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Significance 

People dier along many 
economic variables, including 
their resources and productivity. 
These dierences aect how 
people cooperate. Here, we use 
game theory and economic 
experiments to explore how 
inequality shapes public good 
contributions. Results depend 
on the relationship between 
individual contributions and the 
returns of the public good. If the 
relationship is linear, inequality 
can promote the group’s total 
payo, compared to a control 
without inequality. But if returns 
follow a nonlinear threshold 
function, inequality reduces total 
payo. We relate these findings 
to the individuals’ contribution 
motives. For linear returns, 
individuals share the same 
motives, and contributions are 
mostly driven by reciprocity. Yet 
for nonlinear returns, inequality 
may lead individuals to form 
dierent expectations about 
which equilibrium is most fair. 

When people collaborate in groups, they routinely face collective action problems: 
for the group effort to succeed, individuals need to cooperate despite any incentives 
to defect. These problems can be modeled with public goods games. To facilitate 
such an analysis, many studies assume the game is symmetric. Group members have 
the same means to cooperate (equal endowments), and contributions of different 
group members are equally effective (equal productivities). Studies that allow for some 
inequality tend to focus on one kind of inequality only. In practice, however, people 
can be unequal in many ways. The effect of these inequalities may in turn depend 
on the specific public goods game considered. To explore these issues, we combine 
a large-sample experiment with extensive theoretical work. We systematically vary 
four aspects: the group members’ endowments, their productivities, group size, and 
whether the public goods game exhibits linear returns or returns given by a threshold 
function. By exploring all four aspects, we obtain a unique dataset to explore the effect 
of asymmetry on cooperation. Based on this dataset, we study whether there is an 
advantage of “aligned inequality”: whether groups achieve a better surplus if more 
productive individuals have a larger endowment. For public goods games with linear 
returns, we find such an advantage, thereby corroborating previous research. If returns 
follow a threshold function, however, aligned inequality results in inferior payoffs. 
These results show that the effect of inequality on cooperation depends on the kind of 
public goods game considered. 

evolutionary game theory | cooperation | public goods game | inequality | social dilemma 

Humans regularly need to solve collective action problems (1). These problems naturally 
arise when people collaborate in teams, or when communities need to govern public 
resources (2–6). In all these instances, individuals might be tempted to free ride on 
others’ contributions. Such free riders or defectors threaten the very success of the group. 
Not only do they fail to contribute themselves; they also serve as negative role models 
that might induce others to defect, too. To analyze the resulting dynamics in a controlled 
setting, researchers explore how people cooperate in stylized games, such as the repeated 
public goods game (7–24). 

While there are many variants of the public goods game, the general rules are as follows. 
The game takes place among a group of individuals who interact for many rounds. Each 
round, all group members receive some fixed endowment, which might be interpreted 
as their recurring income. Then they decide individually how much of their endowment 
to contribute to a public good, and how much to keep for themselves. As a result of this 
interaction, they receive a payoff. Payoffs depend on the endowment the individuals keep 
for themselves, and on the reward derived from the public good (which is a function 
of the group members’ contributions). Usually, the public good’s reward function is 
chosen such that the game is a social dilemma (25, 26). That is, each group member 
prefers others to contribute more, while simultaneously being tempted to reduce their 
own contributions. As a result, individuals who contribute more can be seen as being 
more cooperative. 

When exploring cooperation in public goods games, it is common to make some further 
simplifying assumptions. For example, the game is often taken to be symmetric (7–24). 
This means that group members are indistinguishable with respect to all their attributes. 
They receive the same endowments, their contributions are equally productive, and they 
obtain equal rewards from the public good. This symmetry assumption has important 
implications for whether or not people cooperate. First, a certain degree of symmetry 
is likely to favor the emergence of reciprocal cooperation. After all, previous work 
suggests that successful strategies in repeated games often respond in-kind to their 
coplayer’s previous behavior (27). In the case of the public goods game, this could 
mean that individuals contribute their whole endowment if others do so too (16). 
This kind of reciprocal cooperation, however, seems to require that individuals have 
comparable endowments. More broadly, symmetry makes it easier for individuals to 
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have a joint understanding of what a fair outcome might be. Once 
individuals have different endowments or productivities, they 
might not only differ in whether or not they wish to contribute 
to the public good, but they might also hold different expectations 
regarding how much each group member ought to contribute in 
the given situation. 

When theoretical (28–30) or experimental studies (31–40) 
allow for asymmetry, they often consider individuals who differ 
along a single dimension. These studies suggest, for example, 
that asymmetric endowments tend to reduce cooperation (in the 
following, we treat “asymmetric” and “unequal” as synonyms). 
Asymmetric productivities, on the other hand, tend to have a 
neutral or even positive effect. These previous studies provide 
important insights, yet they do not take into account possible 
interactions between different kinds of inequality. For a concrete 
example, consider public goods games in which reward increases 
proportionally with the total contributions of all individuals. 
Here, two recent studies find an advantage of aligned inequal-
ity (41, 42). These two studies suggest that groups achieve the 
highest surplus (the highest gain in group payoff, relative to the 
group’s initial endowment) when more productive individuals 
receive a larger endowment. However, they leave it open how 
robust (and beneficial) this positive interaction effect is. For 
example, once individuals are free to choose their interaction 
partners, aligned inequality may beget further inequality; after 
all, more productive individuals prefer interacting with each 
other (43). Similarly, any positive effects of aligned inequality 
might only apply to games with linear rewards. For other reward 
functions (say, a threshold function), unequal endowments and 
productivities might introduce additional cooperation patterns 
in which individuals contribute different amounts. Once indi-
viduals fail to coordinate on a mutually preferred contribution 
pattern, cooperation may break down. 

To explore the possible dynamics in asymmetric games com-
prehensively, we consider a more general public good framework. 
We systematically vary the group members’ endowments, their 
productivities, the group’s size, and the public good’s reward 
function. With respect to the reward function, we consider two 
cases. On the one hand, we consider linear public goods games, 
where the reward of the public good grows in proportion to 
the group members’ contributions. This is the kind of reward 
function used in earlier work to identify an advantage of aligned 
inequality, refs. 41 and 42. On the other hand, as an example of 
a nonlinear reward function, we consider threshold public goods 
games. Here, collective contributions need to surpass a given 
threshold for all group members to receive a fixed reward (13). 
Such threshold games have become popular models for collective 
action problems with a tipping point, such as climate mitigation, 
where cooperative efforts must reach a minimum level to prevent 
catastrophic outcomes (4). 

To gain a first intuitive understanding of the individuals’ 
incentives in these different scenarios, we first compare the games’ 
Nash equilibria (44). That is, we ask which game outcomes 
have the property that no single player would like to deviate 
unilaterally. Then, we explore the impact of different asymmetries 
with an experiment. For simplicity, we first consider minimal 
groups of size two, as illustrated in Fig. 1. For those groups, 
we complement our empirical work with simulations of a game 
theoretical learning model. In a last step, we then explore public 
good contributions in larger groups of size four. 

Overall, our experimental setup comprises 16 treatments 
with more than 1,600 (in-person) participants (Materials and 
Methods). As a result, we have a unique dataset to explore 
the joint impact of different dimensions of inequality, group 

size, and the public good’s reward function. Based on this 
dataset, we first corroborate earlier results in the linear public 
goods game (41). Here, we find that aligned inequality indeed 
leads to the largest surplus, irrespective of the group’s size 
(using a subject pool that is rather different from the one in 
ref. 41). For the threshold public goods game, however, we 
demonstrate the opposite. Here, unequal endowments diminish 
total payoff, irrespective of whether endowments are aligned with 
the participants’ productivities. These results illustrate that the 
effect of inequality on cooperation depends on the type of the 
public good’s reward function. While inequality can be beneficial 
for one reward function, it discourages cooperation for another. 

