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Dynamics of cooperation in
concurrent games

Charlotte S. L. Rossetti 1,2 , Oliver P. Hauser 3,4 & Christian Hilbe 1,4

People frequently encounter situations where individually optimal decisions
conflict with group interests. To navigate such social dilemmas, they often
employ simple heuristics based on direct reciprocity: cooperate when others
do and cease cooperation when partners defect. However, prior research
typically assumes that individuals only interact in one game at a time. In reality,
people engage in multiple games concurrently, and the outcome of one
interaction can influence behavior in another. Here, we introduce a theoretical
framework to study the resulting cross-over and spill-over effects. Participants
repeatedly engage in two independent stage games, either with the same or
different partners, adapting their strategies over time through an evolutionary
learning process. Our findings indicate that individuals often link their beha-
vior across games, particularly under cognitive constraints like imperfect
recall. A behavioral experiment with 316 UK-based students suggests that
concurrent games negatively affect cooperation, highlighting how strategic
motives and spillovers impact reciprocity.

Direct reciprocity is one of the coremechanisms enabling cooperation
among unrelated individuals1,2. This mechanism is at work when
neighbors take turns picking up each others’ children from school,
when students correct each others’ work, or when couples share
domestic chores. Experimental work shows that reciprocal relation-
ships emerge naturally if interactions occur repeatedly, provided the
probability of another encounter is sufficiently high3,4. Repetition
allows individuals to condition their current actions on their interac-
tion partner’s past behavior5. When they adopt conditionally coop-
erative strategies such as Tit-for-Tat6–8, Generous Tit-for-Tat9,10, or
generalizations thereof11–16, even selfish opponents have an incentive
to cooperate. Using models of evolutionary game theory, researchers
have explored which kinds of strategies evolve, and in which envir-
onments reciprocal cooperation is stable17–24.

Yet most of this work assumes that individuals either only engage
in one repeated game at a time, or that they treat each game as inde-
pendent. This means that both theoretically and experimentally, each
ongoing strategic interaction is studied in isolation3. This assumption
of independence greatly facilitates a theoretical analysis. It allows
researchers to consider a comparably small set of possible strategies25.

Once this assumption is dropped, a player’s strategy does not only
depend on the opponent’s previous actions in the respective game
anymore. Instead, it may depend on the previous actions of all oppo-
nents, across all games. As a result, the cooperation dynamics need to
be described at a different level: instead of the standard game-per-
spective, models now need to take a population-perspective. This
change in perspective drastically increases a model’s computational
complexity26. To circumvent these difficulties, most research is based
on the implicit assumption that by analyzing different games indivi-
dually, one can extrapolate (or at least approximate) how people
behave when they engage in many games in parallel. Our aim is to
explore to which extent this assumption is justified. We make two key
contributions. First, we refute, both theoretically and experimentally,
that people generally treat their different games as independent.
Second, by taking into account the linkage between games, we intro-
duce a theoretical framework that gives rise to a richer and more
realistic class of game-theoretic models.

Our inquiry is based on the notion of a concurrent game. A con-
current game arises when players engage in several, formally inde-
pendent, repeated games in parallel. Players may have their different
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repeated games either with the same or with different interaction
partners (Fig. 1). We ask to which extent behavior in the concurrent
game can be inferred from the constituent repeated games. This
question has received some attention before, as reviewed in detail in
the Supporting Information. However, respective models often take a
static equilibrium approach27,28. This research shows, for example, that
if players implement an equilibrium for each isolated repeated game,
the resulting strategy profile also constitutes an equilibrium of the
concurrent game.When all games are identical, symmetric, and played
with the same partner, one can even derive a stronger result. In that
case, full cooperation is feasible in the concurrent game if and only if it
is feasible in each repeated game27. These studies greatly illuminate
which behaviors are possible in equilibrium. Yet, they do not address
which of these equilibria (if any) are most likely to emerge when
strategies arenot consciously chosenbut learnedover time.Moreover,
this existing work does not attempt to study the consequences of
several cognitive constraints and behavioral heuristics that might
affect human play in concurrent games. For example, effects arising
from imperfect recall29–31 or from a drive to act consistently may
naturally introduce spillovers between games. Once such spillovers
occur, behavior may spread from one game to another32. Herein, we
study a simple but comprehensive theoretical framework to describe
these effects.

We consider three idealized scenarios, to which we refer as
treatments. In all treatments, players engage in two different repeated

social dilemmas. The two dilemmas either result in a high or a low
benefit of cooperation (Fig. 1a). The three treatments differ in whether
or not players treat each repeated game as independent, and in whe-
ther or not the two games are played with the same or with different
interaction partners. In the first treatment, the control, we consider the
baseline case typically studied in the literature (Fig. 1b). Here, indivi-
duals play each repeated game in isolation. Hence they treat each
repeated game as independent by design. Second, in the same-partner
treatment, the two games are played simultaneously, and with the
same opponent (Fig. 1c). This treatment is motivated by the previous
work of Donahue et al.25. They refer to this setup as a ‘multichannel
game’, because players can interact and influence each other through
multiple channels. As a result, players can react to an opponent’s
defection in one game by defecting in the other. In this way, we aim to
capture players’ strategic motives to link their behavior across differ-
ent games. This linkage may provide players with a stronger leverage
to enforce cooperation. Third, in the different-partners treatment,
individuals play the two games simultaneously but with a different co-
player in each game (Fig. 1d). This treatment is motivated by the study
of Reiter et al.26. However, in their work, behavioral spillovers occur
with an exogenously determined probability. In contrast, we explore
whether such linkage would evolve endogenously. By combining a
different-partners design similar to Reiter et al.26, and the same-partner
design by Donahue et al.25, we explore how strategic motives con-
tribute to the evolution of cross-game effects. We further expand this
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Fig. 1 | A framework of concurrent games. a In concurrent games, players engage
in two or more games simultaneously. Herein, we consider the case that players
engage in two games, one with a high benefit of cooperation (`high game', darker
shade) and one with a smaller benefit (`low game', lighter shade). Each payoff
matrix describes the payoff of the player who picks a row, depending on the co-
player’s choiceofwhopicks a column.b In the control treatment (red), players only
engage in one repeated game at a time, as usually assumed in the literature. c In the

