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When people collaborate in groups, they routinely face collective action problems:
for the group effort to succeed, individuals need to cooperate despite any incentives
to defect. These problems can be modeled with public goods games. To facilitate
such an analysis, many studies assume the game is symmetric. Group members have
the same means to cooperate (equal endowments), and contributions of different
group members are equally effective (equal productivities). Studies that allow for some
inequality tend to focus on one kind of inequality only. In practice, however, people
can be unequal in many ways. The effect of these inequalities may in turn depend
on the specific public goods game considered. To explore these issues, we combine
a large-sample experiment with extensive theoretical work. We systematically vary
four aspects: the group members’ endowments, their productivities, group size, and
whether the public goods game exhibits linear returns or returns given by a threshold
function. By exploring all four aspects, we obtain a unique dataset to explore the effect
of asymmetry on cooperation. Based on this dataset, we study whether there is an
advantage of “aligned inequality”: whether groups achieve a better surplus if more
productive individuals have a larger endowment. For public goods games with linear
returns, we find such an advantage, thereby corroborating previous research. If returns
follow a threshold function, however, aligned inequality results in inferior payoffs.
These results show that the effect of inequality on cooperation depends on the kind of
public goods game considered.

evolutionary game theory | cooperation | public goods game | inequality | social dilemma

Humans regularly need to solve collective action problems (1). These problems naturally
arise when people collaborate in teams, or when communities need to govern public
resources (2—6). In all these instances, individuals might be tempted to free ride on
others’ contributions. Such free riders or defectors threaten the very success of the group.
Not only do they fail to contribute themselves; they also serve as negative role models
that might induce others to defect, too. To analyze the resulting dynamics in a controlled
setting, researchers explore how people cooperate in stylized games, such as the repeated
public goods game (7-24).

While there are many variants of the public goods game, the general rules are as follows.
The game takes place among a group of individuals who interact for many rounds. Each
round, all group members receive some fixed endowment, which might be interpreted
as their recurring income. Then they decide individually how much of their endowment
to contribute to a public good, and how much to keep for themselves. As a result of this
interaction, they receive a payoff. Payoffs depend on the endowment the individuals keep
for themselves, and on the reward derived from the public good (which is a function
of the group members’ contributions). Usually, the public good’s reward function is
chosen such that the game is a social dilemma (25, 26). That is, each group member
prefers others to contribute more, while simultaneously being tempted to reduce their
own contributions. As a result, individuals who contribute more can be seen as being
more cooperative.

When exploring cooperation in public goods games, it is common to make some further
simplifying assumptions. For example, the game is often taken to be symmetric (7-24).
This means that group members are indistinguishable with respect to all their attributes.
They receive the same endowments, their contributions are equally productive, and they
obtain equal rewards from the public good. This symmetry assumption has important
implications for whether or not people cooperate. First, a certain degree of symmetry
is likely to favor the emergence of reciprocal cooperation. After all, previous work
suggests that successful strategies in repeated games often respond in-kind to their
coplayer’s previous behavior (27). In the case of the public goods game, this could
mean that individuals contribute their whole endowment if others do so too (16).
This kind of reciprocal cooperation, however, seems to require that individuals have
comparable endowments. More broadly, symmetry makes it easier for individuals to
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have a joint understanding of what a fair outcome might be. Once
individuals have different endowments or productivities, they
might not only differ in whether or not they wish to contribute
to the public good, but they mightalso hold different expectations
regarding how much each group member ought to contribute in
the given situation.

When theoretical (28-30) or experimental studies (31-40)
allow for asymmetry, they often consider individuals who differ
along a single dimension. These studies suggest, for example,
that asymmetric endowments tend to reduce cooperation (in the
following, we treat “asymmetric” and “unequal” as synonyms).
Asymmetric productivities, on the other hand, tend to have a
neutral or even positive effect. These previous studies provide
important insights, yet they do not take into account possible
interactions between different kinds of inequality. For a concrete
example, consider public goods games in which reward increases
proportionally with the total contributions of all individuals.
Here, two recent studies find an advantage of aligned inequal-
ity (41, 42). These two studies suggest that groups achieve the
highest surplus (the highest gain in group payoff, relative to the
group’s initial endowment) when more productive individuals
receive a larger endowment. However, they leave it open how
robust (and beneficial) this positive interaction effect is. For
example, once individuals are free to choose their interaction
partners, aligned inequality may beget further inequality; after
all, more productive individuals prefer interacting with each
other (43). Similarly, any positive effects of aligned inequality
might only apply to games with linear rewards. For other reward
functions (say, a threshold function), unequal endowments and
productivities might introduce additional cooperation patterns
in which individuals contribute different amounts. Once indi-
viduals fail to coordinate on a mutually preferred contribution
pattern, cooperation may break down.

To explore the possible dynamics in asymmetric games com-
prehensively, we consider a more general public good framework.
We systematically vary the group members’ endowments, their
productivities, the group’s size, and the public good’s reward
function. With respect to the reward function, we consider two
cases. On the one hand, we consider linear public goods games,
where the reward of the public good grows in proportion to
the group members’ contributions. This is the kind of reward
function used in earlier work to identify an advantage of aligned
inequality, refs. 41 and 42. On the other hand, as an example of
a nonlinear reward function, we consider threshold public goods
games. Here, collective contributions need to surpass a given
threshold for all group members to receive a fixed reward (13).
Such threshold games have become popular models for collective
action problems with a tipping point, such as climate mitigation,
where cooperative efforts must reach a minimum level to prevent
catastrophic outcomes (4).