Results 

Model. To allow for a simple experimental implementation 
similar to Hauser et al. (41), we first consider games among 
two individuals (players). These players interact for many 
rounds. Every round, each player i ∈ {1, 2} receives an integer-
valued endowment ei. Players then independently choose their 
(absolute) contribution to the public good, ci ∈ {0, 1, ..., ei}. 
Contributions are multiplied by an individual productivity factor 
pi. We refer to the product pi · ci as the player’s effective 
contribution. The sum of these effective contributions is the 
group’s collective contribution, C = p1 c1 +p2 c2. After having 
made their contributions, players receive a payoff 𝜋i. This payoff 
consists of the share of the endowment that players kept for 
themselves, and of the reward ri derived from the public good, 

𝜋i(c1, c2) = (ei −ci) + ri. [1] 

The reward ri depends on the public good’s reward function. This 
function reflects how individual contributions generate public 
value. In the so-called linear game, rewards are proportional to 
collective contributions, 

ri =C/2, [2] 

which may be interpreted as the two players evenly sharing the 
public good. In the threshold game, players receive some fixed 
reward r, but only if collective contributions reach a predefined 
threshold 𝜃, 

ri = 
 

r if C ≥ 𝜃, 
0 otherwise. [3] 

This function represents a binary scenario in which the collective 
effort can either succeed or fail. 

In Fig. 1, we depict the two reward functions as insets. The 
very same figure also illustrates the five scenarios with which 
we systematically introduce different kinds of asymmetry. The 
full equality scenario serves as a control. Here, players receive 
the same endowment and they have the same productivity. In 
the scenarios with endowment inequality and with productivity 
inequality, respectively, players differ in one dimension but not 
in the other. Finally, in the “aligned” (“misaligned”) inequality 
treatments, players differ in both dimensions. Here, the more 
productive player receives a larger (smaller) share of the initial 
endowment. Overall, the two reward functions together with the 
five scenarios give rise to 10 two-player treatments. 

To facilitate comparisons across scenarios, endowments are 
normalized such that e1 + e2 = 48 throughout. As a result, 
when players get equal endowments, then e1 = e2 = 24. When 
they get unequal endowments, we assume the endowment of 
the first player is three times the second’s, e1 = 36, e2 = 12. 
Moreover, all treatments in the linear game have the same average 
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Public good 

1.6x 1.6x 

24 24 
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38.4 

0 
76.8 

Endowment inequality 

Public good 

1.6x 1.6x 

36 12 

(Endowments) 

38.4 

0 
76.8 

Productivity inequality 

Public good 

1.9x 1.3x 

24 24 

(Endowments) 

38.4 

0 
76.8 

Aligned inequality 

Public good 

1.9x 1.3x 

36 12 

(Endowments) 

42 

0 
84 

Misaligned inequality 

Public good 

1.3x 1.9x 

36 12 

(Endowments) 

34.8 

0 
69.6 

Public good 

1x 1x 

24 24 

(Endowments) 

20 

0 
4824 

Public good 

1x 1x 

36 12 

(Endowments) 

20 

0 
4824 

Public good 

3x 1x 

24 24 

(Endowments) 

20 

0 
9648 

Public good 

3x 1x 

36 12 

(Endowments) 

20 

0 
12060 

Public good 

1x 3x 

36 12 

(Endowments) 

20 

0 
7236 

Fig. 1. Studying the eect of inequality in two-player public goods games. For our first 10 treatments, we consider public goods games in groups of size 
two. Each individual receives a fixed endowment each round (indicated by yellow coins). Then they independently decide how much of their endowment to 
contribute to the public good. An individual’s eective contribution is their contribution multiplied by their individual productivity factor (indicated by arrows). 
The sum of these eective contributions is the group’s collective contribution (represented by C). We systematically vary the individuals’ endowments and 
their productivity factors. This gives rise to five scenarios. “Full equality” refers to the control scenario. Here, individuals are completely indistinguishable. In 
“endowment inequality,” individuals only dier in their endowments, whereas in “productivity inequality” they only dier in their productivity. In “aligned” 
and “misaligned inequality,” individuals dier in both dimensions, with the more productive individual receiving the larger (smaller) endowment, respectively. 
Moreover, we consider games with two dierent reward functions. (A) In the linear game, the reward increases in proportion to the collective contributions. (B) 
In the threshold game, there is a discontinuous jump in rewards once collective contributions surpass a certain threshold. Note that in each row, the shape of 
the reward function in the Inset remains the same. However, the scaling of the x-axis and the y-axis may change from one column to the next. 

productivity factor, (p1+p2)/2=1.6. Similarly, in all treatments 
of the threshold game, we choose a uniform threshold defined 
by 𝜃 = (p1e1 + p2e2)/2. That is, the group is guaranteed to 
reach the threshold if both players contribute at least half of their 
endowment. In that case, we assume they receive the same reward, 
r = 20. These parameters are chosen such that in all treatments 
there is a tension between collective and individual interests. 
Collectively, the group achieves the highest total payoff when 
players make strictly positive contributions. Yet individually, each 
player prefers to minimize their own contribution while hoping 
the coplayer contributes more. 

Equilibrium Analysis. Even though both the linear and the 
threshold game follow a similar premise, they differ in their strate-
gic nature. In any single round of the linear game, both players 
have an incentive to reduce their own contributions. Yet by jointly 
increasing their contributions, they get a higher collective payoff. 
This setup is similar to the prisoner’s dilemma (27), with the main 
difference being that we allow for more gradual forms of coopera-
tion. In particular, the linear game is amenable to reciprocity. For 
example, players may adopt perfectly reciprocal strategies similar 
to the Tit-for-Tat strategy that won Axelrod’s tournament (27). 
That is, players could contribute the same fraction of their 
endowment as their coplayer contributed in the previous round. 
In this way, the two players would jointly incentivize each other 
to reach the social optimum, in which both players contribute 
their full endowment. In this optimum, the resulting payoffs 
according to Eqs. 1 and 2 are 𝜋1 = 𝜋2 = (p1e1 +p2e2)/2. In 
particular, both players receive the same payoff, irrespective of 
any prior inequality in their endowments or productivities. These 
properties make full cooperation (both players contributing their 

full endowment) a natural focal point (45) (That is, among 
all possible outcomes, players may consider the full-cooperation 
outcome to be particularly salient or prominent). 

In contrast, in the threshold public goods game, socially 
optimal outcomes are already feasible in the one-shot (non-
repeated) game. However, this optimum no longer requires 
players to contribute their full endowment. Instead, collective 
contributions merely need to meet the threshold 𝜃. This can 
be achieved in many ways, differing in how much each player 
contributes toward the threshold. The resulting game is a 
coordination game with many equilibria, and the two players 
may hold different views on which equilibrium is most fair. For 
such coordination games, the mechanism of reciprocity is less 
relevant. In fact, by increasing their own contributions, players 
may motivate their coplayer to reduce theirs. 

