
Introduction to Game Theory
Part 2: Evolution

2 A Primer in Evolutionary Game Theory

Remark 2.1 (A recapitulation)
So far we have looked at some basic concepts of classical game theory. First we have discussed how we
can translate strategic decision-making scenarios into formal games. The respective process required us
to identify the five elements of a game: the players, their actions, the order of moves, the information
the players have, and their payoffs. Then we looked at how we can define ‘solutions’ for certain types of
games (normal-form games, in which players only have to make one decision, and where all aspects of
the game are known to the players). We realized that even in these simple types of games, the respective
solution concepts seemed to make rather strong assumptions on the players’ cognitive abilities. In some
cases, players did not only need to be rational (i.e., they did not only need to fully understand the game
and aim to maximize their payoffs). They also needed to know that their co-player is rational, they needed
to know their co-player knows they know their co-player is rational, etc. (This infinite chain of knowledge
is sometimes called common knowledge of rationality). Those strong requirements seem to undercut the
value of the entire theory. The question we want to address in the following is: Can we get similar or
alternative solutions with weaker assumptions on the individuals’ cognition? To address this question, we
first make a little detour, and consider a seemingly unrelated problem.

Example 2.2 (Ritual fighting in deer)
The problem. In biology, there are often situations in which two males engage in a combat in order to
gain access to a female, or to defend their territories, etc. If evolution favors the survival of those individ-
uals with better fighting techniques, or with more deadly weapons, one would expect escalating evolution,
towards ever more effective weapons. Instead, many combats in nature seem to be of ‘limited war type’.
Individuals would use ineffective weapons or ritualized fighting techniques that rarely result in serious
injuries. Why is that? One hypothesis would be that individuals consider what is good for their species.
According to that hypothesis, individuals would realize that by constantly escalating a fight, they diminish
their own numbers. However, that account seems to contradict Darwin’s theory: there, individuals aim to
maximize their own fitness, not some abstract fitness of the species.

The model. Maynard Smith and Price (1973) proposed a possible resolution of this puzzle. They consider
a species with two types of males, those that escalate a fight (‘hawks’) and those that adhere to ritual
fighting (‘doves’). When a hawk encounters another, the two of them fight until one of them is seriously
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injured. In that case, the winner gains access to the territory (which yields a benefit b), whereas the other
suffers a considerable fitness cost c>b. When a hawk encounters a dove, the dove escapes and the hawk
wins the conflict. Here, the hawk gains a fitness of b (the value of the territory), whereas the effect on the
dove’s fitness is zero. Finally when two doves interact, one of them wins the ritual fight, without doing
any harm to the other (yielding a fitness gain of b to the winner and of zero to the other). To model this
scenario, suppose the current fraction of hawks in the entire population is xH . Moreover, assume for
simplicity that animals have the same general health and fighting ability, such that if a fight occurs, both
contestants are equally likely to win it. In that case, we can compute the expected fitness of the two types.
For example, if fH is the average fitness of a hawk and fD the fitness of a dove, we obtain:

fH = b−c
2 ·xH + b·(1−xH),

fD = 0·xH + b
2 ·(1−xH).

(1)

An analysis. To get an intuition for the long-run dynamics of the resulting model, it is instructive to
look at two limiting cases. First, suppose hawks are rare, such that xH ≈ 0. In that case, the two fitness
functions simplify to

fH=b and fD=b/2.

Therefore, a rare hawk would have a higher fitness than the residents. This hawk would be expected to
have more offspring and to invade the resident population. On the other hand, now assume that hawks are
very common, such that xH≈1. Now, the fitnesses are

fH=(b−c)/2 and fD=0.

Because we assumed c>b (the cost of a serious injury outweighs the value of the territory), it is now the
doves who have a higher fitness. Hence, now doves should increase in frequency.

Overall, we conclude that neither a pure population of hawks nor a pure population of doves is stable.
Over time, we would expect that there is a change in the proportion x in hawks until the two types have
equal fitness. By solving fD=fH , we obtain an equilibrium at

x∗H = b/c.