To gain a first intuitive understanding of the individuals’
incentives in these different scenarios, we first compare the games’
Nash equilibria (44). That is, we ask which game outcomes
have the property that no single player would like to deviate
unilaterally. Then, we explore the impact of different asymmetries
with an experiment. For simplicity, we first consider minimal
groups of size two, as illustrated in Fig. 1. For those groups,
we complement our empirical work with simulations of a game
theoretical learning model. In a last step, we then explore public
good contributions in larger groups of size four.

Overall, our experimental setup comprises 16 treatments
with more than 1,600 (in-person) participants (Materials and
Methods). As a result, we have a unique dataset to explore
the joint impact of different dimensions of inequality, group
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size, and the public good’s reward function. Based on this
dataset, we first corroborate earlier results in the linear public
goods game (41). Here, we find that aligned inequality indeed
leads to the largest surplus, irrespective of the group’s size
(using a subject pool that is rather different from the one in
ref. 41). For the threshold public goods game, however, we
demonstrate the opposite. Here, unequal endowments diminish
total payoff, irrespective of whether endowments are aligned with
the participants’ productivities. These results illustrate that the
effect of inequality on cooperation depends on the type of the
public good’s reward function. While inequality can be beneficial
for one reward function, it discourages cooperation for another.

Results

Model. To allow for a simple experimental implementation
similar to Hauser et al. (41), we first consider games among
two individuals (players). These players interact for many
rounds. Every round, each player 7 € {1, 2} receives an integer-
valued endowment e;. Players then independently choose their
(absolute) contribution to the public good, ¢; € {0, 1, ..., &;}.
Contributions are multiplied by an individual productivity factor
pi- We refer to the product p; - ¢; as the player’s effective
contribution. The sum of these effective contributions is the
group’s collective contribution, C = pj 1 + p3 ¢z. After having
made their contributions, players receive a payoff z;. This payoff
consists of the share of the endowment that players kept for
themselves, and of the reward 7; derived from the public good,

71','(1‘1, fz) = (e‘l'—c‘,') + 7. [1]

The reward 7; depends on the public good’s reward function. This
function reflects how individual contributions generate public
value. In the so-called linear game, rewards are proportional to
collective contributions,

ri=C/2, (2]

which may be interpreted as the two players evenly sharing the
public good. In the threshold game, players receive some fixed
reward r, but only if collective contributions reach a predefined
threshold 6,
r ifC>0,
= { 0 otherwise. &l

This function represents a binary scenario in which the collective
effort can either succeed or fail.

In Fig. 1, we depict the two reward functions as insets. The
very same figure also illustrates the five scenarios with which
we systematically introduce different kinds of asymmetry. The
full equality scenario serves as a control. Here, players receive
the same endowment and they have the same productivity. In
the scenarios with endowment inequality and with productivity
inequality, respectively, players differ in one dimension but not
in the other. Finally, in the “aligned” (“misaligned”) inequality
treatments, players differ in both dimensions. Here, the more
productive player receives a larger (smaller) share of the initial
endowment. Overall, the two reward functions together with the
five scenarios give rise to 10 two-player treatments.

To facilitate comparisons across scenarios, endowments are
normalized such that ¢; + ¢, = 48 throughout. As a result,
when players get equal endowments, then ¢; = e = 24. When
they get unequal endowments, we assume the endowment of
the first player is three times the second’s, e; = 36, e = 12.
Moreover, all treatments in the linear game have the same average
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Fig. 1. Studying the effect of inequality in two-player public goods games. For our first 10 treatments, we consider public goods games in groups of size
two. Each individual receives a fixed endowment each round (indicated by yellow coins). Then they independently decide how much of their endowment to
contribute to the public good. An individual's effective contribution is their contribution multiplied by their individual productivity factor (indicated by arrows).
The sum of these effective contributions is the group’s collective contribution (represented by C). We systematically vary the individuals’ endowments and
their productivity factors. This gives rise to five scenarios. “Full equality” refers to the control scenario. Here, individuals are completely indistinguishable. In
“endowment inequality,” individuals only differ in their endowments, whereas in “productivity inequality” they only differ in their productivity. In “aligned”
and “misaligned inequality,” individuals differ in both dimensions, with the more productive individual receiving the larger (smaller) endowment, respectively.
Moreover, we consider games with two different reward functions. (4) In the linear game, the reward increases in proportion to the collective contributions. (B)
In the threshold game, there is a discontinuous jump in rewards once collective contributions surpass a certain threshold. Note that in each row, the shape of
the reward function in the Inset remains the same. However, the scaling of the x-axis and the y-axis may change from one column to the next.

productivity factor, (p1+p2)/2=1.6. Similarly, in all treatments
of the threshold game, we choose a uniform threshold defined
by 6 = (p1e1 + p2e2)/2. That is, the group is guaranteed to
reach the threshold if both players contribute at least half of their
endowment. In that case, we assume they receive the same reward,
r=20. These parameters are chosen such that in all treatments
there is a tension between collective and individual interests.
Collectively, the group achieves the highest total payoff when
players make strictly positive contributions. Yet individually, each
player prefers to minimize their own contribution while hoping
the coplayer contributes more.