In Fig. 2, we illustrate these considerations by representing the 
possible equilibrium payoffs across the 10 treatments. To this 
end, we consider all subgame perfect equilibria. These are all Nash 
equilibria of the (infinitely) repeated game with the additional 
property that deviations are never profitable, even if other players 
have already deviated before (47). In the figure, colored areas 
depict all payoffs that can possibly arise in such an equilibrium. 
Colored dots depict the (pure) equilibria of the one-shot game. 
The figure allows us to make three observations. First, in all 
treatments, there are infinitely many subgame perfect equilibria 
(every point within a colored area corresponds to an equilibrium). 
In particular, the repeated game allows for outcomes in which 
players make strictly positive contributions. However, in most 
cases it also allows for full defection, such that no one contributes 
anything. Second, in the linear game, repeated interactions are 
crucial for cooperation. Here, the one-shot game only has a single 
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Fig. 2. A depiction of the games’ equilibrium payos. We use the so-called Folk theorem to characterize the payos players may get in a subgame perfect 
equilibrium (46) of the (infinitely) repeated game. For all of 10 treatments, the respective set of equilibrium payos is depicted as a colored area. The gray 
area indicates which payos are feasible in principle, independent of whether or not they can be realized in an equilibrium. For comparison, we also illustrate 
the payos of the pure Nash equilibria of the one-shot game, depicted by colored dots. (A) In the linear game, “full cooperation” refers to the outcome where 
all players contribute their entire endowment in every round (indicated by a circle). This outcome can be realized as a subgame perfect equilibrium in all 
treatments except misaligned inequality. However, “full defection” (all players contributing nothing, indicated by a plus symbol) is also an equilibrium. (B) In the 
threshold game, socially optimal payos can already be achieved in the one-shot (nonrepeated) game. However, players might find it diicult to coordinate on 
any particular equilibrium, because there are many dierent ones that are all similarly plausible from the outset. Unequal endowments or productivities may 
further aggravate these diiculties. For better visibility, we use dierent x and y scales for the dierent panels. 

equilibrium in which no one contributes. In contrast, in the 
threshold game, positive contributions are already feasible if the 
game is played once. This observation suggests a more prominent 
role of reciprocal strategies in linear games. 

Third, the two game types differ in their focal points. In the 
linear game, players may naturally attempt to jointly contribute 
their full endowment (indicated by black circles in Fig. 2A). This 
outcome can be realized as an equilibrium in all but one treatment 
(only under misaligned inequality, the high-endowment but 
low-productivity player 1 cannot be incentivized to contribute 
their entire endowment). Among the four remaining treatments, 
the one with aligned inequality generates the largest surplus 
when people fully cooperate (41). In the threshold game, there 
is a whole line of Pareto-efficient equilibria where collective 
contributions exactly match the threshold (Fig. 2B). Here, 
asymmetry can make players differ in which equilibrium they 
prefer. For example, under endowment inequality, players with 
a high endowment may prefer an equilibrium in which everyone 
makes the same absolute contribution. Low-endowment players, 
however, may rather prefer an equilibrium in which everyone 
gives the same proportion of their endowment. In this way, 
inequality might make it more difficult to coordinate on any 
one equilibrium. 

To sum up, all treatments allow for many (subgame perfect) 
equilibria. By introducing inequality in endowments or pro-
ductivities, we may not only change whether or not a given 
outcome can be sustained as an equilibrium; we may also affect 
which equilibrium appears most salient. To explore how humans 
choose among these equilibria (if at all) in practice, we conduct 
an economic experiment. 

Analysis of a Behavioral Experiment. We have recruited 550 
subjects to interact in one of the five treatments with a linear 
reward function (illustrated in Fig. 1A). In addition, we have 

recruited 554 subjects for the five treatments based on the 
threshold game (as in Fig. 1B). In each case, participants play 
the repeated game twice, in two different sessions. In one session 
they act as player 1, in the other as player 2 (with a new interaction 
partner). For the linear game, we follow the protocol of Hauser et 
al. (41): each session, participants randomly play 20 to 25 rounds 
to avoid end-game effects. However, only the first 20 rounds are 
included in the statistical analysis. For the threshold game, we 
use the protocol of Wang et al. (40): Since end-game effects are 
less relevant, each game lasts for a fixed length of 20 rounds. 
Participants were volunteers who were paid in proportion to 
their earned payoff in the game. All participants were informed 
beforehand about all relevant aspects of the game (including 
all players’ endowments and productivities, and the expected 
duration of the experiment), see Materials and Methods. 

For our statistical analysis we consider each player pair in 
each session as an independent observation. Because the two 
game types have slightly different experimental procedures and 
key variables, we analyze them separately. In the following, we 
provide a qualitative summary of our results; for all statistical 
tests and further quantitative analyses, we refer the reader to 
SI Appendix. 
Linear public goods game. We begin with the five treatments with 
a linear reward function. As a first key variable, we compare the 
group relative contributions (c1+c2)/(e1+e2) across treatments, 
see Fig. 3A. We find that three treatments yield the highest 
contribution levels: full equality, productivity inequality, and 
aligned inequality. Here, subjects contribute approximately 70% 
of their endowment. By contrast, contributions in the other 
two treatments are significantly lower, reaching a minimum 
of ∼55% for misaligned inequality. To further explore these 
differences, in Fig. 3B, we illustrate players’ contributions over 
time. Contributions are relatively stable in all treatments, except 
for a positive trend for productivity inequality and aligned 
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Fig. 3. Experimental results for pairwise public goods games. We show results for linear games (Left) and threshold games (Right). (A) In the linear game, 
average contributions (relative to the players’ endowments) are largest under full equality, productivity inequality, and aligned inequality. (B) Contributions 
are relatively stable over time, except for a positive trend under productivity inequality and aligned inequality. (C) Aligned inequality generates the largest 
surplus. (D) In all treatments with unequal endowments, inequality after the game (colored bar) is smaller than the initial inequality (black line). (E and F ) In 
treatments with unequal endowments, high-endowment players tend to make larger absolute contributions, but smaller relative contributions (relative to their 
endowment). (G) In the threshold games, a key quantity is the proportion of rounds in which the group reaches the threshold. This success rate is largest 
under full equality and productivity inequality. (H) The other three treatments show a particularly poor success rate in the early rounds. (I and J) As a result, 
these treatments generate the lowest surplus, and eventual payos are most unequal. (K and L) Contribution patterns are similar to the linear case. However, 
under aligned inequality, the high-endowment player gives more also in relative terms. Colored dots represent outcomes of individual groups, bars represent 
averages across all groups. Error bars indicate 95% CI. We compare empirical results (in color) with individual-based simulations (gray bars). The setup of the 
simulations is explained further below. Simulation parameters are s =1, and (𝛽, 𝛾)=(0, 14) for the linear game and (𝛽, 𝛾) = (18, 94) for the threshold game. 

inequality (we establish this positive trend by comparing the 
players’ contributions during the first five rounds with their 
contributions during the last five rounds, see SI Appendix). 

As a next key variable, we consider the group’s overall surplus 
relative to the total endowments, (𝜋1+𝜋2−e1−e2)/(e1+e2). The 
higher this variable, the higher are the players’ overall payoffs 
compared to their initial endowments. Since total endowments 
are identical across treatments, we henceforth refer to this variable 
as the group overall surplus. As shown in Fig. 3C , aligned 
inequality generates the largest surplus and misaligned inequality 
generates the lowest. These results confirm our theoretical 
prediction, and they reproduce the findings of Hauser et al. (41): 
If individuals differ in their productivities, they achieve the 
largest overall payoff if they also have different (but aligned) 
endowments. Intuitively, aligned inequality is advantageous for 
two reasons. First, it leads to substantial contributions (Fig. 3A); 
and second, these contributions are more effective (because more 
of the endowment is allocated to the more productive player). 