same-partner treatment (yellow), each player engages in both games but with the
same co-player. d In the different-partners treatment (green), players engage in
both games but with different co-players. e Concurrent games allow for linkage.
Players might respond to a co-player’s defection in one game by defecting in both
games. Such linkage may arise both in the same-partner treatment (depicted here)
and in the different-partners treatment. C and D represent the decision to coop-
erate or to defect, respectively.
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work by comparing a single game control with the other treatments,
exploring in which case players treat each game as independent. In
addition, we expand on this previous work by exploring the impact of
severalplausible cognitive constraints andbehavioral heuristics. In this
way, we wish to establish a realistic framework to study the evolution
of strategic behavior in concurrent games.

In the same-partner treatment, and to a far lesser extent in the
different-partners treatment, we find that a player’s behavior in one
game is linked to the previous outcomeof the other game. This linkage
can either result in more or less cooperation compared to the control,
depending on the treatment and the presenceof cognitive constraints.
To further explore these theoretical results, we run a behavioral
experiment that implements our three treatments, based on a similar
design as in previous empirical studies33,34. In the experiment, both the
same-partner treatment and the different-partners treatment resulted
in less cooperation than the control. For the same-partner treatment,
our empirical data does not only rule out that players treat each game
as independent. It also calls into question a previous prediction by
Donahue et al.25 that concurrently ongoing games among the same
partners would enhance cooperation.

Our results have important implications for the effectiveness of
direct reciprocity. People in their daily lives often engage in several
games concurrently. For such concurrent games, we find that strategic
motives, spillovers, and cognitive constraints can easily affect, and
often undermine, cooperation.

Results
A model of concurrent games
To establish formalism, we first study cooperative interactions based
on a variant of the prisoner’s dilemma, the donation game35. In this
game, players either cooperate (C) or defect (D). Cooperation means
topay a cost c for the partner to get a benefitb. Defectionmeans topay
no cost and for the partner to get no benefit.We consider twodifferent
implementations of this game (Fig. 1a). In one implementation, the
benefit is high, and we accordingly speak of the high-benefit game, or
high game (H). In the other implementation, the benefit is smaller, and
we call it the low game (L). Assuming bH ≥bL>c throughout, the
dominant action if players only meet once is to defect in either game.
However, we assume players interact for infinitely many rounds (an
extension to finitely repeated games will be discussed later). We refer
to each iterated donation game as a repeated game. When players
engage in both donation games in parallel, such that players make two
choices each round (one for each game), we speak of a concurrent
game. A large literature shows that cooperation is feasible in repeated
games5. This result naturally extends to concurrent games. Here, we
are interested in how likely cooperation is to evolve in concurrent
games, and which strategies are used to sustain it.

To this end, we discuss three different idealized scenarios (treat-
ments) of how these games unfold. In each case, we consider four
players. In the control treatment, players only engage in a single
repeated game at a time, with a fixed partner (Fig. 1b). One pair of
players repeatedly engages in the high game, whereas the other pair
plays the low game. Players use reactive strategies to make their
decisions. This means that a player’s choice of whether or not to
cooperate in a given round only depends on the co-player’s decision in
the previous round. Reactive strategies take the following form35:

p= pk
C,p

k
D

� �
2 ½0, 1�2: ð1Þ

Here, pk
a is the player’s probability to cooperate in game k∈ {H,L},

depending on the co-player’s previous action a∈ {C, D}. For example, a
player with strategy p = (1, 0) implements Tit-for-Tat (TFT). A player
with p = (1, pD) and 0 < pD < 1 uses Generous Tit-for-Tat GTFT (see
refs. 9,10). Finally, a player with p = (0, 0) defects uncondition-
ally (ALLD).

We contrast this control treatment with two different kinds of a
concurrent game. In the first one, the same-partner treatment, players
are againmatched with a single partner, but the two players interact in
both repeated games simultaneously (Fig. 1c). In particular, their
decision in either gamemay depend on how the co-player acted in the
other game. Reactive strategies for the same-partner treatment take
the form

p= pH
CC,p

H
CD,p

H
DC,p

H
DD;p

L
CC,p

L
CD,p

L
DC,p

L
DD

� � 2 ½0, 1�8: ð2Þ

Here, pk
aHaL is the player’s probability to cooperate in game k∈ {H, L},

depending on the co-player’s previous decisions in both the high and
the low game, aH,aL 2 fC,Dg. We say such a strategy treats both games
as independent if the entries satisfy

pH
CC =p

H
CD,p

H
DC =p

H
DD and pL

CC =p
L
DC,p

L
CD =pL

DD: ð3Þ

That is, the strategy only reacts to the co-player’s previous action in the
respective game, irrespective of the outcome of the other game. In the
case of independence, strategies of the control treatment naturally
map to strategies in the same-partner treatment. For example, if a
player in the control were to use TFT in the high game and ALLD in the
low game, that player could implement p = (1, 1, 0, 0; 0, 0, 0, 0) in the
concurrent game. Thus, the same-partner treatment permits all
strategic behaviors that are feasible in the control. In general, however,
the set of feasible strategies is strictly larger in the same-partner
treatment. For example, players with p = (1, 0, 0, 0; 1, 0, 0, 0) only
cooperate in either game if the co-player previously cooperated in
both games. When the constituent games are not treated as
independent, we say players link their behavior across games.
Accordingly, we also speak of linkage. Examples like the one above
illustrate that linkage might arise because of strategic motives. By
doing so, playersmay be able to enforce cooperationmore effectively,
by threatening to defect in both games after any deviation of the co-
player (Fig. 1e).