Equilibrium Analysis. Even though both the linear and the
threshold game follow a similar premise, they differ in their strate-
gic nature. In any single round of the linear game, both players
have an incentive to reduce their own contributions. Yet by jointly
increasing their contributions, they get a higher collective payoff.
This setup is similar to the prisoner’s dilemma (27), with the main
difference being that we allow for more gradual forms of coopera-
tion. In particular, the linear game is amenable to reciprocity. For
example, players may adopt perfectly reciprocal strategies similar
to the Tit-for-Tat strategy that won Axelrod’s tournament (27).
That is, players could contribute the same fraction of their
endowment as their coplayer contributed in the previous round.
In this way, the two players would jointly incentivize each other
to reach the social optimum, in which both players contribute
their full endowment. In this optimum, the resulting payoffs
according to Eqs. 1 and 2 are 71 = 72 = (p1e1 +pa2e2)/2. In
particular, both players receive the same payoff, irrespective of
any prior inequality in their endowments or productivities. These
properties make full cooperation (both players contributing their
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full endowment) a natural focal point (45) (That is, among
all possible outcomes, players may consider the full-cooperation
outcome to be particularly salient or prominent).

In contrast, in the threshold public goods game, socially
optimal outcomes are already feasible in the one-shot (non-
repeated) game. However, this optimum no longer requires
players to contribute their full endowment. Instead, collective
contributions merely need to meet the threshold 6. This can
be achieved in many ways, differing in how much each player
contributes toward the threshold. The resulting game is a
coordination game with many equilibria, and the two players
may hold different views on which equilibrium is most fair. For
such coordination games, the mechanism of reciprocity is less
relevant. In fact, by increasing their own contributions, players
may motivate their coplayer to reduce theirs.

In Fig. 2, we illustrate these considerations by representing the
possible equilibrium payoffs across the 10 treatments. To this
end, we consider all subgame perfect equilibria. These are all Nash
equilibria of the (infinitely) repeated game with the additional
property that deviations are never profitable, even if other players
have already deviated before (47). In the figure, colored areas
depict all payoffs that can possibly arise in such an equilibrium.
Colored dots depict the (pure) equilibria of the one-shot game.
The figure allows us to make three observations. First, in all
treatments, there are infinitely many subgame perfect equilibria
(every point within a colored area corresponds to an equilibrium).
In particular, the repeated game allows for outcomes in which
players make strictly positive contributions. However, in most
cases it also allows for full defection, such that no one contributes
anything. Second, in the linear game, repeated interactions are
crucial for cooperation. Here, the one-shot game only has a single
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Fig. 2. A depiction of the games’ equilibrium payoffs. We use the so-called Folk theorem to characterize the payoffs players may get in a subgame perfect
equilibrium (46) of the (infinitely) repeated game. For all of 10 treatments, the respective set of equilibrium payoffs is depicted as a colored area. The gray
area indicates which payoffs are feasible in principle, independent of whether or not they can be realized in an equilibrium. For comparison, we also illustrate
the payoffs of the pure Nash equilibria of the one-shot game, depicted by colored dots. (A) In the linear game, “full cooperation” refers to the outcome where
all players contribute their entire endowment in every round (indicated by a circle). This outcome can be realized as a subgame perfect equilibrium in all
treatments except misaligned inequality. However, “full defection” (all players contributing nothing, indicated by a plus symbol) is also an equilibrium. (B) In the
threshold game, socially optimal payoffs can already be achieved in the one-shot (nonrepeated) game. However, players might find it difficult to coordinate on
any particular equilibrium, because there are many different ones that are all similarly plausible from the outset. Unequal endowments or productivities may
further aggravate these difficulties. For better visibility, we use different x and y scales for the different panels.

equilibrium in which no one contributes. In contrast, in the
threshold game, positive contributions are already feasible if the
game is played once. This observation suggests a more prominent
role of reciprocal strategies in linear games.

Third, the two game types differ in their focal points. In the
linear game, players may naturally attempt to jointly contribute
their full endowment (indicated by black circles in Fig. 24). This
outcome can be realized as an equilibrium in all but one treatment
(only under misaligned inequality, the high-endowment but
low-productivity player 1 cannot be incentivized to contribute
their entire endowment). Among the four remaining treatments,
the one with aligned inequality generates the largest surplus
when people fully cooperate (41). In the threshold game, there
is a whole line of Pareto-efficient equilibria where collective
contributions exactly match the threshold (Fig. 2B). Here,
asymmetry can make players differ in which equilibrium they
prefer. For example, under endowment inequality, players with
a high endowment may prefer an equilibrium in which everyone
makes the same absolute contribution. Low-endowment players,
however, may rather prefer an equilibrium in which everyone
gives the same proportion of their endowment. In this way,
inequality might make it more difficult to coordinate on any
one equilibrium.

To sum up, all treatments allow for many (subgame perfect)
equilibria. By introducing inequality in endowments or pro-
ductivities, we may not only change whether or not a given
outcome can be sustained as an equilibrium; we may also affect
which equilibrium appears most salient. To explore how humans
choose among these equilibria (if at all) in practice, we conduct
an economic experiment.

Analysis of a Behavioral Experiment. We have recruited 550
subjects to interact in one of the five treatments with a linear
reward function (illustrated in Fig. 1A4). In addition, we have
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recruited 554 subjects for the five treatments based on the
threshold game (as in Fig. 1B). In each case, participants play
the repeated game twice, in two different sessions. In one session
they act as player 1, in the other as player 2 (with a new interaction
partner). For the linear game, we follow the protocol of Hauser et
al. (41): each session, participants randomly play 20 to 25 rounds
to avoid end-game effects. However, only the first 20 rounds are
included in the statistical analysis. For the threshold game, we
use the protocol of Wang et al. (40): Since end-game effects are
less relevant, each game lasts for a fixed length of 20 rounds.
Participants were volunteers who were paid in proportion to
their earned payoff in the game. All participants were informed
beforehand about all relevant aspects of the game (including
all players’ endowments and productivities, and the expected
duration of the experiment), see Materials and Methods.