In particular, especially in species in which the cost of a fight would be considerable (where c is large, as
in deer), we would expect that most individuals are doves, and engage in ritual fighting.

Connection to classical game theory. Instead of this evolutionary approach, we could have analyzed a
very similar game among humans. Again, we could have assumed that people need to decide whether they
want to act like a hawk or like a dove, and that the resulting payoff consequences are similar to before. In
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that case we would have ended up with the payoff matrix

Hawk Dove
Hawk b−c

2 , b−c2 b, 0

Dove 0, b b
2 ,

b
2

We could analyze this game the same way as we did in the first part. It turns out that the game has no
dominated actions. However, there are three Nash equilibria. Two of the equilibria are asymmetric (the
two players coordinate on choosing the opposite action: one player uses Hawk and the other player uses
Dove). However, there is also a symmetric equilibrium. Here both players use a mixed strategy, where
they play Hawk with probability x∗H=b/c and Dove with probability x∗D=1− b/c.

Remark 2.3 (On the parallels between evolutionary and classical models)

• In the above example we observe the same overall outcome with both modeling approaches (by con-
sidering an evolving population, or by considering a normal-form game). In both cases, on average
x∗H of the observed actions are Hawk and x∗D are Dove. In the classical viewpoint, it is the individuals
who use mixed strategies; in the evolutionary viewpoint it is the mixed population.

• One aspect that is noteworthy: to make sense of the Nash equilibrium earlier today, we had to make
rather stringent assumptions on people’s cognitive abilities. In particular they needed to be aware they
are part of a game, they needed to understand the game’s rules, try to optimize their behavior, and
they needed to assume the co-player would do the same. In contrast, when following the evolutionary
approach, no cognitive abilities are required at all. Here, it is the evolutionary process that optimizes
behavior, not each single individual.

• Instead of a biological evolutionary process (where fitter individuals reproduce more often), we could
have also imagined a process where successful traits or behaviors spread through cultural evolution.
For example, players with a high payoff may be imitated more often than others. It is worth to formalize
this alternative interpretation in the following.

Remark 2.4 (Deriving a model of pairwise comparisons)
To derive a simple model of cultural evolution, consider a population of size N . Suppose the members of
this population randomly meet each other to interact in a hawk-dove game with each other. Suppose the
current number of hawks is nH and the number of doves is nD, such that nH+nD=1. Then we can again
compute the players’ expected payoffs (or ‘fitnesses’), similar to Eq. (1),

fD =
b− c

2
· nH − 1

N − 1
+ b · nD

N − 1
,

fH = 0 · nH

N − 1
+

b

2
· nD − 1

N − 1
.

(2)

In addition to these interactions, we assume that occasionally, individuals consider updating their strategy
(of either playing hawk or dove). For example, we might assume that every once in a while, a random
population member compares its own payoff f to the payoff of a randomly chosen role model f ′. If the
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Figure 1: A realization of the pairwise comparison dynamics process for the hawk-dove game. The figure
shows one representative run of the code in Table 1.

role model’s payoff is higher, the focal player switches its strategy. This elementary updating process can
then be iterated for many time steps. To explore the dynamics of this process, we look at simulations (for
some Matlab code, see Table 1). According to these simulations, individuals eventually indeed end up in
a state that reflects the game’s Nash equilibrium, see Figure 1.

Group Exercise 2.5 (Possible exercises)

• Beginner’s version: Try to recreate the above process with your own favorite programming language.
Run it for different payoff matrices (e.g., hawk-dove games with different parameters, or the split-and-
steal game, or a rock-scissors-paper game). What do you observe?

• More advanced version: In the above model, we have considered a well-mixed population. This means
that every individual interacted with everyone else to obtain their payoffs; moreover, when individuals
looked for a role-model they picked some random other individual, taken from the entire population.
Instead one could also imagine a structured population, where individuals are placed on some network.
They would only play the game with their immediate neighbors. Moreover, when updating strategies,
they would only compare their own payoff to the payoff of a randomly chosen neighbor. How does
the evolutionary dynamics look there (e.g. how do strategies spread across the network)? Again, you
could apply your code to different games, or different networks!