The last treatment is the different-partners treatment. Here, play-
ers again engage in both the high and the low game simultaneously,
but now with different co-players (Fig. 1d). Reactive strategies for this
treatment have the same complexity as in the same-partner treatment,
see Eq. (2). Also the definition of independence is the same, see Eq. (3).
From a strategic viewpoint, however, this treatment differs from the
same-partner treatment. With different partners involved, there is less
of an immediate strategicmotive to link behavior across games, unless
players wish to adopt a strategy of community-enforcement36,37.

For all three treatments, we can compute the players’ payoffs
explicitly. To this end, we represent the interaction as a Markov chain
that depends on the players’ strategies. We describe the respective
procedure in the Methods and in the Supporting Information. How-
ever, we do not regard the players’ strategies as fixed. Rather, as usual
in evolutionary game theory, players update their strategies over time
based on their payoffs. To model this updating process, we use
introspection dynamics38,39. According to this process, players reg-
ularly compare their current payoff with the payoff they could have
obtained by using a (randomly sampled) alternative strategy. The
higher the payoff of the alternative, the more likely players are to
switch (as described in more detail in the “Methods” section). If we
apply this learning process to the three treatments, and ifwe artificially
require players in the last two treatments to treat each repeated game
as independent, all treatments yield equivalent results (Fig. S1). In
particular, all treatments recover the qualitative findings of the pre-
vious literature on direct reciprocity40. In the following, we system-
atically explore the effect of linkage, by no longer imposing that
players treat each game as independent.
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Introspection dynamics of concurrent games
To get a first impression, we simulate the learning dynamics in the
three treatments for fixed parameter values (in particular, we set
bH = 5,bL = 3 and c = 1). Results in the control treatment recover the
conventional wisdom established by previous work in direct
reciprocity40. Repetition allows players to achieve some cooperation,
and players aremore cooperative when there is a high benefit (Fig. 2a).
These intuitive results differ from what we find in both other treat-
ments. In the same-partner treatment, individuals frequently coop-
erate in both games (Fig. 2b). These results confirm work by Donahue
et al.25 where players adopt strategies based on social comparisons
rather than by introspection. In contrast, in the different-partners
treatment, cooperation rates are consistently low (Fig. 2c). Because all
three treatments yield equivalent results if players are artificially
restricted to treat each game as independent (Fig. S1), these results
indicate that linkage affects the cooperation dynamics. This effect is
predicted to be favorable in the same-partner treatment, whereas it is
detrimental when people play their games with different partners.

To explore the magnitude of linkage, we record the players’
strategies during the learning process. In Fig. 2d–f, we report results
for cooperative players (those with a cooperation rate of at least 2/3 in
each game they participate in). In the control treatment, such players
use strategies similar to Generous Tit-for-Tat, as onemay expect based
on the previous literature9,10. They tend to fully reciprocate a co-
player's cooperation, and they show some leniency with defecting co-
players (Fig. 2d). In contrast, evolving behaviors in the same-partner
treatment are more strict. Here, players only fully cooperate in either
game if the co-player previously cooperated in both games (they still
show some leniency with respect to partial or full defectors, Fig. 2e).
Importantly, these strategies exhibit linkage. Players condition their
behavior in one game on actions that occurred in the other. The

emergence of such strategies can explain why we see almost equal
cooperation rates in both the high-benefit and the low-benefit game
(Fig. 2b), although the incentives to cooperate in each game differ.
Further simulations suggest that such strategies evolve in the same-
partner treatment because they are more stable, compared to a
strategy that just uses Generous Tit-for-Tat in each game (Fig. S2).
Finally, for the different-partners treatment, players are unlikely to
cooperate in both games altogether. Even when both co-players
cooperated in the previous round in their respective games, players
are, on average, less likely to reciprocate, and there is also little linkage
overall (Fig. 2f).

Robustness beyond the donation game
Overall, the same-partner treatment results in more cooperation,
whereas the different-partners treatment leads to reduced coopera-
tion rates. These qualitative findings are robust. In particular, they do
not depend on the exact benefit of cooperation (see Fig. 2g, h, which
shows results for different values of bH). Similarly, they neither depend
on whether or not players commit implementation errors (Fig. S3a, b);
nor do they depend on whether or not the game is infinitely repeated
(Fig. S3c, d). Finally, thequalitative results donot change aswevary the
strength of the selection parameter, which describes the efficiency of
the introspection learning process (Fig. S3e, f).

Moreover, in the Supporting Information, we show that the fra-
mework can be further extended to describe scenarioswhere the stage
games are different from the donation game. For example, in Fig. S4,
we present simulation results when the low-benefit game is replaced
by a (general) prisoner’s dilemma, a snowdrift game, or a coordination
game. In each case, we find considerable differences between the three
treatments. Except for the case of a coordination game, we also find
that the same-partner treatment tends to generate the largest payoffs.
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cooperation rate). In the control treatment (red), players adopt strategies con-
sistent with Generous Tit-for-Tat9,10. In the same-partner treatment (yellow), they
only cooperate if the co-player previously cooperated in both games. In the
different-partner treatment (green), individuals are still most cooperative after
receiving cooperation in both games, but there is overall less cooperation (and very
little linkage). C and D represent the decision to cooperate or to defect, respec-
tively. g and h Our qualitative results remain valid for a wide range of parameter
values (see also Fig. S3).
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We conclude that linkage in concurrent games has substantial effects
on cooperation, across a wide range of reciprocal relationships.