In addition to the above results, we are also interested 
in the final inequality among group members. To this end, 

we compare the Gini coefficient before the game (in the 
players’ endowments) and after the game (in their payoffs), 
Fig. 3D. In all three treatments in which players have un-
equal endowments, the coefficient decreases. This reduction 
is most pronounced in the aligned treatment. To explore 
these results in more detail, we compare the players’ absolute 
(Fig. 3E) and relative contributions (relative to their endow-
ment, Fig. 3F ). In all treatments with unequal endowments, 
we observe the same pattern: players with larger endowment 
give more in absolute but less in relative terms, compared 
to their coplayer. The difference in relative contributions is 
least pronounced under aligned inequality. In this treatment, 
although the high-endowment players are in a stronger position, 
they often give their entire endowment. This observation is 
also reflected in the players’ contributions (c1, c2) each round 
(SI Appendix, Fig. S2). In the aligned treatment, 43.5% of 
all rounds end with both players giving their full endow-
ment (e1, e2). This proportion is much smaller for endowment 
inequality and misaligned inequality, at 26.1% and 18.3%, 
respectively. 
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The cooperation patterns in the linear treatments are in line 
with what we would expect from reciprocity considerations. In 
SI Appendix, Fig. S4, we relate a player’s contribution in a given 
round to the coplayer’s contribution in the previous round. We 
observe a strongly positive correlation in all treatments, for both 
player 1 and player 2. In addition, in SI Appendix, we show that 
a model with fairness preferences (but without reciprocity) is 
unable to account for the players’ substantial contributions, see 
SI Appendix, Fig. S19B. These observations support the theoret-
ical prediction that reciprocity is important for cooperation in 
linear public goods games. 
Threshold public goods game. In threshold games, perhaps the 
most important variable is the group success rate—the proportion 
of rounds in which the group reaches the threshold. According 
to Fig. 3G, there are significantly lower success rates in three 
treatments, for endowment inequality, aligned and misaligned 
inequality (i.e., in all three treatments in which participants 
have different endowments). Again, it is instructive to consider 
the dynamics over time, see Fig. 3H . We find that success 
rates in these three treatments are particularly low in the first 
few rounds of the game: here, many groups miscoordinate, 
by either collectively contributing too much or too little to 
reach the threshold (SI Appendix, Fig. S8). As a result, the 
three treatments also generate the lowest surplus (Fig. 3I ). 
Moreover, almost by design these treatments result in more 
unequal payoffs (Fig. 3J ). Overall, these results suggest a negative 
effect of unequal endowments, independent of whether they are 
aligned with the participants’ productivities. 

With respect to the contributions of each player type, we 
observe a similar pattern as in the linear treatments. When 
endowments are unequal, high-endowment players tend to give 
more in absolute terms but less in relative terms (Fig. 3 K and L). 
Interestingly, the only exception (unpredicted by our theory) 
occurs under aligned inequality. Here the more productive and 
better-endowed player 1 gives more both in absolute and in 
relative terms. This explains the greater reduction in the Gini 
coefficient, compared to misaligned inequality (Fig. 3J ), despite 
a comparable success rate in both cases. With respect to the 
players’ pairwise contributions, the most abundant contribution 
pair is (e1/2, e2/2) in all treatments (SI Appendix, Fig. S8). 
That is, participants typically contribute half their endowment, 
which is sufficient to match the threshold. Interestingly, this 
contribution pattern is somewhat inefficient when there is 
aligned inequality; here the contributions of the high-endowment 
player 1 would be much more effective (Fig. 1). As a result, 
in this treatment, we also find a substantial proportion of 
groups in which only player 1 contributes toward the threshold 
(which explains why this player also gives more in relative 
terms). 

As expected, reciprocity is less relevant to explain participant 
behavior in threshold games. If we relate a player’s contribution 
to the coplayer’s previous contribution, we either find a weak or 
a negative relationship, see SI Appendix, Fig. S10. 
Summary. For the 10 two-player treatments, we find that groups 
with unequal endowments tend to achieve less cooperation. 
The only exception occurs when two conditions are met 
simultaneously: i) unequal endowments are aligned with the 
participants’ productivities, and ii) the public good’s reward 
function is (approximately) linear. Previous work that reported 
positive effects of inequality met both of these criteria (41, 42). 
Our work corroborates that aligned inequality is advantageous in 
linear games. However, it also suggests that these positive effects 
of aligned inequality do not necessarily carry over to other public 
goods games with different reward functions. 

Individual-Based Simulations of a Learning Model. According 
to the above empirical analysis, human behavior in repeated 
public goods games is driven by at least two mechanisms. First, 
especially in linear games, a substantial proportion of decisions is 
explained by reciprocity (SI Appendix, Fig. S4). Participants take 
into account their coplayer’s previous behavior, and they react 
accordingly. Second, among many equally plausible equilibria, 
participants seem to prefer outcomes in which players contribute 
equally (in absolute or relative terms, see SI Appendix, Figs. S2 and 
S8). In the following, we propose an individual-based learning 
model that incorporates both aspects. 

To take into account reciprocity, we let players adopt reactive 
strategies (48–52). That is, when deciding what to contribute 
next, players respond to their coplayer’s previous contribution. 
As in the experiment, players can make any integer contribution 
ci ∈ {0, 1, . . . , ei}. Therefore, we generalize the learning model 
by Hauser et al. (41), which only allowed players to either 
give their full endowment or nothing at all. Allowing for all 
possible contributions is particularly important for threshold 
games. There, many of the interesting equilibria are only feasible 
if individuals may contribute arbitrary amounts between 0 and ei. 

To take into account the empirical observation that partic-
ipants value equal contributions, we consider an appropriate 
utility function. We assume the utility of player i in a round 
with contributions (c1, c2) is given by 

ui(c1, c2) = 𝜋i(c1, c2) − 𝛽 
|c1 − c2| 
max{ei} 

− 𝛾 
   c1 

e1 
− 

c2 

e2 

    . [4] 

The first term on the right hand side represents i’s payoff, 
as described by Eq. 1. The second term represents the player’s 
aversion against unequal absolute contributions. The larger the 
parameter 𝛽 ≥ 0, the more players aim to choose contributions 
such that c1 ≈ c2. Similarly, the third term represents aversion 
against unequal relative contributions. The parameter 𝛾 ≥ 0 
controls to which extent players prefer contributions with c1/e1 ≈ 
c2/e2. For 𝛽 = 𝛾 = 0, we recover the standard case without any 
preferences for equal contributions of any kind. Here, players 
only maximize their payoffs. 

To model how individuals update their strategies over time, 
we follow earlier work on linear public goods games (41, 42). We 
assume individuals learn new strategies based on introspection 
dynamics (53, 54). Compared to the classical pairwise compar-
ison process (55), introspection dynamics has the advantage of 
being applicable to arbitrary (asymmetric) games (56, 57). It 
assumes that at regular time intervals, players compare their 
current utility to the utility they could have obtained with a 
randomly chosen alternative strategy. The larger the utility of 
the alternative, the more likely it is adopted. This leads to a 
time series where the two players regularly adapt their strategies 
to improve their respective utilities. We explore this dynamics 
with simulations, run for all treatments, and for many different 
parameter values, 𝛽 ∈{0, 1, . . . , 30} and 𝛾 ∈{0, 1, . . . , 100}. 

