
tionary stability (62).

Evolutionary stability is generally difficult to achieve in re-
peated games. In fact, for the standard case of infinitely repeated 
games without errors, no strategy is evolutionarily stable (63–65): 
one can always identify mutant strategies that may invade by 
neutral drift. But even identifying strategies that satisfy the weak-
er condition of being a Nash equilibrium has been difficult in the 
field of indirect reciprocity. These difficulties are particularly ap-
parent in models with “private information” (21). In such models, 
individuals may hold different views on which reputation they as-
sign to others. These disagreements may accumulate over time, 
which makes cooperation difficult to sustain (52, 66, 67). To 
make analytical progress, the concept of equalizer strategies is 
particularly convenient. These strategies allow us to give a proof 
of principle: We rigorously show the existence of cooperative 
Nash equilibria, for any pairwise social dilemma, for all sufficient-
ly large continuation probabilities, for direct and indirect reci-
procity—even under private information.

Interestingly, however, even the most favorable equalizer 
strategies do not necessarily produce the socially optimal out-
come. One counterexample is the stag hunt game (Fig. 5B). Here, 
equalizers exist, but they cannot ensure the optimal payoff of R. 
This insufficiency, however, does not diminish our results, nor is 
it a surprise. Because the stag hunt game’s payoffs satisfy both R > 
T and R > P, a coplayer can always avoid an average payoff of R by 
defecting in all rounds. Hence, unilaterally imposing a guaranteed 
payoff of R on the coplayer is clearly infeasible. Nevertheless, our 
more general result, that the game allows for full cooperation in 

equilibrium, holds. In this game, players simply need to adopt 
the strategy of always cooperating, instead of adopting an equal-
izer strategy.

To sum up, social dilemmas are at the core of many collective 
action problems. To resolve them, people frequently respond to 
an opponent’s previous behavior. Prior to making a decision, 
they form opinions about their opponent, either based on direct 
experiences, an opponent’s third-party interactions, or both (31, 
32). In our work, we mathematically characterize strategies peo-
ple can use to sustain cooperation, independently of the kind of 
reciprocity they adopt, and independently of the specific social di-
lemma at hand.

Methods
Game dynamics and resulting payoffs
We consider a population of n players. Each round, two players are 
selected uniformly at random. They each play action A or action B 
and receive a payoff determined by the corresponding entries of 
the payoff matrix. The n − 2 players who were not selected for 
that round receive a payoff of zero. Let πi(t) denote Player i’s result-
ing expected payoff in round t. We define a player’s total payoff as 
the sum of these one-round payoffs times a normalization factor 
of (1 − d)n/2, so that the total expected payoff is

πi = (1 − d)
n
2

∞

t=0

dtπi(t). (4) 

The normalization factor ensures that the resulting values are in 
the same range as the game’s one-round payoffs. For example, 
when all players use action A in all their interactions, the above 
formula guarantees that each player’s expected total payoff 
(across all interactions and rounds) is R. Alternatively, one may 
also interpret the above payoff formula to represent a scenario 
in which individuals discount future payoffs by a constant rate d 
(68–72). In contrast, Press and Dyson (48), among many other 
works, consider the asymptotic behavior of a game without dis-
counting. This enables them to compute payoffs by calculating 

A B C

Fig. 5. Simulation of equalizer strategies. We consider three social dilemmas in which n − 1 residents use a fixed equalizer strategy. For the remaining 
player, we randomly sample N = 100 mutant strategies. For each mutant strategy, we simulate the resulting game dynamics. Based on these simulations, 
we compute the average payoff in pairwise interactions between the deviating mutant player and a given resident player (“Resident 1,” see Methods for 
details). These pairwise payoffs are depicted as small blue dots. As expected from our analytical results, all mutant strategies yield the same average 
payoff (whereas the payoff of the resident may vary). In two of the three cases, the respective payoff is optimal (A, C). Only in the stag hunt game, 
equalizers cannot enforce the socially optimal payoff (B). But also in those games (with T < R), the socially optimal payoff of mutual cooperation can still 
be achieved in equilibrium. Players merely need to use the strategy of Always Cooperating instead. For reference, the gray area shows the set of feasible 
payoffs for the respective game.
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the stationary distribution of the Markov Chain defined by the 
game process. In the limit of d→ 1, our payoff definition ap-
proaches theirs.

Except for the case of a donation game among players with re-
active strategies (42), there is no known closed-form solution to 
compute a player’s expected payoff πi(t) in a given round t. 
Hence, for practical purposes, the value of (4) needs to be approxi-
mated numerically with simulations. For example, for a given 
population composition, we may independently simulate the 
above game dynamics k times. For each run, we sum up each play-
er’s payoff across all rounds. Then we sum up these total payoffs 
across all simulation runs, divide by k, and multiply with the nor-
malization constant (1 − d)n/2.

In Fig. 5, we have run k = 5 × 105 independent simulations for 
each mutant strategy. For graphical purposes, there we only 
report payoffs from interactions between the mutant and one given 
resident, Resident 1 (while ignoring the payoffs from all other inter-
actions). In this case, the relevant normalization constant is 
(1 − d)n(n − 1)/2. For the mutant, this procedure gives the same re-
sult as (4). However, for the resident, the result is different from (4), 
because we neglect the resident’s payoff against other residents. 
For each of the three panels, the resident strategy is determined 
by Algorithm 1. All have λ = 0.5 and p0 = 1. The other entries 
(pAA, pAB, pBA, pBB) are (1.000, 0.331, 1.000, 0.666) for the prisoner’s 
dilemma, (0.498, 1.000, 1.000, 0.498) for stag hunt, and 
(1.000, 0.498, 0.498, 1.000) for the hawk-dove game.