Incorporating cognitive constraints and different learning
heuristics
Our framework allows us to go beyond a mere comparison between
concurrent games and classical models of direct reciprocity. Instead,
we can also explore the consequences of several cognitive constraints
that are impossible to study (or have no analog) in classical single-
repeated games. In the following, we introduce four model variations.
Each model variation discusses a different type of constraint or heur-
istics that may conceivably affect behavior in concurrent games. In
eachcase, webriefly summarize how they canbe incorporated intoour
framework and how they affect our results. For all derivations and a
more detailed discussion, we refer to the Supporting Information.

Thefirstmodel extension addresses the impact of imperfect recall.
Everyday experience and previous experiments29–31 suggest that peo-
ple with several interactionsmay confuse past outcomes. A co-player’s
cooperation in one gamemay bemisremembered as having happened
in a different game, possibly with a different co-player. To capture this
formof imperfect recall across games, we assumeplayers confuse past
outcomes with probability εIR ≥0. When such an error occurs,
instead of correctly recollecting the previous actions in the high and
the low game as ðaH,aLÞ 2 fC,Dg2, the player takes them to be
ðaL,aHÞ 2 fC,Dg2. As a result, the player cooperates with probability
pk
aL ,aH instead of pk

aH ,aL . This type of error differs from simpler types of
confusion or assessment errors41, where players merely mislabel a co-
player’s past action with a fixed probability. In particular, errors of this
kind have no effect if the previous outcome is either (C, C) or (D, D), or
if the player’s strategy happens to satisfy pk

CD =pk
DC. In the first case, no

confusion between the two games can arise, whereas in the second
case, any confusion proves to be inconsequential. Errors of imperfect
recall can arise both in the same-partner treatment and the different-
partners treatment. Yet they may have more of an effect when

interacting with different partners, as they might lead players to give
misdirected responses30,31. In line with this intuition, we find that such
errors have a weakly negative effect on cooperation in the different-
partners treatment (Fig. 3a). Perhaps surprisingly, however, we find
that imperfect recall reinforces cooperation in the same-partner
treatment. Here, errors provide further incentives for players to link
their behavior across games, and to only cooperate if the co-player
previously cooperated in both games (Fig. 3a).

The second model extension addresses (exogenous) behavioral
spillovers. A spillover arises when an individual’s action in one domain
leads that individual to take the same action in a different domain.
Such spillovers have been reported in various contexts, and they can
have important policy implications42,43. In our context, spillovers
introduce additional correlations into a player’s behavior. For any
given history, they increase the chance that a player chooses the same
action in each of the two games (rather than cooperating in one game
and defecting in the other). For the same reason as before, such cor-
relations seem particularly harmful when interacting with different
partners because they undermine a player’s ability to give targeted
responses. Indeed, simulations again suggest a weakly negative effect
of spillovers in the different-partners treatment (Fig. 3b). In contrast, in
the same-partners treatment, the effect can be both positive and
negative, depending on how frequent spillovers are. Indeed, in some
cases, the resulting cooperation rates may even be below the coop-
eration rates of the control treatment (Fig. 2a).

The next two model extensions address different ways how peo-
ple might update their strategies in the two games. In our previous
simulations, we assume that players are equally likely to update their
strategy in either the high or the low game. Instead, players may be
more inclined to update their strategy in the game in which they cur-
rently receive the smaller payoff (relative to the maximum feasible
payoff in that game). Simulations suggest that such preferential
updating has weakly positive effects on the different-partners treat-
ment. In the same-partner treatment, it increases cooperation in the
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Fig. 3 | Modeling the effect of cognitive constraints in concurrent games. Our
framework allows us to study the effect of various constraints, biases, and heur-
istics on cooperation in concurrent games. Here, we explore the impact of
a imperfect recall, b spillovers, c preferential updating in the game with lower
payoffs, and d narrow bracketing. In each case, we record the impact on average
cooperation rates (upper panel). In addition, we also record the evolving average

strategies in the most extreme case (lower two panels). C and D represent the
decision to cooperate or to defect, respectively. For the same-partner treatment
(yellow), we find that spillovers and narrow bracketing are most detrimental to
cooperation. In that case, average cooperation rates may even be below the
cooperation rates of the baseline control treatment (Fig. 2a).
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high game, but it destabilizes cooperation in the low game (Fig. 3c),
presumably because players now update their low-game strategies
more often.

Our last model extension addresses narrow bracketing. Narrow
bracketing refers to situations in which people make decisions in one
domain, without fully internalizing the consequences of those deci-
sions in a different domain44. Such a bias may also affect how people
learn in concurrent games.When players update their strategies in one
game (high or low), they may not anticipate how these changes affect
the dynamics of the other game. Narrow-bracketing has limited effects
when people naturally treat their games as independent. In that case,
changes in one game’s strategy have no effect on the dynamics of the
other. As a result, simulations suggest that narrow bracketing has no
discernible impact in the different-partners treatment (Fig. 3d). How-
ever, in the same-partner treatment, in which players naturally learn to
link their behavior across games, the effects canbe considerable. Here,
we find that narrow-bracketing undermines cooperation, both in the
high and the low game.

Overall, our framework can readily capture each of the four cog-
nitive constraints and learning heuristics discussed above. While all of
themseem tohavepractical relevance, they havebeen rarely discussed
in the context of direct reciprocity. Here, we have shown how each of

these constraints and heuristics can be easily formalized within the
context of concurrent games.

Human behavior in concurrent games
The previous theoretical results indicate that concurrent games can
alter the dynamics of reciprocal interactions. But whether concurrent
games lead to more or less cooperation depends on how they update
their strategies, whether their decision-making is influenced by biases
and heuristics, and whether they interact with the same or with dif-
ferent partners. To explore the actual cooperation dynamics among
human participants in more detail, we conducted a behavioral
experiment. The experiment directly implements the three treatments
illustrated in Fig. 1b–d. Participants are randomly assigned to treat-
ments, and in the control treatment, they are randomly assigned to
either play the high or the low game. In the high game, players can pay
2 points to give 4 points to the other player. In the low game, a player’s
2 points are translated into 3 points for the co-player. Participants
interact for at least 20 rounds, with a stochastic stopping rule imple-
mented thereafter.