For our statistical analysis we consider each player pair in
each session as an independent observation. Because the two
game types have slightly different experimental procedures and
key variables, we analyze them separately. In the following, we
provide a qualitative summary of our results; for all statistical
tests and further quantitative analyses, we refer the reader to
SI Appendix.

Linear public goods game. We begin with the five treatments with
a linear reward function. As a first key variable, we compare the
group relative contributions (¢;4¢2)/(e1+e2) across treatments,
see Fig. 34. We find that three treatments yield the highest
contribution levels: full equality, productivity inequality, and
aligned inequality. Here, subjects contribute approximately 70%
of their endowment. By contrast, contributions in the other
two treatments are significantly lower, reaching a minimum
of ~55% for misaligned inequality. To further explore these
differences, in Fig. 3B, we illustrate players’ contributions over
time. Contributions are relatively stable in all treatments, except
for a positive trend for productivity inequality and aligned
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Fig. 3. Experimental results for pairwise public goods games. We show results for linear games (Left) and threshold games (Right). (A) In the linear game,
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are relatively stable over time, except for a positive trend under productivity inequality and aligned inequality. (C) Aligned inequality generates the largest
surplus. (D) In all treatments with unequal endowments, inequality after the game (colored bar) is smaller than the initial inequality (black line). (€ and F) In
treatments with unequal endowments, high-endowment players tend to make larger absolute contributions, but smaller relative contributions (relative to their
endowment). (G) In the threshold games, a key quantity is the proportion of rounds in which the group reaches the threshold. This success rate is largest
under full equality and productivity inequality. (H) The other three treatments show a particularly poor success rate in the early rounds. (/ and /) As a result,
these treatments generate the lowest surplus, and eventual payoffs are most unequal. (K and L) Contribution patterns are similar to the linear case. However,
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simulations is explained further below. Simulation parameters are s=1, and (8, y) = (0, 14) for the linear game and (4, y) = (18,94) for the threshold game.

inequality (we establish this positive trend by comparing the
players’ contributions during the first five rounds with their
contributions during the last five rounds, see ST Appendix).

As a next key variable, we consider the group’s overall surplus
relative to the total endowments, (714+m,—e;—e2)/(e1+e€2). The
higher this variable, the higher are the players’ overall payoffs
compared to their initial endowments. Since total endowments
are identical across treatments, we henceforth refer to this variable
as the group overall surplus. As shown in Fig. 3C, aligned
inequality generates the largest surplus and misaligned inequality
generates the lowest. These results confirm our theoretical
prediction, and they reproduce the findings of Hauser et al. (41):
If individuals differ in their productivities, they achieve the
largest overall payoff if they also have different (but aligned)
endowments. Intuitively, aligned inequality is advantageous for
two reasons. First, it leads to substantial contributions (Fig. 34);
and second, these contributions are more effective (because more
of the endowment is allocated to the more productive player).

In addition to the above results, we are also interested
in the final inequality among group members. To this end,
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we compare the Gini coefficient before the game (in the
players’ endowments) and after the game (in their payoffs),
Fig. 3D. In all three treatments in which players have un-
equal endowments, the coefficient decreases. This reduction
is most pronounced in the aligned treatment. To explore
these results in more detail, we compare the players’ absolute
(Fig. 3E) and relative contributions (relative to their endow-
ment, Fig. 3F). In all treatments with unequal endowments,
we observe the same pattern: players with larger endowment
give more in absolute but less in relative terms, compared
to their coplayer. The difference in relative contributions is
least pronounced under aligned inequality. In this treatment,
although the high-endowment players are in a stronger position,
they often give their entire endowment. This observation is
also reflected in the players’ contributions (cj, ¢2) each round
(SI Appendix, Fig. S2). In the aligned treatment, 43.5% of
all rounds end with both players giving their full endow-
ment (e1, e2). This proportion is much smaller for endowment
inequality and misaligned inequality, at 26.1% and 18.3%,
respectively.

https://doi.org/10.1073/pnas.2525760123
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The cooperation patterns in the linear treatments are in line

with what we would expect from reciprocity considerations. In
SI Appendix, Fig. S4, we relate a player’s contribution in a given
round to the coplayer’s contribution in the previous round. We
observe a strongly positive correlation in all treatments, for both
player 1 and player 2. In addition, in ST Appendix, we show that
a model with fairness preferences (but without reciprocity) is
unable to account for the players’ substantial contributions, see
SI Appendix, Fig. S19B. These observations support the theoret-
ical prediction that reciprocity is important for cooperation in
linear public goods games.
Threshold public goods game. In threshold games, perhaps the
most important variable is the group success rate—the proportion
of rounds in which the group reaches the threshold. According
to Fig. 3G, there are significantly lower success rates in three
treatments, for endowment inequality, aligned and misaligned
inequality (i.e., in all three treatments in which participants
have different endowments). Again, it is instructive to consider
the dynamics over time, see Fig. 3H. We find that success
rates in these three treatments are particularly low in the first
few rounds of the game: here, many groups miscoordinate,
by either collectively contributing too much or too little to
reach the threshold (S7 Appendix, Fig. S8). As a result, the
three treatments also generate the lowest surplus (Fig. 37).
Moreover, almost by design these treatments result in more
unequal payoffs (Fig. 3/). Overall, these results suggest a negative
effect of unequal endowments, independent of whether they are
aligned with the participants’ productivities.