We ask for which parameter combination we get the best 
fit to the empirical data. We use two approaches. First, we 
seek for optimal parameters (𝛽, 𝛾 ) for each of the two reward 
functions separately (for the linear game, and for the threshold 
game). In each case, we look for the parameter combination 
with the least squared error between the empirical surplus (Fig. 3 
C and I ) and the surplus estimated from simulations, across 
all five treatments. By allowing the optimal parameters (𝛽, 𝛾 ) 
to differ between the two reward functions, we account for the 
possibility that the different objectives (of equal absolute or equal 
relative contributions) may differ in how salient they are. For 
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Fig. 4. The eect of inequality in groups of size four. Same as Fig. 3 but for full equality, aligned inequality, and misaligned inequality treatments in the 
4-player setting. (A) In the linear game, average contributions are similar across the three treatments. (B) Contributions remain stable over time, except for a 
decreasing trend under full equality. (C) Aligned inequality generates the highest surplus. (D) Both asymmetric treatments lead to a comparable reduction in 
inequality. (E) In the threshold games, the success rate is highest under full equality, and notably lower under aligned inequality and misaligned inequality. (F ) 
Both asymmetric treatments show low success rates across all rounds. (G and H) Consequently, the two asymmetric treatments yield a similarly low surplus, 
and payo inequality remains. 

the linear game, we obtain the best fit for 𝛽 = 0, 𝛾 = 14. 
These numbers suggest that we can already explain much of 
the empirical regularities by assuming that individuals care about 
relative contributions. In contrast, in the threshold game we 
observe that many (𝛽, 𝛾) pairs provide a similarly good fit between 
simulations and data. For all of them, both 𝛽 > 0 and 𝛾 > 0, see 
also SI Appendix, Fig. S14. In Fig. 3, we show the respective 
simulation results with gray bars (based on the estimated optimal 
𝛽 and 𝛾 values for each reward function). In most cases, there is 
a surprisingly good visual agreement between these simulations 
and the experimental data (colored bars). 

As our second approach, we also look for one pair (𝛽, 𝛾) 
that provides the best fit across all 10 treatments. Here, we 
obtain the best fit for 𝛽 = 4 and 𝛾 = 20 (SI Appendix, Fig. 
S14C ). However, the respective overall fit with the data is less 
convincing. For example, the respective simulations tend to 
overestimate the groups’ success rates in threshold games with 
unequal endowments (SI Appendix, Fig. S18G). 

In sum, the individual-based simulations are able to recover 
many of the empirical patterns (as suggested by the fit between 
gray and colored bars in Fig. 3). They suggest a substantial role 
for reciprocity, and a preference for equal (relative) contributions. 
(For analogous simulations that ignore the role of reciprocity, see 
SI Appendix, Fig. S19B for the linear game and SI Appendix, 
Fig. S20B for the threshold game). 

Beyond Pairwise Games. So far we considered games in minimal 
groups of size two. This reduced setup allowed for an intuitive 
analysis, and it made it straightforward to compare our results to 
the pairwise linear games studied by Hauser et al. (41). However, 
to get a broader perspective on cooperation in public goods 
games, it is important to also explore behavior in larger groups. 
After all, certain effects may only become apparent in groups 
of nontrivial size (e.g., one person completely free riding while 
others aim to maintain cooperation among each other). 

To explore the effect of group size, we ran additional experi-
ments for games among four players. To this end, we recruited 

another 312 participants to interact in a linear game, and 276 
participants for the threshold game. To have sufficient coverage, 
we only considered three treatments for each reward function: 
full equality, aligned inequality, and misaligned inequality. 
Moreover, to be comparable to the two-player setup, we opted 
for a design in which the player types of the pairwise games 
are duplicated. For example in the two-player setup, aligned 
inequality meant that one player had a large endowment and high 
productivity, whereas the other player had a small endowment 
and low productivity. Now in the 4-player treatments, there are 
two players with an equally large endowment and equally high 
productivity, and two other players who both have the same small 
endowment and low productivity (Materials and Methods). 

Experimental results are shown in Fig. 4. We observe interest-
ing qualitative differences to the earlier two-player experiments 
(discussed in more detail in SI Appendix). For example, in the 
linear game, aligned and misaligned inequality now yield similar 
contributions (Fig. 4A). Moreover, in the threshold game, aligned 
and misaligned inequality have a more persistently negative effect 
on coordination (Fig. 4F ). However, with respect to the overall 
surplus, we recover our previous results. In the linear game, 
aligned inequality again generates the largest surplus among 
all treatments (Fig. 4C ). In contrast, in the threshold game, 
both aligned and misaligned inequality lead to a reduced surplus, 
compared to the control without any inequality (Fig. 4G). For 
linear games, these findings generalize previous results on the 
positive effects of aligned inequality (41) to games in larger 
groups. At the same time, they again demonstrate that the same 
kind of inequality yields inferior results in threshold games. 

Discussion 

Most important collective action problems today involve some 
form of asymmetry. In many examples, such as teamwork 
in companies (58) or international efforts to mitigate climate 
change (59), actors differ in their ability or their incentives to 
contribute to a group effort. Such asymmetries can affect whether 
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groups succeed or fail. To explore these issues, there is a growing 
literature on the effect of asymmetry on cooperation (28–42). 
Most studies, however, are either based on a single public 
good paradigm, or they assume there is only asymmetry in one 
dimension. Here, we provide a more comprehensive analysis 
of asymmetric public goods games. To this end, we compile 
and analyze a unique dataset, based on experiments that vary 
the participants’ endowments, their productivities, group size, 
and the public good’s reward function. These distinctions 
give rise to sixteen treatments. We analyze these treatments 
empirically, as well as with equilibrium methods and individual-
based simulations. 

We consider two types of reward functions. In the linear 
game, the rewards of collective action are proportional to the 
individuals’ contributions (as in refs. 41 and 42). In particular, 
the effect of one individual’s contribution is independent of the 
contributions of others. In the threshold game, on the other hand, 
there is only a substantial reward when contributions surpass a 
certain level (13). This game can describe scenarios with a tipping 
point (4). Here, the effect of one individual’s contributions 
critically depends on how much others contribute. We find that 
the effect of inequality differs substantially between the two game 
types. For the linear game we corroborate previous results (41, 42) 
that unequal endowments can be beneficial (Fig. 3C ). Such a 
case can arise when individuals differ in how productive their 
contributions are, and when endowments and productivities 
are aligned (more productive individuals receive the larger 
endowment). In contrast, in threshold games, treatments with 
unequal endowments always result in a lower surplus (Fig. 3I ). 

These differences can be related to the players’ contribution 
motives. In the linear game, cooperation is driven by reci-
procity (SI Appendix, Fig. S4) and by a preference for equal 
relative contributions. Both aspects help to support cooperation 
under aligned inequality. Here, even large-endowment players 
may find it worthwhile to contribute their entire endowment— 
provided the low-endowment player does the same. In contrast, 
in threshold games, reciprocity considerations are largely irrele-
vant (SI Appendix, Fig. S10). Instead, players coordinate on an 
equilibrium of the nonrepeated game. Endowment inequality 
can render this coordination process more difficult. For example, 
some participants might prefer all group members make the same 
absolute contribution. Others may find it more appropriate if 
contributions are proportional to endowments. These different 
views impede coordination, especially in the early phase of the 
game when participants have no prior experience yet about the 
behavior of their coplayer (Fig. 3H ). 

Importantly, we consider a type of threshold game where the 
participants’ collective contributions need to surpass a certain 
threshold. Alternatively, models of evolutionary game theory 
often consider alternative forms of threshold games. There, 
individuals can only decide whether to cooperate or defect, and 
it takes a sufficient number of cooperators for the group to reach 
the threshold (60–62). While we do not explore such games with 
binary action spaces, we believe they too can serve as valuable 
models to explore the effect of inequality (e.g., via asymmetric 
cooperation costs). 

To explore how various sources of inequality shape cooperation 
in public goods games, we have neglected many additional 
complexities that are relevant in applications. For example, 
we have neglected uncertainty, assuming that the shape of the 
public good’s reward function is common knowledge. Similarly, 
we have also neglected possible asymmetries in how rewards 
are distributed among group members (63), or environmental 
stochasticity, kinship, and social bonds (64–66), which all can 

affect cooperative behavior. Nevertheless, by simultaneously 
varying multiple sources of inequality, group size, and the public 
good’s reward function, we provide valuable insights into the 
determinants of human behavior in public good experiments. 

Materials and Methods 

Model. In the most general case, we consider repeated public goods games 
among n players with varying endowments or productivities. In each round, 
player i receives an endowment ei and decides which contribution ci to 
make toward the public good. Contributions are multiplied by an individual 
productivity factor pi > 0. The group’s collective contribution is C = 

 
pi ci. 