• An alternative advanced option: Some might be familiar with reinforcement learning. What happens if
there are two agents who update their strategies (hawk or dove) with reinforcement learning?

Remark 2.6 (A summary)
In this second part of this course, you should have learned:
• that there is an alternative interpretation of game theory. This interpretation does not require conscious

rational players who reason about their own options and about their co-player’s reasoning. Instead, this
approach only requires that individuals tend to adopt better strategies over time (either due to biological
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evolution, or due to learning).
• how to implement such a learning process with an individual-based simulation.
• that the results of such simulations often recover (and hence justify) classical Nash equilibrium predic-

tions (however, there are exceptions, see e.g., Hofbauer and Sandholm, 2011)
• that the cognitive requirements under such a learning interpretation seem much weaker. Instead of

fully understanding the game, the associated payoffs, and the possible considerations of the co-player,
individuals merely need to see what strategies other people are using and what payoffs they have. If
strategies are inherited (rather than learnt) no information about the underlying game is required at all!
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function [time,proportionhawks]=pairwisecomparisondynamics();

%% Explanation:
% [time,proportionhawks]=pairwisecomparisondynamics();
% Simulates the dynamics of a population that interacts in a hawk-dove game.
% Population members update their strategies according to some pairwise comparison process.
% Output "time" contains at which time steps we have recorded the state of the population.
% Output "proportionhawks" records the proportion of hawks at that time.

%% Setting the parameters of the game
benefit=2; cost=3; % benefit of winning a fight, cost of an injury
populationsize=200; numberhawks=20; numberdoves=populationsize-numberhawks;
% population size, initial proportion of hawks and doves
totalruntime = 1000; % Number of times we allow individuals to update their strategies
time=zeros(1,totalruntime); proportionhawks=zeros(1,totalruntime); % Initializing the output

%% Doing the actual simulation
for t=1:totalruntime

% Computing payoffs according to formula
payoffhawk = (benefit-cost)/2*(numberhawks-1)/(populationsize-1) + ...

benefit*numberdoves/(populationsize-1);
payoffdove = benefit/2*(numberdoves-1)/(populationsize-1);

% Randomly drawing numbers to determine the identity of the learner
learner = randi(populationsize);
rolemodel = randi(populationsize);

if learner <= numberhawks & rolemodel > numberhawks % learner is hawk, role model a dove
if payoffdove > payoffhawk
numberhawks = numberhawks -1;
numberdoves = numberdoves +1;

end
elseif learner > numberhawks & rolemodel <=numberhawks % learner is dove, role model a hawk
if payoffhawk > payoffdove
numberhawks = numberhawks +1;
numberdoves = numberdoves -1;

end
end

% Updating the output vectors
time(t)=t;
proportionhawks(t) = numberhawks / populationsize;

end

%% Plotting the outcome
colorblue = [0,0.5,0.9];
ax1=axes('Position',[0.15,0.15,0.8,0.8],'XTick',0:totalruntime/5:totalruntime,'yTick',0:0.2:1,...

'yTickLabel',{'0.0','0.2','0.4','0.6','0.8','1.0'},'FontSize',14,'FontName','Arial');
hold on
axis([-totalruntime*0.05, totalruntime*1.05, -0.05 1.05])
plot(time,proportionhawks,'Color',colorblue,'LineWidth',4)
plot([0,totalruntime], benefit/cost*[1 1],'k--','LineWidth',2);
xlabel('Time','FontName','Arial','FontSize',14)
ylabel('Proportion of hawks','FontName','Arial','FontSize',14)
text(0,benefit/cost*1.07,'Nash equilibrium b/c','FontName','Arial','FontSize',14)
text(totalruntime,benefit/cost*0.92,'Simulation Result','Color',colorblue,'FontSize',14,...

'HorizontalAlignment','right');
text(totalruntime/2,1,'Population''s learning dynamics','FontName','Arial','FontSize',16,...

'HorizontalAlignment','center')
end

Table 1: Some Matlab Code to implement the pairwise comparison process for the hawk-dove game.
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