With respect to the contributions of each player type, we
observe a similar pattern as in the linear treatments. When
endowments are unequal, high-endowment players tend to give
more in absolute terms but less in relative terms (Fig. 3 K and ).
Interestingly, the only exception (unpredicted by our theory)
occurs under aligned inequality. Here the more productive and
better-endowed player 1 gives more both in absolute and in
relative terms. This explains the greater reduction in the Gini
coefficient, compared to misaligned inequality (Fig. 3/), despite
a comparable success rate in both cases. With respect to the
players’ pairwise contributions, the most abundant contribution
pair is (e1/2,e2/2) in all treatments (S/ Appendix, Fig. S8).
That is, participants typically contribute half their endowment,
which is sufficient to match the threshold. Interestingly, this
contribution pattern is somewhat inefficient when there is
aligned inequality; here the contributions of the high-endowment
player 1 would be much more effective (Fig. 1). As a result,
in this treatment, we also find a substantial proportion of
groups in which only player 1 contributes toward the threshold
(which explains why this player also gives more in relative
terms).

As expected, reciprocity is less relevant to explain participant

behavior in threshold games. If we relate a player’s contribution
to the coplayer’s previous contribution, we either find a weak or
a negative relationship, see SI Appendix, Fig. S10.
Summary. For the 10 two-player treatments, we find that groups
with unequal endowments tend to achieve less cooperation.
The only exception occurs when two conditions are met
simultaneously: i) unequal endowments are aligned with the
participants’ productivities, and ii) the public good’s reward
function is (approximately) linear. Previous work that reported
positive effects of inequality met both of these criteria (41, 42).
Our work corroborates that aligned inequality is advantageous in
linear games. However, it also suggests that these positive effects
of aligned inequality do not necessarily carry over to other public
goods games with different reward functions.
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Individual-Based Simulations of a Learning Model. According
to the above empirical analysis, human behavior in repeated
public goods games is driven by at least two mechanisms. First,
especially in linear games, a substantial proportion of decisions is
explained by reciprocity (8] Appendix, Fig. S4). Participants take
into account their coplayer’s previous behavior, and they react
accordingly. Second, among many equally plausible equilibria,
participants seem to prefer outcomes in which players contribute
equally (in absolute or relative terms, see S/ Appendix, Figs. S2 and
S8). In the following, we propose an individual-based learning
model that incorporates both aspects.

To take into account reciprocity, we let players adopt reactive
strategies (48—52). That is, when deciding what to contribute
next, players respond to their coplayer’s previous contribution.
As in the experiment, players can make any integer contribution
¢ €{0,1,...,¢}. Therefore, we generalize the learning model
by Hauser et al. (41), which only allowed players to either
give their full endowment or nothing at all. Allowing for all
possible contributions is particularly important for threshold
games. There, many of the interesting equilibria are only feasible
ifindividuals may contribute arbitrary amounts between 0 and e;.

To take into account the empirical observation that partic-
ipants value equal contributions, we consider an appropriate
utility function. We assume the utility of player 7 in a round
with contributions (¢1, ¢2) is given by

let —eaf

max{e;}

1 2

e1 2]

ui(c1, 02) = mi(e, 2) — P . 4]

The first term on the right hand side represents 7’s payoff,
as described by Eq. 1. The second term represents the player’s
aversion against unequal absolute contributions. The larger the
parameter f# > 0, the more players aim to choose contributions
such that ¢; & ¢;. Similarly, the third term represents aversion
against unequal relative contributions. The parameter y > 0
controls to which extent players prefer contributions with ¢1 /e; ~
c2/ex. For p=y =0, we recover the standard case without any
preferences for equal contributions of any kind. Here, players
only maximize their payoffs.

To model how individuals update their strategies over time,
we follow earlier work on linear public goods games (41, 42). We
assume individuals learn new strategies based on introspection
dynamics (53, 54). Compared to the classical pairwise compar-
ison process (55), introspection dynamics has the advantage of
being applicable to arbitrary (asymmetric) games (56, 57). It
assumes that at regular time intervals, players compare their
current utility to the utility they could have obtained with a
randomly chosen alternative strategy. The larger the utility of
the alternative, the more likely it is adopted. This leads to a
time series where the two players regularly adapt their strategies
to improve their respective utilities. We explore this dynamics
with simulations, run for all treatments, and for many different
parameter values, f€{0,1,...,30} and y€{0, 1, ..., 100}.

We ask for which parameter combination we get the best
fit to the empirical data. We use two approaches. First, we
seck for optimal parameters (f, y) for each of the two reward
functions separately (for the linear game, and for the threshold
game). In each case, we look for the parameter combination
with the least squared error between the empirical surplus (Fig. 3
C and /) and the surplus estimated from simulations, across
all five treatments. By allowing the optimal parameters (8, ¥)
to differ between the two reward functions, we account for the
possibility that the different objectives (of equal absolute or equal
relative contributions) may differ in how salient they are. For
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Fig. 4. The effect of inequality in groups of size four. Same as Fig. 3 but for full equality, aligned inequality, and misaligned inequality treatments in the
4-player setting. (A) In the linear game, average contributions are similar across the three treatments. (B) Contributions remain stable over time, except for a
decreasing trend under full equality. (C) Aligned inequality generates the highest surplus. (D) Both asymmetric treatments lead to a comparable reduction in
inequality. (E) In the threshold games, the success rate is highest under full equality, and notably lower under aligned inequality and misaligned inequality. (F)
Both asymmetric treatments show low success rates across all rounds. (G and H) Consequently, the two asymmetric treatments yield a similarly low surplus,

and payoff inequality remains.