This collective contribution determines the players’ reward ri from the public 
good, and hence their payoffs 𝜋i = ei−ci+ri. The exact value of ri depends on 
the public good’s reward function. In the linear game, players equally share the 
group’s collective contribution, such that ri = C/n. This setup leads to a social 
dilemma when 1 < pi < n. In the threshold game, each player receives a fixed 
positive reward ri = r if the group’s collective contribution meets or exceeds a 
predefined threshold 𝜃. If the reward r is sufficiently large, positive contributions 
can already be sustained in the one-shot (nonrepeated) game. However, players 
may differ in their views on how much each should contribute. 

We define payoffs of the repeated game as the player’s average payoff per 
round. For much of this paper we focus on two-player games with integer 
contributions. To explore how group size affects our results, however, we also 
consider groups of four players. 

Equilibrium Analysis. In Fig. 2, we illustrate the sets of equilibrium payoffs in 
two-player games, both for the one-shot and the infinitely repeated setting. In 
the one-shot game, a payoff vector (𝜋1, 𝜋2) corresponds to a Nash equilibrium 
if neither player can unilaterally enforce a higher payoff. For the repeated 
game, we apply the Folk theorem (46). This theorem characterizes the set 
of subgame perfect equilibrium payoffs when players are sufficiently patient. 
According to the Folk theorem, any payoff vector that is feasible and individually 
rational can be sustained in a subgame perfect equilibrium. A payoff vector 
(𝜋1, . . . , 𝜋n) is feasible if there exists a sequence of contributions such that the 
respective average payoffs converge to that payoff vector. The payoff vector is 
individually rational if each player receives at least as much as they can guarantee 
themselves, regardless of the other players’ contributions. Hence, many payoff 
vectors that are not Nash equilibria of the one-shot game can still be sustained 
by a subgame perfect equilibrium in the repeated setting. For instance, the 
payoff corresponding to full cooperation (all players contributing their entire 
endowment each round) may be sustained as an equilibrium outcome in the 
repeated linear game. We use the same approach to characterize equilibrium 
payoffs in the four-player game. The corresponding analysis is provided in 
SI Appendix. 

Behavioral Experiment. For the games among two players, we conducted 
experiments for both the linear and the threshold game for five treatments: 
full equality, endowment inequality, productivity inequality, aligned inequality, 
and misaligned inequality (Fig. 1). Participants were students from Beijing 
Normal University who attended in person in the university’s computer lab. The 
experiment complied with all relevant ethical regulations and was approved 
by the Ethics Committee of the Medical Faculty of Kiel University (D 613/21). 
All participants gave their informed consent before participation. They were 
randomly assigned to one of the game types (linear game or threshold game), 
and subsequently to a treatment. Throughout the experiment, participants made 
their decisions independently and were not permitted to communicate. For the 
linear game, the number of participants in the five treatments were 114, 110, 
110, 106, and 110, respectively. For the threshold game, the numbers were 110, 
118, 112, 104, and 110. The data for the linear game and for two treatments of the 
threshold game (aligned inequality and misaligned inequality) were specifically 
collected for this study. For the other three treatments of the threshold game, 
we reanalyze behavioral data from Wang et al. (40). 

In each treatment, all experimental parameters are common knowledge. Each 
treatment consists of two sessions. At the beginning of session 1, participants are 
randomly paired and assigned the roles of player 1 and player 2. Pairs remain 
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fixed throughout the session. Each session lasts for multiple rounds. After 
each round, participants learn their coplayer’s contributions and the resulting 
payoffs. After session 1, participants are informed that they would take part 
in session 2 with a new coplayer, and that they will be assigned the opposite 
role from what they had in session 1. Apart from switching roles, the rules of 
session 2 are the same as in session 1. In the linear game, participants play 
20 to 25 rounds per session to avoid end-game effects, but only the first 20 
rounds are analyzed. In the threshold game, participants play 20 rounds per 
session. After the game, participants fill out a survey. The survey for the linear 
game focuses on preferred contribution patterns and conditional contributions, 
using the strategy method. The survey for the threshold game focuses on fairness 
perceptions and on expectations for the coplayer’s minimum contribution based 
on successful coordination. To encourage participants to take the experiment 
seriously, participants receive a fixed show-up fee plus a bonus proportional 
to their total payoffs. On average, they earned 64.07 Yuan (∼8.94 EUR) in the 
linear game, and 61.01 Yuan (∼8.52 EUR) in the threshold game. 

To explore group size effects, we also conducted four-player versions of both 
games, using three treatments for each reward function: full equality, aligned 
inequality, and misaligned inequality. The four-player games mirror the two-
player design, with each possible role being duplicated (i.e., there are two players 
of each original type). The overall structure matches the two-player setting. A total 
of 588 students participated in the four-player experiment. Average earnings 
were 53.24 Yuan (∼6.52 EUR) for the linear game and 56.96 Yuan (∼6.97 EUR) 
for the threshold game. 

We analyze the data using two-tailed nonparametric tests, treating groups 
of interacting players as statistical units. For each outcome variable (such as 
the group overall surplus), we calculate the 20-round average value for each 
group of players. Then we make comparisons either across treatments or within 
the same treatment. For comparisons across treatments, we use the Mann– 
Whitney–Wilcoxon test. For within-treatment comparisons, we use the Wilcoxon 
signed-rank test. For further details on our procedures and statistical results, see 
SI Appendix. 

Individual-Based Simulations. We analyze the repeated two-player game 
using a game theoretical learning model. We assume players adopt reactive 
strategies (48–52). They determine their contribution based on their coplayer’s 
previous contribution. A reactive strategy of player 1 is represented by 
a vector R1 = (c 1; c1 

0 , c1 
1 , ..., c1 

i , ..., c1
e2 ). Here, c 1 indicates the player’s 

initial contribution in the first round. The other entries c1 
i denote player 

1’s contribution in response to the coplayer’s contribution i in the previous 
round. Each component is an integer from player 1’s action set {0, 1, ..., e1}. 
Analogously, player 2’s strategy is represented by a vector R2 . Because strategies 
are deterministic, the vectors R1 and R2 uniquely determine the players’ 
contributions for an arbitrarily long sequence of rounds. 

To allow for fairness preferences, we assume player i evaluates round-wise 
outcomesbasedontheutility functionui(c1, c2)definedinEq.4.Whenchoosing 
their strategy, players aim to maximize their utility. 

To model how asymmetric players update their strategies over time, we use 
introspection dynamics (53, 54). The specific update steps are as follows. In 
each time step, pairs of players engage in twenty rounds of the game (as in the 
experiment). Then, one of the two players is randomly chosen to reconsider their 
strategy. The selected player i randomly draws an alternative reactive strategy ̃Ri . 

This player compares their realized 20-round utility ui with the 20-round utility 
ũi the player could have obtained by playing the alternative strategy instead 
(keeping the coplayer’s strategy unchanged). The player then switches to the 
alternative strategy ̃Ri with probability𝜑(ũi, ui) := 

� 
1+exp(−s(ũi−ui))

−1 
. 

Here, the parameter s ≥ 0 reflects the strength of selection. The larger s, the 
more players are biased to adopt alternative strategies with a large utility. 

Introspection dynamics gives rise to a Markov process on the space of all 
strategy profiles (R1 , R2). For any finite selection strength s, this process has 
a unique invariant distribution, which is independent of the players’ initial 
strategies. However, the large size of our strategy space renders an exact 
calculation of this distribution infeasible. Instead, we run individual-based 
simulations for 107 time steps, recording the players’ contribution profiles. 
This allows us to compute all further quantities of interest. 