Figure 4a shows the resulting average cooperation rates across
three treatments. In contrast to the predictions of the baseline model,
but in agreement with some of our model extensions, we find that

Fig. 4 | Concurrent games among humans. To explore how people act in con-
current games, we have implemented a behavioral experiment using the three
treatments in Fig. 1. Participants are randomly matched and interact for at least 20
rounds. After that, the game continues with a 50% probability each round. a The
vertical axis refers to the averaged cooperation rates of each group of two or four
players (n = 97) over all 20first rounds, for each treatment and across both the high
and the low games (horizontal axis). Across all rounds, people were most coop-
erative in the control treatment (red), in both the high and the low game. Coop-
eration rates in the same-partner (yellow) and the different-partner treatment
(green) are not significantly different from each other. Data are presented asmean
values, individual data points are overlaid as dots and the SEM is represented by a

vertical bar. b, These qualitative results are already present in the first round, and
they are stable throughout the experiment. Data are presented asmean values with
shaded areas representing the SEM. c, d We use linear regression to estimate the
players' strategiesbasedon the co-player’s behavior in theprevious round (Table 1).
Here, we visualize the resulting conditional cooperation probabilities. C and D
represent the decision to cooperate or to defect, respectively. In the same-partner
treatment, participants link their behavior across games. As a result, a player’s
cooperation probability depends on the previous outcome of both games. In
comparison, behaviors in the different-partners treatment are largely independent
across the two games.
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people are most cooperative in the control treatment. More specifi-
cally, the average cooperation rate in the high game is 78.6% in the
control (n = 29), compared to 60.5% in the same-partner (n = 36) and
62.4% in the different-partners (n = 32) treatment (p =0.004,
δ = 0.39(95%CI[0.10, 0.62]) for same-partner, p =0.006, δ =
0.43(95%CI[0.11, 0.67]) for different-partners). Similarly, cooperation
rates in the low game are 70.3% in the control, compared to 54.0% for
the same-partner treatment and 52.2% for the different-partners
treatment. However, here only the difference in the same-partner
treatment is significant (p =0.056, δ =0.28(95%CI[−0.02, 0.53]) same-
partner, p = 0.007, δ =0.40(95%CI[0.08, 0.65]) different-partners).
Interestingly, these differences in cooperation rates are already pre-
sent in the first round, and they are stable throughout the experiment
(Fig. 4b). Analysis of the first-round data shows that this difference is
significant only in the high game for the same-partner treatment
p =0.021, δ = 0.33(95%CI[0.02, 0.57]), and in the low game for the
different-partner treatment p = 0.024, δ = 0.29(95%CI[0.04, 0.51]).
These results suggest that the simultaneous presence of two games
has its own effect on cooperation independently of reciprocal
dynamics.

To further understand these results, we look at the underlying
conditional cooperation rates. Theoretical results suggested that
players use different underlying strategies depending on whether the
games areplayedwith the sameordifferent partners, and that they link
the twogames only in the samepartner treatment. To explore towhich
extent linkage is also present in the experimental data, we infer the
participants’ reactive strategies based on their actual decisions. For
any possible outcome of the previous round, we estimate how likely
participants are to cooperate in the next round, both for the high and
the low game. The results are summarized in Fig. 4c and Table 1. In line
with our earlier simulations, linkage is more pronounced in the same-
partner treatment. For example, in the high game, a linear regression
suggests that participants cooperate with a 90.5% probability if the co-
player previously cooperated in both games. If the co-player only
cooperated in the high game, this cooperation probability drops to
64.8%. In comparison, the linkage is much weaker in the different-
partners treatment. For example, people cooperate with an 85.8%
probability in the high game after receiving cooperation in both
games. This number drops only marginally, to 84.2% when a player
only received cooperation in the high game. More generally, Table 1
suggests that linkage only has a minor effect in the different-partners
treatment. Still, overall cooperation rates are below the control treat-
ment because players generally have lower cooperation probabilities
(see Table S1 for the regression results for the control treatment).

Overall, and in line with our theoretical results, we observe the
strongest linkage effects in the same-partner treatment. However, we
also find that participants do not benefit from this linkage. Instead of
using it to better enforce cooperation, participants end up cooperat-
ing less often than participants in the control treatment, leading to
similar cooperation rates to the different-partners treatment. As a
consequence, concurrent games result in reduced cooperation rates,
independent of whether people have their games with the same
partner or with different partners.

Discussion
People routinely engage in several social interactions at once45. They
cooperate with their friends, their colleagues, and their families, pos-
sibly all at the same time.Moreover,with any given interactionpartner,
people often have several independent interactions in parallel. Col-
leagues might work on several projects concurrently, and whole
nations routinely interact and negotiate over a wide array of different
policies46. Despite this prevalence of concurrent games, the main
paradigm for direct reciprocity is to study cooperation in (isolated)
repeated games. Such an approach is justified (and from a computa-
tional perspective even preferred) when people treat each game as

independent. However, hereinwe present a theoretical framework and
experimental data that cast serious doubt on that assumption of
independence.

For our theoretical analysis, we compare three idealized scenar-
ios. In one scenario—the control—individuals only engage in one
repeated game at a time, just as previously assumed by most of the
literature. In the other two scenarios, individuals engage in two repe-
ated games simultaneously, either with the same partner or with dif-
ferent partners. If individuals in these last two scenarios indeedwere to
treat each of their games as independent, all three scenarios yield
indistinguishable results (Fig. S1). Yet as individuals learn to adopt
more profitable strategies over time in an evolutionary process, we
often find that they learn to link their behavior across games. This
linkage is particularly pronouncedwhen thedifferent games take place
among the same partners (Fig. 2), in which linkage can come with
explicit strategic benefits25–28.