the linear game, we obtain the best fit for f = 0, y = 14.
These numbers suggest that we can already explain much of
the empirical regularities by assuming that individuals care about
relative contributions. In contrast, in the threshold game we
observe that many (f, y) pairs provide a similarly good fit between
simulations and data. For all of them, both > 0 and y > 0, see
also SI Appendix, Fig. S14. In Fig. 3, we show the respective
simulation results with gray bars (based on the estimated optimal
p and y values for each reward function). In most cases, there is
a surprisingly good visual agreement between these simulations
and the experimental data (colored bars).

As our second approach, we also look for one pair (f,y)
that provides the best fit across all 10 treatments. Here, we
obtain the best fit for f = 4 and y = 20 (S Appendix, Fig.
S14C). However, the respective overall fit with the data is less
convincing. For example, the respective simulations tend to
overestimate the groups’ success rates in threshold games with
unequal endowments (S Appendix, Fig. S18G).

In sum, the individual-based simulations are able to recover
many of the empirical patterns (as suggested by the fit between
gray and colored bars in Fig. 3). They suggest a substantial role
for reciprocity, and a preference for equal (relative) contributions.
(For analogous simulations that ignore the role of reciprocity, see
SI Appendix, Fig. S19B for the linear game and SI Appendix,
Fig. S20B for the threshold game).

Beyond Pairwise Games. So far we considered games in minimal
groups of size two. This reduced setup allowed for an intuitive
analysis, and it made it straightforward to compare our results to
the pairwise linear games studied by Hauser et al. (41). However,
to get a broader perspective on cooperation in public goods
games, it is important to also explore behavior in larger groups.
After all, certain effects may only become apparent in groups
of nontrivial size (e.g., one person completely free riding while
others aim to maintain cooperation among each other).

To explore the effect of group size, we ran additional experi-
ments for games among four players. To this end, we recruited

PNAS 2026 Vol. 123 No.5 2525760123

another 312 participants to interact in a linear game, and 276
participants for the threshold game. To have sufficient coverage,
we only considered three treatments for each reward function:
full equality, aligned inequality, and misaligned inequality.
Moreover, to be comparable to the two-player setup, we opted
for a design in which the player types of the pairwise games
are duplicated. For example in the two-player setup, aligned
inequality meant that one player had a large endowment and high
productivity, whereas the other player had a small endowment
and low productivity. Now in the 4-player treatments, there are
two players with an equally large endowment and equally high
productivity, and two other players who both have the same small
endowment and low productivity (Materials and Methods).
Experimental results are shown in Fig. 4. We observe interest-
ing qualitative differences to the earlier two-player experiments
(discussed in more detail in S/ Appendix). For example, in the
linear game, aligned and misaligned inequality now yield similar
contributions (Fig. 44). Moreover, in the threshold game, aligned
and misaligned inequality have a more persistently negative effect
on coordination (Fig. 4F). However, with respect to the overall
surplus, we recover our previous results. In the linear game,
aligned inequality again generates the largest surplus among
all treatments (Fig. 4C). In contrast, in the threshold game,
both aligned and misaligned inequality lead to a reduced surplus,
compared to the control without any inequality (Fig. 4G). For
linear games, these findings generalize previous results on the
positive effects of aligned inequality (41) to games in larger
groups. At the same time, they again demonstrate that the same
kind of inequality yields inferior results in threshold games.

Discussion

Most important collective action problems today involve some
form of asymmetry. In many examples, such as teamwork
in companies (58) or international efforts to mitigate climate
change (59), actors differ in their ability or their incentives to
contribute to a group effort. Such asymmetries can affect whether
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groups succeed or fail. To explore these issues, there is a growing
literature on the effect of asymmetry on cooperation (28-42).
Most studies, however, are ecither based on a single public
good paradigm, or they assume there is only asymmetry in one
dimension. Here, we provide a more comprehensive analysis
of asymmetric public goods games. To this end, we compile
and analyze a unique dataset, based on experiments that vary
the participants’ endowments, their productivities, group size,
and the public good’s reward function. These distinctions
give rise to sixteen treatments. We analyze these treatments
empirically, as well as with equilibrium methods and individual-
based simulations.

We consider two types of reward functions. In the linear
game, the rewards of collective action are proportional to the
individuals’ contributions (as in refs. 41 and 42). In particular,
the effect of one individual’s contribution is independent of the
contributions of others. In the threshold game, on the other hand,
there is only a substantial reward when contributions surpass a
certain level (13). This game can describe scenarios with a tipping
point (4). Here, the effect of one individual’s contributions
critically depends on how much others contribute. We find that
the effect of inequality differs substantially between the two game
types. For the linear game we corroborate previous results (41, 42)
that unequal endowments can be beneficial (Fig. 3C). Such a
case can arise when individuals differ in how productive their
contributions are, and when endowments and productivities
are aligned (more productive individuals receive the larger
endowment). In contrast, in threshold games, treatments with
unequal endowments always result in a lower surplus (Fig. 37).