To quantify the agreement between simulation results and experimental 
data, we define an objective function. We focus on the group overall surplus 
(GOS), a metric that is well defined for both game types (linear and threshold 
public goods games, as illustrated in Fig. 3 C and I). For each game type, we 
optimize a separate objective function ΔGOS , given by 

ΔGOS = 

 
 

k∈K 

 
GOSk 

exp − GOSk 
sim 

2 
. 

Here, GOSk 
exp denotes the average surplus observed in treatment k in the 

experiment, K = {FE, EI, PI, AI, MI} denoting the five treatments, while GOSk 
sim 

is the corresponding average surplus from the simulations, computed across all 
rounds. 

We varied the parameters and ran separate simulations for each game. 
Specifically, we tested values of selection strength s ∈ {1, 10, 100}, preference 
weights 𝛽 ∈ {0, 1, . . . , 30} and 𝛾 ∈ {0, 1, . . . , 100}. Then we search for the 
optimal parameter set (s, 𝛽 , 𝛾) that minimizes ΔGOS , for each of the two game 
types. Based on the optimal parameter set, we analyze further quantities to 
assess to which extent simulations align with the experimental findings (see 
gray bars in Fig. 3). 

Instead of estimating the optimal values (s, 𝛽 , 𝛾 ) separately for each game 
type, we also explored whether a single set of parameters could jointly account 
for behavior across all 10 two-player treatments. As shown in SI Appendix, the 
respective best fit is less convincing, compared to the setup in which we estimate 
the optimal parameters separately for each reward function. 

Data, Materials, and Software Availability. Results were analyzed and visu-
alized with Matlab R2020b and StataSE13. The experimental data and computer 
code can be found in Zenodo (https://doi.org/10.5281/zenodo.16918146, 67). 

ACKNOWLEDGMENTS. X. W. acknowledges financial support from the China 
Scholarship Council for a 14-mo study at the Max Planck Institute for Evolutionary 
Biology. C.H. was supported by the European Research Council Starting Grant 
850529: E-DIRECT, and by the Max Planck Society. B.Z. acknowledges support 
from the NSF of China (Grant Nos. 72131003 and 72573024) and the Beijing 
Natural Science Foundation (Grant No. Z220001). The funders had no role in the 
study design, data collection and analysis, decision to publish, or preparation of 
the manuscript. 

1. M. Olson, The Logic of Collective Action: Public Goods and the Theory of Groups, Second Printing 
with a New Preface and Appendix (Harvard University Press, 1971). 

2. E. Ostrom, Governing the Commons (Cambridge University Press, Cambridge, UK, 1999). 
3. G. Hardin, The tragedy of the commons. Science 162, 1243–1248 (1968). 
4. M. Milinski, R. D. Sommerfeld, H. J. Krambeck, F. A. Reed, J. Marotzke, The collective-risk social 

dilemma and the prevention of simulated dangerous climate change. Proc. Natl. Acad. Sci. U.S.A. 
105, 2291–2294 (2008). 

5. O. P. Hauser, D. G. Rand, A. Peysakhovich, M. A. Nowak, Cooperating with the future. Nature 511, 
220–223 (2014). 

6. W. Barfuss, J. F. Donges, V. V. Vasconcelos, J. Kurths, S. A. Levin, Caring for the future can turn 
tragedy into comedy for long-term collective action under risk of collapse. Proc. Natl. Acad. Sci. 
U.S.A. 117, 12915–12922 (2020). 

7. R. Mark Isaac, K. F. McCue, C. R. Plott, Public goods provision in an experimental environment. 
J. Public Econ. 26, 51–74 (1985). 

8. C. Hauert, H. G. Schuster, Effects of increasing the number of players and memory size in the 
iterated prisoner’s dilemma: A numerical approach. Proc. R. Soc. B 264, 513–519 (1997). 

9. M. Milinski, D. Semmann, H. J. Krambeck, Reputation helps solve the “tragedy of the commons”. 
Nature 415, 424–426 (2002). 

10. E. Fehr, U. Fischbacher, The nature of human altruism. Nature 425, 785–791 (2003). 
11. S. Kurokawa, Y. Ihara, Emergence of cooperation in public goods games. Proc. R. Soc. B 276, 

1379–1384 (2009). 
12. A. Tavoni, A. Dannenberg, G. Kallis, A. Löschel, Inequality, communication, and the avoidance of 

disastrous climate change in a public goods game. Proc. Natl. Acad. Sci. U.S.A. 108, 11825–11829 
(2011). 

13. M. Archetti, I. Scheuring, Review: Game theory of public goods in one-shot social dilemmas without 
assortment. J. Theor. Biol. 299, 9–20 (2012). 

14. M. Perc, J. Gómez-Gardeñes, A. Szolnoki, L. M. Floría, Y. Moreno, Evolutionary dynamics of group 
interactions on structured populations: A review. J. R. Soc. Interface 10, 20120997 (2013). 

PNAS 2026 Vol. 123 No. 5 e2525760123 https://doi.org/10.1073/pnas.2525760123 9 of 10 

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
0.

14
6.

18
7.

50
 o

n 
Ja

nu
ar

y 
29

, 2
02

6 
fr

om
 I

P 
ad

dr
es

s 
90

.1
46

.1
87

.5
0.

https://www.pnas.org/lookup/doi/10.1073/pnas.2525760123#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2525760123#supplementary-materials
https://doi.org/10.5281/zenodo.16918146


15. F. L. Pinheiro, V. V. Vasconcelos, F. C. Santos, J. M. Pacheco, Evolution of all-or-none strategies in 
repeated public goods dilemmas. PLoS Comput. Biol. 10, e1003945 (2014). 

16. C. Hilbe, B. Wu, A. Traulsen, M. A. Nowak, Cooperation and control in multiplayer social dilemmas. 
Proc. Natl. Acad. Sci. U.S.A. 111, 16425–16430 (2014). 

17. L. Pan, D. Hao, Z. Rong, T. Zhou, Zero-determinant strategies in iterated public goods game. Sci. 
Rep. 5, 13096 (2015). 

18. A. J. Stewart, J. B. Plotkin, Small groups and long memories promote cooperation. Sci. Rep. 6, 
26889 (2016). 

19. S. Gächter, F. Kölle, S. Quercia, Reciprocity and the tragedies of maintaining and providing the 
commons. Nat. Hum. Behav. 1, 650–656 (2017). 

20. E. Fernández Domingos et al., Timing uncertainty in collective risk dilemmas encourages group 
reciprocation and polarization. iScience 23, 101752 (2020). 

21. Y. Murase, S. K. Baek, Friendly-rivalry solution to the iterated n-person public-goods game. PLoS 
Comput. Biol. 17, e1008217 (2021). 

22. C. Wang, A. Szolnoki, A reversed form of public goods game: Equivalence and difference. New J. 
Phys. 24, 123030 (2022). 

23. Q. Su, A. McAvoy, J. B. Plotkin, Evolution of cooperation with contextualized behavior. Sci. Adv. 8, 
eabm6066 (2022). 

24. M. Perc et al., Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017). 
25. B. Kerr, P. Godfrey-Smith, M. W. Feldman, What is altruism? Trends Ecol. Evol. 19, 135–140 

(2004). 
26. J. Peña, G. Nöldeke, Cooperative dilemmas with binary actions and multiple players. Dyn. Games 

Appl. 13, 1156–1193 (2023). 
27. R. Axelrod, W. D. Hamilton, The evolution of cooperation. Science 211, 1390–1396 (1981). 
28. C. Veller, L. K. Hayward, Finite-population evolution with rare mutations in asymmetric games. 