Instability of nondegenerate reactive strategies
In the Results section, we have argued that in general social dilem-
mas, only degenerate reactive strategies can be stable. Here, we out-
line the respective proof (all details are in the Supplementary 
Information). To this end, consider a resident population of n > 2 
players, who all adopt the same reactive strategy σ = (p0, pA, pB, λ). 
Assume the strategy is nondegenerate, pA ≠ pB, λ < 1, and that er-
rors are possible, ε > 0. For the proof, we construct a set of four (non-
reactive) strategies. Then, we show that at least one of them can 
invade the resident population.

First, we construct events EA and EB. Both EA and EB completely 
define which players are selected and what actions they play in 
the first n + 3 rounds, and do so identically apart from the action 
of player 1 in round 2. The below table summarizes these first n + 
3 rounds. The mutant player is player 1. In round 2, x is action A in 
EA and action B in EB, whereas for y, any consistent choice is per-
missible. In round 3, y is the action that is not y. The dashes indi-
cate actions that are defined by the event, but not specified 
explicitly in our proof. We show in Supplementary Information 
Proposition 10 that we can make these choices in such a way 
that EA and EB occur with positive probability.

The invader strategy σ′ normally plays in the same way as strat-
egy σ. Only when event Ex has occurred does σ′ deviate from σ. It 
does so by, in one case of x ∈ {A, B}, slightly increasing its probabil-
ity to play action A towards Player 2 next time they are selected to 
play together, and slightly decreasing it by an identical amount in 
the other case. Other than that, σ′ continues to play exactly like σ.

Construction of equalizer strategies
In the following, we outline how equalizer strategies can 
be constructed within the space of memory-1 strategies. 
In the Supplementary Information, we show that for a 
strategy with cooperation probabilities p = (pAA, pAB, pBA, pBB)⊺ 

and indirectness λ to be a generic equalizer, it needs to have 
the form

pAA

pAB

pBA

pBB

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ = (δ−1 + λ(n − 2))(I + λ(n − 2)Mε)

−1

1 − αR − β
1 − αT − β

−αS − β
−αP − β

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠. (5) 

Here, α and β are constants, I denotes the identity matrix and 
Mε is the error matrix

Mε = 1 − ε ε
ε 1 − ε

 ⊗2

=

(1 − ε)2 (1 − ε)ε ε(1 − ε) ε2

(1 − ε)ε (1 − ε)2 ε2 ε(1 − ε)
ε(1 − ε) ε2 (1 − ε)2 (1 − ε)ε

ε2 ε(1 − ε) (1 − ε)ε (1 − ε)2

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠
.

The payoff that this equalizer strategy enforces is

π = α−1 1 − δ
1 + (n − 2)δλ

p0 − β
 

.

Note that whether or not a strategy is an equalizer does not 
depend on p0. This general result captures the results of sev-
eral previous studies as special cases. 

1. In Schmid et al. (42), the authors consider the special case of 
reactive strategies in additive games (with T ≠ P). Their 
Supplementary Information Eq. (13) states that a reactive 
strategy (p0, pA, pB, λ) is an equalizer if and only if

pA − pB =
1 + (n − 2)δλ

1 + (n − 2)(1 − 2ε)λ
·

P − S
δ(T − P)

. (6) 

We can recover this result from our (5). For reactive strat-
egies, it takes the form

1 0

0 1

 

+ λ(n − 2)
1 − ε ε

ε 1 − ε

  
pA

pB

 

= δ−1 + λ(n − 2)
( 

·
−αS − β
−αP − β

 

,
(7) 

where α = (T − P)−1. This is satisfiable (with exactly one β) if 
and only if condition (6) holds.

2. According to Press and Dyson (48), a memory-1 strategy is an 
equalizer in an infinitely repeated (d = 1) two-player game 
(n = 2) if and only if there are constants β (not identical with 
our β) and γ such that

−1 + pAA

−1 + pAB

pBA

pBB

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ = β

R
S
T
P

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ + γ

1
1
1
1

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ (8) 

This exactly corresponds to our (5) with δ = 1 and n = 2 (or al-
ternatively λ = 0).

Round 0 1 2 3 4 5 6 … n + 2

Players 2 3 1 3 1 2 2 3 1 3 1 3 1 4 1 n
Actions – – – – x y y – A – B – – – – –
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Based on (5), we can also provide an algorithm that takes the 
game parameters and an indirectness value λ as an input to com-
pute an equalizer strategy that enforces the highest payoff 
(among all equalizers with indirectness λ). It returns the strategy 
parameters as well as the payoff π that this strategy enforces, or 
null if no such equalizer strategy exists. The correctness of this 
Algorithm 1 is shown in Supplementary Information Theorem 6.

Figure parameters
Figure 5: Each of N = 100 points represents the payoffs of a ran-
domly generated mutant strategy against n − 1 identical equalizer 
residents in a game with n = 50 players. Prisoner’s dilemma: R = 3, 
S = 0, T = 5, P = 1. Stag hunt: R = 3, S = 0, T = 2, P = 1. Hawk-dove: 
R = 2, S = 0, T = 4, P = −2. ε = 10−3, δ = 0.99. Each point is an average 
over 5 × 105 samples with the same mutant. Equalizer strategies 
were generated with an implementation of Algorithm 1.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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