These differences can be related to the players’ contribution
motives. In the linear game, cooperation is driven by reci-
procity (SI Appendix, Fig. S4) and by a preference for equal
relative contributions. Both aspects help to support cooperation
under aligned inequality. Here, even large-endowment players
may find it worthwhile to contribute their entire endowment—
provided the low-endowment player does the same. In contrast,
in threshold games, reciprocity considerations are largely irrele-
vant (81 Appendix, Fig. S10). Instead, players coordinate on an
equilibrium of the nonrepeated game. Endowment inequality
can render this coordination process more difficult. For example,
some participants might prefer all group members make the same
absolute contribution. Others may find it more appropriate if
contributions are proportional to endowments. These different
views impede coordination, especially in the early phase of the
game when participants have no prior experience yet about the
behavior of their coplayer (Fig. 3H).

Importantly, we consider a type of threshold game where the
participants’ collective contributions need to surpass a certain
threshold. Alternatively, models of evolutionary game theory
often consider alternative forms of threshold games. There,
individuals can only decide whether to cooperate or defect, and
it takes a sufficient number of cooperators for the group to reach
the threshold (60-62). While we do not explore such games with
binary action spaces, we believe they too can serve as valuable
models to explore the effect of inequality (e.g., via asymmetric
cooperation costs).

To explore how various sources of inequality shape cooperation
in public goods games, we have neglected many additional
complexities that are relevant in applications. For example,
we have neglected uncertainty, assuming that the shape of the
public good’s reward function is common knowledge. Similarly,
we have also neglected possible asymmetries in how rewards
are distributed among group members (63), or environmental

stochasticity, kinship, and social bonds (64-66), which all can

https://doi.org/10.1073/pnas.2525760123

affect cooperative behavior. Nevertheless, by simultaneously
varying multiple sources of inequality, group size, and the public
good’s reward function, we provide valuable insights into the
determinants of human behavior in public good experiments.

Materials and Methods

Model. In the most general case, we consider repeated public goods games
among n players with varying endowments or productivities. In each round,
player i receives an endowment e; and decides which contribution ¢; to
make toward the public good. Contributions are multiplied by an individual
productivity factor p; > 0. The group's collective contribution is C = >_ p; ¢;.
This collective contribution determines the players' reward r; from the public
good, and hence their payoffs z; = e;—c;+r;. The exact value of r; depends on
the public good's reward function. In the linear game, players equally share the
group’s collective contribution, such that r; = C/n. This setup leads to a social
dilemma when 1 < p; < n. In the threshold game, each player receives a fixed
positive reward r; = r if the group’s collective contribution meets or exceeds a
predefined threshold 6. If the reward ris sufficiently large, positive contributions
can already be sustained in the one-shot (nonrepeated) game. However, players
may differ in their views on how much each should contribute.

We define payoffs of the repeated game as the player's average payoff per
round. For much of this paper we focus on two-player games with integer
contributions. To explore how group size affects our results, however, we also
consider groups of four players.

Equilibrium Analysis. In Fig. 2, we illustrate the sets of equilibrium payoffs in
two-player games, both for the one-shot and the infinitely repeated setting. In
the one-shot game, a payoff vector (z1, 7y corresponds to a Nash equilibrium
if neither player can unilaterally enforce a higher payoff. For the repeated
game, we apply the Folk theorem (46). This theorem characterizes the set
of subgame perfect equilibrium payoffs when players are sufficiently patient.
According to the Folk theorem, any payoff vector that is feasible and individually
rational can be sustained in a subgame perfect equilibrium. A payoff vector
(71, ..., mp)isfeasible if there exists a sequence of contributions such that the
respective average payoffs converge to that payoff vector. The payoff vector is
individuallyrational if each playerreceives atleastas much as they can guarantee
themselves, regardless of the other players' contributions. Hence, many payoff
vectors that are not Nash equilibria of the one-shot game can still be sustained
by a subgame perfect equilibrium in the repeated setting. For instance, the
payoff corresponding to full cooperation (all players contributing their entire
endowment each round) may be sustained as an equilibrium outcome in the
repeated linear game. We use the same approach to characterize equilibrium
payoffs in the four-player game. The corresponding analysis is provided in
Sl Appendix.

Behavioral Experiment. For the games among two players, we conducted
experiments for both the linear and the threshold game for five treatments:
full equality, endowment inequality, productivity inequality, aligned inequality,
and misaligned inequality (Fig. 1). Participants were students from Beijing
Normal University who attended in person in the university's computer lab. The
experiment complied with all relevant ethical regulations and was approved
by the Ethics Committee of the Medical Faculty of Kiel University (D 613/21).
All participants gave their informed consent before participation. They were
randomly assigned to one of the game types (linear game or threshold game),
and subsequently to a treatment. Throughout the experiment, participants made
their decisions independently and were not permitted to communicate. For the
linear game, the number of participants in the five treatments were 114, 110,
110,106, and 110, respectively. Forthe threshold game, the numbers were 110,
118,112,104,and 110.The dataforthe lineargame and fortwo treatments of the
threshold game (aligned inequality and misaligned inequality) were specifically
collected for this study. For the other three treatments of the threshold game,
we reanalyze behavioral data from Wang et al. (40).
Ineachtreatment, all experimental parameters are common knowledge. Each
treatment consists of two sessions. At the beginning of session 1, participants are
randomly paired and assigned the roles of player 1 and player 2. Pairs remain

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2525760123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2525760123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2525760123#supplementary-materials

Downloaded from https://www.pnas.org by 90.146.187.50 on January 29, 2026 from | P address 90.146.187.50.