By shifting the perspective from individual to interconnected
games, our framework serves as a starting point to better describe the
effects of different cognitive constraints and biases (Fig. 3). The pre-
vious literature on direct reciprocity focuses on implementation errors,
or ‘trembling hands’35. Such errors occur when individuals intend to
cooperate but fail to do so, perhaps because of a lack of attention or of

Table 1 | A linear regression to estimate the magnitude of
linkage in human participants

Dependent variable

Cooperation

Same-partner Different-partners

High game Low game High game Low game

Partner’s pre-
vious decision in
the high game
(CH,t−1)

0.450 0.157 0.637 0.023

(0.103) (0.059) (0.050) (0.041)

p <0.001 p = 0.007 p < 0.001 p = 0.582

Partner’s pre-
vious decision in
the low game
(CL,t−1)

0.189 0.264 0.095 0.513

(0.055) (0.082) (0.042) (0.055)

p = 0.001 p = 0.002 p = 0.024 p <0.000

Interaction
(CH,t−1) × (CL,t−1)

0.068 0.275 −0.079 0.070

(0.105) (0.090) (0.050) (0.058)

p = 0.517 p = 0.003 p = 0.114 p = 0.226

Constant 0.198 0.181 0.205 0.210

(0.044) (0.033) (0.040) (0.040)

p <0.001 p < 0.001 p < 0.001 p <0.001

Observations 1368 1368 2432 2432

R2 0.401 0.395 0.375 0.327

Adjusted R2 0.400 0.394 0.374 0.326

Residual
std. error

0.379
(df = 1364)

0.388
(df = 1364)

0.384
(df = 2428)

0.410
(df = 2428)

Based on the data of our behavioral experiment, we estimate how likely participants are to
cooperate, depending on their partner’s previous behavior. In total, we have run six regressions
(three treatments, inwhich twogames are played each round). If participants treat eachgame as
independent,wewould expect that only the constant termand the partner’s previous decision in
the respective game affect a player’s cooperation probability. However, in the same-partners
treatment, we observe that also previous decisions in the other game have a significant impact
(in thehighgame:p <0.001, in the lowgame:p = 0.007). In addition, in the lowgameweobserve
a significant interaction of cooperation in the two games. In the different-partners treatment, we
only observe a weak impact of the low game on high-game decisions. All other indicators for
linkage are insignificant.
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resources. Previous empirical research, however, has documented a
plethora of other constraints that conceivably affect how humans
cooperate. For example, the work of Stevens and colleagues30,31 shows
how imperfect recall can undermine a person’s ability to give directed
responses. Our work suggests that the effects of imperfect recall
depend on the previous history of interactions. People are only sus-
ceptible to this kind of error when they have made conflicting experi-
ences, with cooperation in one game and defection in another.
Moreover, the precise effects of imperfect recall also depend on an
individual’s strategy. While some strategies are sensitive to false recol-
lections, others remain completely unaffected. In addition to imperfect
recall, our framework can also capture several other plausible con-
straints and heuristics, such as spillovers between games, preferential
strategy updating, and of narrow-bracketing. In this way, our framework
systematically increases the scope of models of direct reciprocity.

While these model extensions add further realism, they make
predictions more complex. For example, cooperation rates in con-
current games may be higher or lower than in classical repeated
games, depending on whether games take place among the same or
with different partners, and depending on the constraints that affect
individual play. To explore the impact of concurrent interactions on
human behavior we conducted a behavioral experiment. In line with
recent work by Laferrière and colleagues34, we find that overall coop-
eration rates in the same-partner and different-partners treatments are
surprisingly similar. However, both of these treatments result in less
cooperation than the single game control (a treatment that Laferrière
et al. do not consider). These empirical results do not fully match the
theoretical results when it comes to overall cooperation, but they do
support the underlying difference in strategies found between the two
treatments: while participants in the same-partner treatment routinely
learn to link their behavior across games, the linkage is comparably
weak if games take place amongdifferent partners (Fig. 4, Table 1). The
difference between theory and experiment may stem from human
participants treating playing two games simultaneously as intrinsically
different from playing only one game at a time, as this effect appears
already in the first round (Fig. 4b). To explore these results further, it
would be valuable to see how the effect scales when participants
interact in three or more games concurrently, or experience different
combinations of games. Similarly, exploring behavior when the pay-
offs in each round are allowed to fluctuate, using the framework of
stochastic games, would be equally intriguing47–49.

Importantly, our empirical results put some natural bounds on
previously suggestedmechanisms for cooperation. First, in contrast to
previous models of games among the same partners, concurrent
games do not seem to promote reciprocity25–28. They rather make
cooperation more fragile. Second, in contrast to previous work on
generalized reciprocity and community enforcement36,37, people in the
different-partners treatment do not seem to be prepared to exploit
their network structure to promote cooperation in the group. Here,
too, the effect of multi-game contact appears to be negative.

Overall, our results suggest that models of direct reciprocity
based on (single) repeated games only provide an incomplete picture
of the reciprocal interactions around us. In concurrent games, indivi-
dual experiences in one game can affect future behaviors in another.
Such linkage between games lead to a richer dynamics, but they also
make the emergence of reciprocal altruism more complex.

Methods
In the following, we briefly summarize our theoretical and experi-
mental methods. All details can be found in the Supporting
Information.