J. Econ. Theory 162, 93–113 (2016). 
29. M. Abou Chakra, S. Bumann, H. Schenk, A. Oschlies, A. Traulsen, Immediate action is the best 

strategy when facing uncertain climate change. Nat. Commun. 9, 2566 (2018). 
30. X. An, Y. Dong, X. Wang, B. Zhang, Cooperation and coordination in threshold public goods games 

with asymmetric players. Games 14, 76 (2023). 
31. K. S. Chan, S. Mestelman, R. Moir, R. A. Muller, Heterogeneity and the voluntary provision of public 

goods. Exp. Econ. 2, 5–30 (1999). 
32. E. Buckley, R. Croson, Income and wealth inequality in the voluntary provision of linear public 

goods. J. Public Econ. 90, 935–955 (2006). 
33. S. P. Hargreaves Heap, A. Ramalingam, B. V. Stoddard, Endowment inequality in public goods 

games: A re-examination. Econ. Lett. 146, 4–7 (2016). 
34. C. Hilbe, K. Hagel, M. Milinski, Asymmetric power boosts extortion in an economic experiment. 

PLoS ONE 11, e0163867 (2016). 
35. S. Gächter, F. Mengel, E. Tsakas, A. Vostroknutov, Growth and inequality in public good provision. 

J. Public Econ. 150, 1–13 (2017). 
36. C. Keser, A. Markstädter, M. Schmidt, Mandatory minimum contributions, heterogeneous 

endowments and voluntary public-good provision. Games Econom. Behav. 101, 291–310 (2017). 
37. O. P. Hauser, G. T. Kraft-Todd, D. G. Rand, M. A. Nowak, M. I. Norton, Invisible inequality leads to 

punishing the poor and rewarding the rich. Behav. Public Policy 5, 333–353 (2021). 
38. L. Nockur, S. Pfattheicher, J. Keller, Different punishment systems in a public goods game with 

asymmetric endowments. J. Exp. Soc. Psychol. 93, 104096 (2021). 
39. Y. Dong, S. Ma, B. Zhang, W. X. Wang, J. M. Pacheco, Financial incentives to poor countries 

promote net emissions reductions in multilateral climate agreements. One Earth 4, 1141–1149 
(2021). 

40. X. Wang et al., Cooperation and coordination in heterogeneous populations. Philos. Trans. R. Soc. B 
Biol. Sci. 378, 20210504 (2023). 

41. O. Hauser, C. Hilbe, K. Chatterjee, M. Nowak, Social dilemmas among unequals. Nature 572, 
524–527 (2019). 

42. V. Hübner, M. Staab, C. Hilbe, K. Chatterjee, M. Kleshnina, Efficiency and resilience of cooperation 
in asymmetric social dilemmas. Proc. Natl. Acad. Sci. U.S.A. 121, e2315558121 (2024). 

43. M. Stallen, L. Snijder, J. Gross, L. Hilbert, C. De Dreu, Partner choice and cooperation in social 
dilemmas can increase resource inequality. Nat. Commun. 14, 6432 (2023). 

44. J. F. Nash, Equilibrium points in n-person games. Proc. Natl. Acad. Sci. U.S.A. 36, 48–49 (1950). 
45. T. C. Schelling, The Strategy of Conflict (Harvard University Press, Cambridge, MA, 1960). 
46. D. Fudenberg, J. Tirole, Game Theory (MIT Press, Cambridge, MA, ed. 6, 1998). 
47. D. Fudenberg, D. Levine, The Theory of Learning in Games (MIT Press, Cambridge, MA, 1998). 
48. M. A. Nowak, K. Sigmund, The evolution of stochastic strategies in the prisoner’s dilemma. Acta 

Appl. Math. 20, 247–265 (1990). 
49. L. A. Imhof, M. A. Nowak, Stochastic evolutionary dynamics of direct reciprocity. Proc. R. Soc. B: Biol. 

Sci. 277, 463–468 (2010). 
50. S. K. Baek, H. C. Jeong, C. Hilbe, M. A. Nowak, Comparing reactive and memory-one strategies of 

direct reciprocity. Sci. Rep. 6, 25676 (2016). 
51. G. Molnar, C. Hammond, F. Fu, Reactive means in the iterated prisoner’s dilemma. Appl. Math. 

Comput. 458, 128201 (2023). 
52. N. E. Glynatsi, A. McAvoy, C. Hilbe, Evolution of reciprocity with limited payoff memory. Proc. R. Soc. 

B: Biol. Sci. 291, 20232493 (2024). 
53. M. C. Couto, S. Giaimo, C. Hilbe, Introspection dynamics: A simple model of counterfactual learning 

in asymmetric games. New J. Phys. 24, 063010 (2022). 
54. M. C. Couto, S. Pal, Introspection dynamics in asymmetric multiplayer games. Dyn. Games Appl. 

13, 1256–1285 (2023). 
55. A. Traulsen, M. A. Nowak, J. M. Pacheco, Stochastic dynamics of invasion and fixation. Phys. Rev. E 

74, 011909 (2006). 
56. A. McAvoy, J. Kates-Harbeck, K. Chatterjee, C. Hilbe, Evolutionary instability of selfish learning in 

repeated games. PNAS Nexus 1, pgac141 (2022). 
57. M. A. Ramírez, M. Smerlak, A. Traulsen, J. Jost, Diversity enables the jump towards cooperation for 

the traveler’s dilemma. Sci. Rep. 13, 1441 (2022). 
58. N. von Gerwen, V. Buskens, T. van der Lippe, Individual training and employees’ cooperative 

behavior: Evidence from a contextualized laboratory experiment. Ration. Soc. 30, 432–462 (2018). 
59. W. Nordhaus, Climate clubs: Overcoming free-riding in international climate policy. Am. Econ. Rev. 

105, 1339–1370 (2015). 
60. J. Wang, F. Fu, T. Wu, L. Wang, Emergence of social cooperation in threshold public good games 

with collective risk. Phys. Rev. E 80, 016101 (2009). 
61. F. C. Santos, J. M. Pacheco, Risk of collective failure provides an escape from the tragedy of the 

commons. Proc. Natl. Acad. Sci. U.S.A. 108, 10421–10425 (2011). 
62. V. V. Vasconcelos, F. C. Santos, J. M. Pacheco, S. A. Levin, Climate policies under wealth inequality. 

Proc. Natl. Acad. Sci. U.S.A. 111, 2212–2216 (2014). 
63. M. Perc, Success-driven distribution of public goods promotes cooperation but preserves defection. 

Phys. Rev. E 84, 037102 (2011). 
64. M. Alvard, D. Nolin, Rousseau’s whale hunt? Coordination among big-game hunters. Curr. 

Anthropol. 43, 533–559 (2002). 
65. L. Samuni, A. Preis, T. Deschner, C. Crockford, R. M. Wittig, Reward of labor coordination and 

hunting success in wild chimpanzees. Commun. Biol. 1, 138 (2018). 
66. L. Samuni, C. Crockford, R. M. Wittig, Group-level cooperation in chimpanzees is shaped by strong 

social ties. Nat. Commun. 12, 539 (2021). 
67. X. Wang, C. Hilbe, B. Zhang, Dataset and computer code for “the dynamics of cooperation in 

asymmetric public goods games”. Zenodo (2025). https://doi.org/10.5281/zenodo.16918146. 
Accessed 21 August 2025. 

10 of 10 https://doi.org/10.1073/pnas.2525760123 pnas.org 

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
0.

14
6.

18
7.

50
 o

n 
Ja

nu
ar

y 
29

, 2
02

6 
fr

om
 I

P 
ad

dr
es

s 
90

.1
46

.1
87

.5
0.

https://doi.org/10.5281/zenodo.16918146

	The dynamics of cooperation in asymmetric public goods games 
	Significance 
	Results 
	Discussion 
	Materials and Methods 