fixed throughout the session. Each session lasts for multiple rounds. After
each round, participants learn their coplayer's contributions and the resulting
payoffs. After session 1, participants are informed that they would take part
in session 2 with a new coplayer, and that they will be assigned the opposite
role from what they had in session 1. Apart from switching roles, the rules of
session 2 are the same as in session 1. In the linear game, participants play
20 to 25 rounds per session to avoid end-game effects, but only the first 20
rounds are analyzed. In the threshold game, participants play 20 rounds per
session. After the game, participants fill out a survey. The survey for the linear
game focuses on preferred contribution patterns and conditional contributions,
using the strategy method. The survey for the threshold game focuses on fairness
perceptions and on expectations for the coplayer's minimum contribution based
on successful coordination. To encourage participants to take the experiment
seriously, participants receive a fixed show-up fee plus a bonus proportional
to their total payoffs. On average, they eamed 64.07 Yuan (~8.94 EUR) in the
linear game, and 61.01 Yuan (~8.52 EUR) in the threshold game.

To explore group size effects, we also conducted four-player versions of both
games, using three treatments for each reward function: full equality, aligned
inequality, and misaligned inequality. The four-player games mirror the two-
player design, with each possible role being duplicated (i.e., there are two players
of each original type). The overall structure matches the two-player setting. Atotal
of 588 students participated in the four-player experiment. Average earnings
were 53.24 Yuan (~6.52 EUR) for the linear game and 56.96 Yuan (~6.97 EUR)
for the threshold game.

We analyze the data using two-tailed nonparametric tests, treating groups
of interacting players as statistical units. For each outcome variable (such as
the group overall surplus), we calculate the 20-round average value for each
group of players. Then we make comparisons either across treatments or within
the same treatment. For comparisons across treatments, we use the Mann-
Whitney-Wilcoxon test. For within-treatment comparisons, we use the Wilcoxon
signed-rank test. For further details on our procedures and statistical results, see
Sl Appendix.

Individual-Based Simulations. We analyze the repeated two-player game
using a game theoretical learning model. We assume players adopt reactive
strategies (48-52). They determine their contribution based on their coplayer's
previous contribution. A reactive strategy of player 1 is represented by
a vector B! = (c1;c(1), c},..., ci1,..., cgz). Here, ¢! indicates the player's
initial contribution in the first round. The other entries cl.1 denote player
1's contribution in response to the coplayer's contribution i in the previous
round. Each component is an integer from player 1's action set {0, 1, ..., e1}.
Analogously, player 2's strategy is represented by a vector RZ. Because strategies
are deterministic, the vectors R! and R? uniquely determine the players’
contributions for an arbitrarily long sequence of rounds.

To allow for fairness preferences, we assume player i evaluates round-wise
outcomesbased onthe utilityfunctionu;(cy, ¢p ) definedin Eq.4.When choosing
their strategy, players aim to maximize their utility.

To model how asymmetric players update their strategies over time, we use
introspection dynamics (53, 54). The specific update steps are as follows. In
each time step, pairs of players engage in twenty rounds of the game (as in the
experiment). Then, one of the two players is randomly chosen to reconsider their
strategy. The selected player irandomly draws an alternative reactive strategy R'.
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This player compares their realized 20-round utility u; with the 20-round utility
Uj the player could have obtained by playing the alternative strategy instead
(keeping the coplayer's strategy unchanged). The player then switches to the
alternative strategy R’ with probability ¢ (&1, u;) := (1+exp(—s(17,-—u,')))_1.
Here, the parameter s > 0 reflects the strength of selection. The larger s, the
more players are biased to adopt alternative strategies with a large utility.

Introspection dynamics gives rise to a Markov process on the space of all
strategy profiles (R', R2). For any finite selection strength s, this process has
a unique invariant distribution, which is independent of the players initial
strategies. However, the large size of our strategy space renders an exact
calculation of this distribution infeasible. Instead, we run individual-based
simulations for 107 time steps, recording the players’ contribution profiles.
This allows us to compute all further quantities of interest.

To quantify the agreement between simulation results and experimental
data, we define an objective function. We focus on the group overall surplus
(GOS), a metric that is well defined for both game types (linear and threshold
public goods games, as illustrated in Fig. 3 C and /). For each game type, we
optimize a separate objective function Agqg, given by

2
Agos = | (60kyp - Gosk;, ).
kek

Here, GOS’QXP denotes the average surplus observed in treatment k in the

experiment, K = {FE, El, PI, Al, MI} denoting the five treatments, while GOSfjm
is the corresponding average surplus from the simulations, computed across all
rounds.

We varied the parameters and ran separate simulations for each game.
Specifically, we tested values of selection strength s € {1, 10, 100}, preference
weights B € {0,1,...,30} and y € {0, 1, ..., 100}. Then we search for the
optimal parameter set (s, B, ¥) that minimizes Aqg, for each of the two game
types. Based on the optimal parameter set, we analyze further quantities to
assess to which extent simulations align with the experimental findings (see
gray bars in Fig. 3).

Instead of estimating the optimal values (s, 8, y) separately for each game
type, we also explored whether a single set of parameters could jointly account
for behavior across all 10 two-player treatments. As shown in S/ Appendix, the
respective best fitis less convincing, compared to the setup in which we estimate
the optimal parameters separately for each reward function.

Data, Materials, and Software Availability. Results were analyzed and visu-
alized with Matlab R2020b and StataSE13. The experimental data and computer
code can be found in Zenodo (https://doi.org/10.5281/zen0do.16918146, 67).
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