Calculation of payoffs
For each treatment, we compute the players’ payoffs by representing
the game as a Markov chain. The possible states of this Markov chain

are the possible outcomes of a given (repeated or concurrent) game.
For example, in the control treatment, consider players 1 and 2, who
interact in a repeated donation game with high benefits. The possible
outcomes of a given round are the four possible realizations
a = (a1, a2)∈ {C, D}2. Given the players’ strategies and given the action
profile a of the previous round, we can compute the probability ma, ~a

that players choose actions according to the profile ~a= ða1,a2Þ in the
next round for each ~a 2 fC,Dg2. By computing all the possible transi-
tion probabilities, we derive a 4 × 4 transition matrix M = ðma, ~aÞ that
captures the dynamics of the repeated game. The respective invariant
distribution v = (vCC, vCD, vDC, vDD) describes how often we are to
observe each possible outcome (a1, a2)∈ {C, D}2 on average. Given this
invariant distribution, payoffs are given by

π1 = ðvCC + vDCÞbH � ðvCC + vCDÞc:
π2 = ðvCC + vCDÞbH � ðvCC + vDCÞc:

ð4Þ

In the other treatments, payoffs can be calculated similarly, even
though they require more computation. In the same-partner treat-
ment, the possible outcomes of an interaction between players 1 and 2
are now given by a 4-tuple a= ða1H,a2H,a1L,a2LÞ. Here, an entry
aik∈ {C, D} represents player i’s action in game k. Because each entry
can take one of two values, there are now 16 possible outcomes. Hence
the corresponding transition matrix is of size 16 × 16.

In the different-partner treatment, all four players need to be
considered simultaneously. Therefore, the current state is now repre-
sented by an 8-tuple a= ða1H,a2H,a3H,a4H,a1L,a2L,a3L,a4LÞ 2 fC,Dg8. It
follows that the state space has 28 = 256 elements. Hence, calculating
the players’ payoffs requires the invariant distribution of a 256 × 256
transition matrix. While these particular computations are easily
manageable when individuals interact across two games, the compu-
tational complexity increases exponentially with the number of games
concurrently played.

Throughout the main text, our model is based on the assumption
that people use reactive strategies to make their decisions, and that
each game is infinitely repeated. Neither of these assumptions is
strictly required. In fact, the computational complexity of themodel is
unchanged if we assume players to use so-called memory-1 strategies
instead35. In that case, a player’s actiondoes not only dependon the co-
players’ actions in the previous round but also on their own previous
actions. Similarly, the computational complexity is unchanged if we
assumegames are repeatedwith a constant continuation probability δ.
Also, in that case, payoffs follow from computing the invariant dis-
tribution of a 4 × 4, 16 × 16, and 256× 256 matrix. The respective
algorithm for the case of the control treatment is described, for
example, in Ichinose and Masuda50. In Fig. S3, we show simulation
results for δ < 1.

Description of the learning process
For our theoretical analysis, we take an evolutionary approach. Players
adapt their strategies over time, depending on their payoffs (which in
turn depend on the strategies of the other players). To model this
adaptation process we use introspection dynamics. Compared to
other processes, such as pairwise imitation51, introspection dynamics
has computational advantages and it is easier to simulate38,39. More-
over, we consider it to be the more natural dynamic when one player’s
best strategy does not necessarily result in good payoffs for another
player. Such a case could occur, for example, when players interact
with a different set of co-players (as in our different-partners treat-
ment). In such cases, an evolutionary process based on pairwise imi-
tation appears to be less plausible.

In the following, we describe our learning dynamics in detail.
Learning happens in discrete time steps. For a given treatment, we
assume that at time t = 0, players defect unconditionally, pi = (0,…, 0)
for all players i. At each subsequent time point t, the following
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elementary updating procedure happens. First, one of the players, say
player j, is chosen at random. This player is then given an opportunity
to revise its current strategy pj in one of the two games. In the control
treatment, the revision occurs in the one game the player is involved
in. In the other two treatments, this is done by randomly choosing one
of the two games k∈ {H, L}. In each case, we replace player j’s strategy
for game k with a random strategy sampled from a uniform distribu-
tion (j’s strategy for the other repeated game is left unchanged). The
player then compares this alternative strategy ~pj to the current strat-
egy pj. To this end, let πj be the payoff the player obtained with the
current strategy. Similarly, let ~πj denote the payoff player jwould have
got in the previous interaction when adopting strategy ~pj instead
(keeping the strategies of the other players unchanged). Player j
switches to the new strategy with a probability given by the Fermi-
function52,53

ρ=
1

1 + exp �βð~π j � πjÞ
h i : ð5Þ

The parameter β ≥0 is the strength of selection. It measures to which
extent strategy updates depend on payoffs. For β→0, payoffs are
irrelevant and the updating probability approaches one half. In this
limit of ‘weak selection’, updating occurs at random. In the other limit
of ‘strong selection’, β→∞, only those alternative strategies are adop-
ted that yield at least the payoff of the original strategy. Note that
although this parameter β also appears in other evolutionary models
(e.g., in the birth–death processes or the pairwise comparison pro-
cess), typical numerical values cannot be compared directly. For
example, while several empirical studies estimate β to be belowone for
these classical evolutionary processes54–56, the same value of β would
induce a weak-selection regime for introspection dynamics (see
Fig. S3e, f). Thus, for the simulations shown herein, we use a value of
β = 200. However, the relative ranking of the different treatments is
robust with respect to different selection strength values (Fig. S3e, f).

We iterate this elementary updating procedure for many time
steps. For any finite selection strength β, this generates an ergodic
stochastic process. In particular, theplayers’ average cooperation rates
(over the course of the learningprocess) converge in time, and they are
independent of the players’ initial strategies. For our study, we use
simulations to numerically estimate these average rates for all three
treatments.

Wenote that according toour implementationof the evolutionary
process, individuals update their strategy either in the high-benefit or
in the low-benefit game (but not in both). This implies that once all
players adopt a mutually cooperative strategy, any mutant strategy
would only deviate in one of the two games. This observation might
explain why the strategies depicted in Fig. 2e are slightly more coop-
erative after a ‘DD’ outcome, compared to a ‘CD’ or ‘DC’ outcome.
Because ‘DD’ outcomes occur less often, they are under weaker
selection. However, we note that overall, our results are independent
of the exact evolutionary process we use. In particular, for the same-
partner treatment, similar results have been reported by Donahue
et al.25, based on a pairwise comparison process.

Computational methods used for the figures
For the simulations in the main text, we use the following default
parameters. The benefits in the two games are bH = 5 and bL =3,
respectively, and the cost is c = 1. In addition,we neglect any trembling-
hand (implementation) errors, εTH = 0.

In Fig. 2a–cwe show average trajectories. To this end, we have run
100 independent simulations for each treatment. To keep timescales
comparable, simulations are run for 20,000 elementary time steps in
the control treatment, and for 40,000 elementary time steps in the
other two treatments. This implies that there are 5000updating events
per player and game on average in each treatment. In Fig. 2d and e, we

display which strategies cooperative players tend to use. To this end,
we use the data of the simulations in Fig. 2a–c. We define a player’s
strategy tobecooperative if theplayer’s cooperation rate in eachgame
is at least 2/3 against the given co-player (other cut-offs give similar
results). The panel then shows the arithmetic mean of all strategies
classified as cooperative. Finally, Fig. 2g, h shows the impact of the
benefit of cooperation in the high game. Here, each point corresponds
to the time average of one long simulation (106 time steps).We explore
the impact of other model parameters in Fig. S3.

In Fig. 3, we explore four model extensions that describe the
impact of different cognitive constraints and heuristics. The top row in
Fig. 3 describes how the evolving cooperation rates are affected as we
change theprobability εIR of experiencing imperfect recall (Fig. 3a), the
probability εSP of experiencing a spillover (Fig. 3b), the weight κ that
measures the strength of preferential updating (Fig. 3c), and the like-
lihood λ that a player engages in narrow bracketing (Fig. 3d). Each data
point is the average of a simulation run for 106 updating steps. The
middle and the bottom row of the figure show the player’s average
strategies. This figure is based on all strategies used during the simu-
lation (not only the cooperative strategies). For a more detailed dis-
cussion of each model extension, see Supporting Information.

Experimental methods
For our experiment, we recruited 316 participants (161 females, mean
age: 21) from the University of Exeter student pool: Finance and Eco-
nomics Experimental Laboratory at Exeter (FEELE). All participants
gave their informed consent, and we complied with all relevant ethical
regulations. The experiment was approved by the Ethics Committee of
the Medical Faculty of Kiel University (D 571/20) and is covered under
the ethics approval number eUEBS001862 from the University of
Exeter. The experiment was implemented in oTree57. Participants were
matched in groups of four, all playing the same treatment. All parti-
cipants were anonymous and only referred to by numbers from 1 to 4.
Sessions were programmed for one of the three treatments and play-
ers only participated in one session. Each treatment lasted for a
minimum of 20 rounds of the repeated game(s). After the 20th round,
each subsequent round had a 50% chance of occurring, to avoid end-
game effects. Participants received £3 for participating and could earn
a bonus payment based on their decisions in the game. The points
earned during the game were converted at a rate of 20 points = £0.26.
The average bonus payment across all treatments was £1.39. In the
same-partner and different-partners treatment, participants make
their decision for both repeated games simultaneously, round by
round. In the baseline treatment, they only take part in one repeated
game. Payoffs in each repeated game are based on the payoffmatrix of
the donation game, with b = 4 points, c = 2 points in the high game,
b = 3points, and c = 2points in the lowgame. These valueswere chosen
basedonpreliminary simulations andpilots to avoidceiling effects and
to obtain the largest difference in cooperation rates between the two
games in the control treatment.

We analyzed thedata using two-tailednon-parametric tests aswell
as statistical regressions, using interacting pairs as statistical units,
with the exception of the different-partner treatment where groups of
four interacting participants are used (due to the nature of the design,
these groups cannot be separated into pairs). This gives us 36 groups
of 2 for the same-partner treatment, 32 groups of 4 for the different
partners treatment, and 29 groups of 4 for the baseline control. The
sample size was estimated from past research34. Four participants
dropped out during the repeated game, two in the same-partner
treatment and two in the control treatment. We calculated the average
value for each pair/grouping of players, and we then compared this
average value between treatments with a Mann–Whitney U-test, or
within each treatment with aWilcoxon signed-rank test. We report the
outcome uncorrected for multiple tests, as all our main conclusions
remain valid after correction. We only use the first 20 rounds of each
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game for our analysis and only take into account groups without a
drop-out. For more details on the experimental setup (see Supporting
Information).

As a final note, experimental data such as ours can sometimes be
used to estimate how people update their strategies54–56. In particular,
one may attempt to estimate relevant parameters, such as the selec-
tion strength β. Unfortunately, our experimental design does not allow
for this type of inference. According to our design, each participant
only interacts in a single concurrent game (with fixed opponents). As a
result, we cannot distinguish between individuals who use the same
conditional (but fixed) strategy throughout the experiment and indi-
viduals who update their strategy midway58. To estimate how players
update their strategies, we would need a different type of design. For
example, future work could look at a setup where individuals play
several consecutive concurrent games against changing opponents.
Using such a design, a player’s behavioral changes across games canbe
more readily interpreted as an instance of ‘learning’.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Both the simulation data and the experimental data (raw) are available
online under the https://doi.org/10.17605/OSF.IO/XQGHF.

Code availability
All numerical simulations were performedwithMatlab. The behavioral
experiment was implemented with oTree57, and the respective data
was analyzed with R. The respective code is available online under the
https://doi.org/10.17605/OSF.IO/XQGHF.
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